Merge branch 'dev.ssa' into mergebranch

Merge dev.ssa branch back into master.

Change-Id: Ie6fac3f8d355ab164f934415fe4fc7fcb8c3db16
diff --git a/src/cmd/compile/internal/gc/ssa.go b/src/cmd/compile/internal/gc/ssa.go
new file mode 100644
index 0000000..6bf0861
--- /dev/null
+++ b/src/cmd/compile/internal/gc/ssa.go
@@ -0,0 +1,5235 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package gc
+
+import (
+	"bytes"
+	"fmt"
+	"html"
+	"math"
+	"os"
+	"strings"
+
+	"cmd/compile/internal/ssa"
+	"cmd/internal/obj"
+	"cmd/internal/obj/x86"
+)
+
+// Smallest possible faulting page at address zero.
+const minZeroPage = 4096
+
+var ssaConfig *ssa.Config
+var ssaExp ssaExport
+
+func initssa() *ssa.Config {
+	ssaExp.unimplemented = false
+	ssaExp.mustImplement = true
+	if ssaConfig == nil {
+		ssaConfig = ssa.NewConfig(Thearch.Thestring, &ssaExp, Ctxt, Debug['N'] == 0)
+	}
+	return ssaConfig
+}
+
+func shouldssa(fn *Node) bool {
+	if Thearch.Thestring != "amd64" {
+		return false
+	}
+
+	// Environment variable control of SSA CG
+	// 1. IF GOSSAFUNC == current function name THEN
+	//       compile this function with SSA and log output to ssa.html
+
+	// 2. IF GOSSAHASH == "" THEN
+	//       compile this function (and everything else) with SSA
+
+	// 3. IF GOSSAHASH == "n" or "N"
+	//       IF GOSSAPKG == current package name THEN
+	//          compile this function (and everything in this package) with SSA
+	//       ELSE
+	//          use the old back end for this function.
+	//       This is for compatibility with existing test harness and should go away.
+
+	// 4. IF GOSSAHASH is a suffix of the binary-rendered SHA1 hash of the function name THEN
+	//          compile this function with SSA
+	//       ELSE
+	//          compile this function with the old back end.
+
+	// Plan is for 3 to be removed when the tests are revised.
+	// SSA is now default, and is disabled by setting
+	// GOSSAHASH to n or N, or selectively with strings of
+	// 0 and 1.
+
+	name := fn.Func.Nname.Sym.Name
+
+	funcname := os.Getenv("GOSSAFUNC")
+	if funcname != "" {
+		// If GOSSAFUNC is set, compile only that function.
+		return name == funcname
+	}
+
+	pkg := os.Getenv("GOSSAPKG")
+	if pkg != "" {
+		// If GOSSAPKG is set, compile only that package.
+		return localpkg.Name == pkg
+	}
+
+	return initssa().DebugHashMatch("GOSSAHASH", name)
+}
+
+// buildssa builds an SSA function.
+func buildssa(fn *Node) *ssa.Func {
+	name := fn.Func.Nname.Sym.Name
+	printssa := strings.HasSuffix(name, "_ssa") || strings.Contains(name, "_ssa.") || name == os.Getenv("GOSSAFUNC")
+	if printssa {
+		fmt.Println("generating SSA for", name)
+		dumpslice("buildssa-enter", fn.Func.Enter.Slice())
+		dumpslice("buildssa-body", fn.Nbody.Slice())
+		dumpslice("buildssa-exit", fn.Func.Exit.Slice())
+	}
+
+	var s state
+	s.pushLine(fn.Lineno)
+	defer s.popLine()
+
+	if fn.Func.Pragma&CgoUnsafeArgs != 0 {
+		s.cgoUnsafeArgs = true
+	}
+	// TODO(khr): build config just once at the start of the compiler binary
+
+	ssaExp.log = printssa
+
+	s.config = initssa()
+	s.f = s.config.NewFunc()
+	s.f.Name = name
+	s.exitCode = fn.Func.Exit
+	s.panics = map[funcLine]*ssa.Block{}
+
+	if name == os.Getenv("GOSSAFUNC") {
+		// TODO: tempfile? it is handy to have the location
+		// of this file be stable, so you can just reload in the browser.
+		s.config.HTML = ssa.NewHTMLWriter("ssa.html", s.config, name)
+		// TODO: generate and print a mapping from nodes to values and blocks
+	}
+	defer func() {
+		if !printssa {
+			s.config.HTML.Close()
+		}
+	}()
+
+	// Allocate starting block
+	s.f.Entry = s.f.NewBlock(ssa.BlockPlain)
+
+	// Allocate starting values
+	s.labels = map[string]*ssaLabel{}
+	s.labeledNodes = map[*Node]*ssaLabel{}
+	s.startmem = s.entryNewValue0(ssa.OpInitMem, ssa.TypeMem)
+	s.sp = s.entryNewValue0(ssa.OpSP, Types[TUINTPTR]) // TODO: use generic pointer type (unsafe.Pointer?) instead
+	s.sb = s.entryNewValue0(ssa.OpSB, Types[TUINTPTR])
+
+	s.startBlock(s.f.Entry)
+	s.vars[&memVar] = s.startmem
+
+	s.varsyms = map[*Node]interface{}{}
+
+	// Generate addresses of local declarations
+	s.decladdrs = map[*Node]*ssa.Value{}
+	for _, n := range fn.Func.Dcl {
+		switch n.Class {
+		case PPARAM, PPARAMOUT:
+			aux := s.lookupSymbol(n, &ssa.ArgSymbol{Typ: n.Type, Node: n})
+			s.decladdrs[n] = s.entryNewValue1A(ssa.OpAddr, Ptrto(n.Type), aux, s.sp)
+			if n.Class == PPARAMOUT && s.canSSA(n) {
+				// Save ssa-able PPARAMOUT variables so we can
+				// store them back to the stack at the end of
+				// the function.
+				s.returns = append(s.returns, n)
+			}
+		case PAUTO | PHEAP:
+			// TODO this looks wrong for PAUTO|PHEAP, no vardef, but also no definition
+			aux := s.lookupSymbol(n, &ssa.AutoSymbol{Typ: n.Type, Node: n})
+			s.decladdrs[n] = s.entryNewValue1A(ssa.OpAddr, Ptrto(n.Type), aux, s.sp)
+		case PPARAM | PHEAP, PPARAMOUT | PHEAP:
+		// This ends up wrong, have to do it at the PARAM node instead.
+		case PAUTO:
+			// processed at each use, to prevent Addr coming
+			// before the decl.
+		case PFUNC:
+			// local function - already handled by frontend
+		default:
+			str := ""
+			if n.Class&PHEAP != 0 {
+				str = ",heap"
+			}
+			s.Unimplementedf("local variable with class %s%s unimplemented", classnames[n.Class&^PHEAP], str)
+		}
+	}
+
+	// Convert the AST-based IR to the SSA-based IR
+	s.stmts(fn.Func.Enter)
+	s.stmts(fn.Nbody)
+
+	// fallthrough to exit
+	if s.curBlock != nil {
+		s.stmts(s.exitCode)
+		m := s.mem()
+		b := s.endBlock()
+		b.Kind = ssa.BlockRet
+		b.Control = m
+	}
+
+	// Check that we used all labels
+	for name, lab := range s.labels {
+		if !lab.used() && !lab.reported {
+			yyerrorl(int(lab.defNode.Lineno), "label %v defined and not used", name)
+			lab.reported = true
+		}
+		if lab.used() && !lab.defined() && !lab.reported {
+			yyerrorl(int(lab.useNode.Lineno), "label %v not defined", name)
+			lab.reported = true
+		}
+	}
+
+	// Check any forward gotos. Non-forward gotos have already been checked.
+	for _, n := range s.fwdGotos {
+		lab := s.labels[n.Left.Sym.Name]
+		// If the label is undefined, we have already have printed an error.
+		if lab.defined() {
+			s.checkgoto(n, lab.defNode)
+		}
+	}
+
+	if nerrors > 0 {
+		s.f.Free()
+		return nil
+	}
+
+	// Link up variable uses to variable definitions
+	s.linkForwardReferences()
+
+	// Don't carry reference this around longer than necessary
+	s.exitCode = Nodes{}
+
+	// Main call to ssa package to compile function
+	ssa.Compile(s.f)
+
+	return s.f
+}
+
+type state struct {
+	// configuration (arch) information
+	config *ssa.Config
+
+	// function we're building
+	f *ssa.Func
+
+	// labels and labeled control flow nodes (OFOR, OSWITCH, OSELECT) in f
+	labels       map[string]*ssaLabel
+	labeledNodes map[*Node]*ssaLabel
+
+	// gotos that jump forward; required for deferred checkgoto calls
+	fwdGotos []*Node
+	// Code that must precede any return
+	// (e.g., copying value of heap-escaped paramout back to true paramout)
+	exitCode Nodes
+
+	// unlabeled break and continue statement tracking
+	breakTo    *ssa.Block // current target for plain break statement
+	continueTo *ssa.Block // current target for plain continue statement
+
+	// current location where we're interpreting the AST
+	curBlock *ssa.Block
+
+	// variable assignments in the current block (map from variable symbol to ssa value)
+	// *Node is the unique identifier (an ONAME Node) for the variable.
+	vars map[*Node]*ssa.Value
+
+	// all defined variables at the end of each block.  Indexed by block ID.
+	defvars []map[*Node]*ssa.Value
+
+	// addresses of PPARAM and PPARAMOUT variables.
+	decladdrs map[*Node]*ssa.Value
+
+	// symbols for PEXTERN, PAUTO and PPARAMOUT variables so they can be reused.
+	varsyms map[*Node]interface{}
+
+	// starting values.  Memory, stack pointer, and globals pointer
+	startmem *ssa.Value
+	sp       *ssa.Value
+	sb       *ssa.Value
+
+	// line number stack.  The current line number is top of stack
+	line []int32
+
+	// list of panic calls by function name and line number.
+	// Used to deduplicate panic calls.
+	panics map[funcLine]*ssa.Block
+
+	// list of FwdRef values.
+	fwdRefs []*ssa.Value
+
+	// list of PPARAMOUT (return) variables.  Does not include PPARAM|PHEAP vars.
+	returns []*Node
+
+	cgoUnsafeArgs bool
+}
+
+type funcLine struct {
+	f    *Node
+	line int32
+}
+
+type ssaLabel struct {
+	target         *ssa.Block // block identified by this label
+	breakTarget    *ssa.Block // block to break to in control flow node identified by this label
+	continueTarget *ssa.Block // block to continue to in control flow node identified by this label
+	defNode        *Node      // label definition Node (OLABEL)
+	// Label use Node (OGOTO, OBREAK, OCONTINUE).
+	// Used only for error detection and reporting.
+	// There might be multiple uses, but we only need to track one.
+	useNode  *Node
+	reported bool // reported indicates whether an error has already been reported for this label
+}
+
+// defined reports whether the label has a definition (OLABEL node).
+func (l *ssaLabel) defined() bool { return l.defNode != nil }
+
+// used reports whether the label has a use (OGOTO, OBREAK, or OCONTINUE node).
+func (l *ssaLabel) used() bool { return l.useNode != nil }
+
+// label returns the label associated with sym, creating it if necessary.
+func (s *state) label(sym *Sym) *ssaLabel {
+	lab := s.labels[sym.Name]
+	if lab == nil {
+		lab = new(ssaLabel)
+		s.labels[sym.Name] = lab
+	}
+	return lab
+}
+
+func (s *state) Logf(msg string, args ...interface{})   { s.config.Logf(msg, args...) }
+func (s *state) Log() bool                              { return s.config.Log() }
+func (s *state) Fatalf(msg string, args ...interface{}) { s.config.Fatalf(s.peekLine(), msg, args...) }
+func (s *state) Unimplementedf(msg string, args ...interface{}) {
+	s.config.Unimplementedf(s.peekLine(), msg, args...)
+}
+func (s *state) Warnl(line int, msg string, args ...interface{}) { s.config.Warnl(line, msg, args...) }
+func (s *state) Debug_checknil() bool                            { return s.config.Debug_checknil() }
+
+var (
+	// dummy node for the memory variable
+	memVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "mem"}}
+
+	// dummy nodes for temporary variables
+	ptrVar   = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "ptr"}}
+	capVar   = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "cap"}}
+	typVar   = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "typ"}}
+	idataVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "idata"}}
+	okVar    = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "ok"}}
+)
+
+// startBlock sets the current block we're generating code in to b.
+func (s *state) startBlock(b *ssa.Block) {
+	if s.curBlock != nil {
+		s.Fatalf("starting block %v when block %v has not ended", b, s.curBlock)
+	}
+	s.curBlock = b
+	s.vars = map[*Node]*ssa.Value{}
+}
+
+// endBlock marks the end of generating code for the current block.
+// Returns the (former) current block.  Returns nil if there is no current
+// block, i.e. if no code flows to the current execution point.
+func (s *state) endBlock() *ssa.Block {
+	b := s.curBlock
+	if b == nil {
+		return nil
+	}
+	for len(s.defvars) <= int(b.ID) {
+		s.defvars = append(s.defvars, nil)
+	}
+	s.defvars[b.ID] = s.vars
+	s.curBlock = nil
+	s.vars = nil
+	b.Line = s.peekLine()
+	return b
+}
+
+// pushLine pushes a line number on the line number stack.
+func (s *state) pushLine(line int32) {
+	s.line = append(s.line, line)
+}
+
+// popLine pops the top of the line number stack.
+func (s *state) popLine() {
+	s.line = s.line[:len(s.line)-1]
+}
+
+// peekLine peek the top of the line number stack.
+func (s *state) peekLine() int32 {
+	return s.line[len(s.line)-1]
+}
+
+func (s *state) Error(msg string, args ...interface{}) {
+	yyerrorl(int(s.peekLine()), msg, args...)
+}
+
+// newValue0 adds a new value with no arguments to the current block.
+func (s *state) newValue0(op ssa.Op, t ssa.Type) *ssa.Value {
+	return s.curBlock.NewValue0(s.peekLine(), op, t)
+}
+
+// newValue0A adds a new value with no arguments and an aux value to the current block.
+func (s *state) newValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value {
+	return s.curBlock.NewValue0A(s.peekLine(), op, t, aux)
+}
+
+// newValue0I adds a new value with no arguments and an auxint value to the current block.
+func (s *state) newValue0I(op ssa.Op, t ssa.Type, auxint int64) *ssa.Value {
+	return s.curBlock.NewValue0I(s.peekLine(), op, t, auxint)
+}
+
+// newValue1 adds a new value with one argument to the current block.
+func (s *state) newValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value {
+	return s.curBlock.NewValue1(s.peekLine(), op, t, arg)
+}
+
+// newValue1A adds a new value with one argument and an aux value to the current block.
+func (s *state) newValue1A(op ssa.Op, t ssa.Type, aux interface{}, arg *ssa.Value) *ssa.Value {
+	return s.curBlock.NewValue1A(s.peekLine(), op, t, aux, arg)
+}
+
+// newValue1I adds a new value with one argument and an auxint value to the current block.
+func (s *state) newValue1I(op ssa.Op, t ssa.Type, aux int64, arg *ssa.Value) *ssa.Value {
+	return s.curBlock.NewValue1I(s.peekLine(), op, t, aux, arg)
+}
+
+// newValue2 adds a new value with two arguments to the current block.
+func (s *state) newValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value {
+	return s.curBlock.NewValue2(s.peekLine(), op, t, arg0, arg1)
+}
+
+// newValue2I adds a new value with two arguments and an auxint value to the current block.
+func (s *state) newValue2I(op ssa.Op, t ssa.Type, aux int64, arg0, arg1 *ssa.Value) *ssa.Value {
+	return s.curBlock.NewValue2I(s.peekLine(), op, t, aux, arg0, arg1)
+}
+
+// newValue3 adds a new value with three arguments to the current block.
+func (s *state) newValue3(op ssa.Op, t ssa.Type, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
+	return s.curBlock.NewValue3(s.peekLine(), op, t, arg0, arg1, arg2)
+}
+
+// newValue3I adds a new value with three arguments and an auxint value to the current block.
+func (s *state) newValue3I(op ssa.Op, t ssa.Type, aux int64, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
+	return s.curBlock.NewValue3I(s.peekLine(), op, t, aux, arg0, arg1, arg2)
+}
+
+// entryNewValue0 adds a new value with no arguments to the entry block.
+func (s *state) entryNewValue0(op ssa.Op, t ssa.Type) *ssa.Value {
+	return s.f.Entry.NewValue0(s.peekLine(), op, t)
+}
+
+// entryNewValue0A adds a new value with no arguments and an aux value to the entry block.
+func (s *state) entryNewValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value {
+	return s.f.Entry.NewValue0A(s.peekLine(), op, t, aux)
+}
+
+// entryNewValue0I adds a new value with no arguments and an auxint value to the entry block.
+func (s *state) entryNewValue0I(op ssa.Op, t ssa.Type, auxint int64) *ssa.Value {
+	return s.f.Entry.NewValue0I(s.peekLine(), op, t, auxint)
+}
+
+// entryNewValue1 adds a new value with one argument to the entry block.
+func (s *state) entryNewValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value {
+	return s.f.Entry.NewValue1(s.peekLine(), op, t, arg)
+}
+
+// entryNewValue1 adds a new value with one argument and an auxint value to the entry block.
+func (s *state) entryNewValue1I(op ssa.Op, t ssa.Type, auxint int64, arg *ssa.Value) *ssa.Value {
+	return s.f.Entry.NewValue1I(s.peekLine(), op, t, auxint, arg)
+}
+
+// entryNewValue1A adds a new value with one argument and an aux value to the entry block.
+func (s *state) entryNewValue1A(op ssa.Op, t ssa.Type, aux interface{}, arg *ssa.Value) *ssa.Value {
+	return s.f.Entry.NewValue1A(s.peekLine(), op, t, aux, arg)
+}
+
+// entryNewValue2 adds a new value with two arguments to the entry block.
+func (s *state) entryNewValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value {
+	return s.f.Entry.NewValue2(s.peekLine(), op, t, arg0, arg1)
+}
+
+// const* routines add a new const value to the entry block.
+func (s *state) constBool(c bool) *ssa.Value {
+	return s.f.ConstBool(s.peekLine(), Types[TBOOL], c)
+}
+func (s *state) constInt8(t ssa.Type, c int8) *ssa.Value {
+	return s.f.ConstInt8(s.peekLine(), t, c)
+}
+func (s *state) constInt16(t ssa.Type, c int16) *ssa.Value {
+	return s.f.ConstInt16(s.peekLine(), t, c)
+}
+func (s *state) constInt32(t ssa.Type, c int32) *ssa.Value {
+	return s.f.ConstInt32(s.peekLine(), t, c)
+}
+func (s *state) constInt64(t ssa.Type, c int64) *ssa.Value {
+	return s.f.ConstInt64(s.peekLine(), t, c)
+}
+func (s *state) constFloat32(t ssa.Type, c float64) *ssa.Value {
+	return s.f.ConstFloat32(s.peekLine(), t, c)
+}
+func (s *state) constFloat64(t ssa.Type, c float64) *ssa.Value {
+	return s.f.ConstFloat64(s.peekLine(), t, c)
+}
+func (s *state) constInt(t ssa.Type, c int64) *ssa.Value {
+	if s.config.IntSize == 8 {
+		return s.constInt64(t, c)
+	}
+	if int64(int32(c)) != c {
+		s.Fatalf("integer constant too big %d", c)
+	}
+	return s.constInt32(t, int32(c))
+}
+
+func (s *state) stmts(a Nodes) {
+	for _, x := range a.Slice() {
+		s.stmt(x)
+	}
+}
+
+// ssaStmtList converts the statement n to SSA and adds it to s.
+func (s *state) stmtList(l *NodeList) {
+	for ; l != nil; l = l.Next {
+		s.stmt(l.N)
+	}
+}
+
+// ssaStmt converts the statement n to SSA and adds it to s.
+func (s *state) stmt(n *Node) {
+	s.pushLine(n.Lineno)
+	defer s.popLine()
+
+	// If s.curBlock is nil, then we're about to generate dead code.
+	// We can't just short-circuit here, though,
+	// because we check labels and gotos as part of SSA generation.
+	// Provide a block for the dead code so that we don't have
+	// to add special cases everywhere else.
+	if s.curBlock == nil {
+		dead := s.f.NewBlock(ssa.BlockPlain)
+		s.startBlock(dead)
+	}
+
+	s.stmtList(n.Ninit)
+	switch n.Op {
+
+	case OBLOCK:
+		s.stmtList(n.List)
+
+	// No-ops
+	case OEMPTY, ODCLCONST, ODCLTYPE, OFALL:
+
+	// Expression statements
+	case OCALLFUNC, OCALLMETH, OCALLINTER:
+		s.call(n, callNormal)
+		if n.Op == OCALLFUNC && n.Left.Op == ONAME && n.Left.Class == PFUNC &&
+			(compiling_runtime != 0 && n.Left.Sym.Name == "throw" ||
+				n.Left.Sym.Pkg == Runtimepkg && (n.Left.Sym.Name == "gopanic" || n.Left.Sym.Name == "selectgo" || n.Left.Sym.Name == "block")) {
+			m := s.mem()
+			b := s.endBlock()
+			b.Kind = ssa.BlockExit
+			b.Control = m
+			// TODO: never rewrite OPANIC to OCALLFUNC in the
+			// first place.  Need to wait until all backends
+			// go through SSA.
+		}
+	case ODEFER:
+		s.call(n.Left, callDefer)
+	case OPROC:
+		s.call(n.Left, callGo)
+
+	case OAS2DOTTYPE:
+		res, resok := s.dottype(n.Rlist.N, true)
+		s.assign(n.List.N, res, needwritebarrier(n.List.N, n.Rlist.N), false, n.Lineno)
+		s.assign(n.List.Next.N, resok, false, false, n.Lineno)
+		return
+
+	case ODCL:
+		if n.Left.Class&PHEAP == 0 {
+			return
+		}
+		if compiling_runtime != 0 {
+			Fatalf("%v escapes to heap, not allowed in runtime.", n)
+		}
+
+		// TODO: the old pass hides the details of PHEAP
+		// variables behind ONAME nodes. Figure out if it's better
+		// to rewrite the tree and make the heapaddr construct explicit
+		// or to keep this detail hidden behind the scenes.
+		palloc := prealloc[n.Left]
+		if palloc == nil {
+			palloc = callnew(n.Left.Type)
+			prealloc[n.Left] = palloc
+		}
+		r := s.expr(palloc)
+		s.assign(n.Left.Name.Heapaddr, r, false, false, n.Lineno)
+
+	case OLABEL:
+		sym := n.Left.Sym
+
+		if isblanksym(sym) {
+			// Empty identifier is valid but useless.
+			// See issues 11589, 11593.
+			return
+		}
+
+		lab := s.label(sym)
+
+		// Associate label with its control flow node, if any
+		if ctl := n.Name.Defn; ctl != nil {
+			switch ctl.Op {
+			case OFOR, OSWITCH, OSELECT:
+				s.labeledNodes[ctl] = lab
+			}
+		}
+
+		if !lab.defined() {
+			lab.defNode = n
+		} else {
+			s.Error("label %v already defined at %v", sym, Ctxt.Line(int(lab.defNode.Lineno)))
+			lab.reported = true
+		}
+		// The label might already have a target block via a goto.
+		if lab.target == nil {
+			lab.target = s.f.NewBlock(ssa.BlockPlain)
+		}
+
+		// go to that label (we pretend "label:" is preceded by "goto label")
+		b := s.endBlock()
+		b.AddEdgeTo(lab.target)
+		s.startBlock(lab.target)
+
+	case OGOTO:
+		sym := n.Left.Sym
+
+		lab := s.label(sym)
+		if lab.target == nil {
+			lab.target = s.f.NewBlock(ssa.BlockPlain)
+		}
+		if !lab.used() {
+			lab.useNode = n
+		}
+
+		if lab.defined() {
+			s.checkgoto(n, lab.defNode)
+		} else {
+			s.fwdGotos = append(s.fwdGotos, n)
+		}
+
+		b := s.endBlock()
+		b.AddEdgeTo(lab.target)
+
+	case OAS, OASWB:
+		// Check whether we can generate static data rather than code.
+		// If so, ignore n and defer data generation until codegen.
+		// Failure to do this causes writes to readonly symbols.
+		if gen_as_init(n, true) {
+			var data []*Node
+			if s.f.StaticData != nil {
+				data = s.f.StaticData.([]*Node)
+			}
+			s.f.StaticData = append(data, n)
+			return
+		}
+
+		var t *Type
+		if n.Right != nil {
+			t = n.Right.Type
+		} else {
+			t = n.Left.Type
+		}
+
+		// Evaluate RHS.
+		rhs := n.Right
+		if rhs != nil && (rhs.Op == OSTRUCTLIT || rhs.Op == OARRAYLIT) {
+			// All literals with nonzero fields have already been
+			// rewritten during walk.  Any that remain are just T{}
+			// or equivalents.  Use the zero value.
+			if !iszero(rhs) {
+				Fatalf("literal with nonzero value in SSA: %v", rhs)
+			}
+			rhs = nil
+		}
+		var r *ssa.Value
+		needwb := n.Op == OASWB && rhs != nil
+		deref := !canSSAType(t)
+		if deref {
+			if rhs == nil {
+				r = nil // Signal assign to use OpZero.
+			} else {
+				r = s.addr(rhs, false)
+			}
+		} else {
+			if rhs == nil {
+				r = s.zeroVal(t)
+			} else {
+				r = s.expr(rhs)
+			}
+		}
+		if rhs != nil && rhs.Op == OAPPEND {
+			// Yuck!  The frontend gets rid of the write barrier, but we need it!
+			// At least, we need it in the case where growslice is called.
+			// TODO: Do the write barrier on just the growslice branch.
+			// TODO: just add a ptr graying to the end of growslice?
+			// TODO: check whether we need to do this for ODOTTYPE and ORECV also.
+			// They get similar wb-removal treatment in walk.go:OAS.
+			needwb = true
+		}
+
+		s.assign(n.Left, r, needwb, deref, n.Lineno)
+
+	case OIF:
+		bThen := s.f.NewBlock(ssa.BlockPlain)
+		bEnd := s.f.NewBlock(ssa.BlockPlain)
+		var bElse *ssa.Block
+		if n.Rlist != nil {
+			bElse = s.f.NewBlock(ssa.BlockPlain)
+			s.condBranch(n.Left, bThen, bElse, n.Likely)
+		} else {
+			s.condBranch(n.Left, bThen, bEnd, n.Likely)
+		}
+
+		s.startBlock(bThen)
+		s.stmts(n.Nbody)
+		if b := s.endBlock(); b != nil {
+			b.AddEdgeTo(bEnd)
+		}
+
+		if n.Rlist != nil {
+			s.startBlock(bElse)
+			s.stmtList(n.Rlist)
+			if b := s.endBlock(); b != nil {
+				b.AddEdgeTo(bEnd)
+			}
+		}
+		s.startBlock(bEnd)
+
+	case ORETURN:
+		s.stmtList(n.List)
+		s.exit()
+	case ORETJMP:
+		s.stmtList(n.List)
+		b := s.exit()
+		b.Kind = ssa.BlockRetJmp // override BlockRet
+		b.Aux = n.Left.Sym
+
+	case OCONTINUE, OBREAK:
+		var op string
+		var to *ssa.Block
+		switch n.Op {
+		case OCONTINUE:
+			op = "continue"
+			to = s.continueTo
+		case OBREAK:
+			op = "break"
+			to = s.breakTo
+		}
+		if n.Left == nil {
+			// plain break/continue
+			if to == nil {
+				s.Error("%s is not in a loop", op)
+				return
+			}
+			// nothing to do; "to" is already the correct target
+		} else {
+			// labeled break/continue; look up the target
+			sym := n.Left.Sym
+			lab := s.label(sym)
+			if !lab.used() {
+				lab.useNode = n.Left
+			}
+			if !lab.defined() {
+				s.Error("%s label not defined: %v", op, sym)
+				lab.reported = true
+				return
+			}
+			switch n.Op {
+			case OCONTINUE:
+				to = lab.continueTarget
+			case OBREAK:
+				to = lab.breakTarget
+			}
+			if to == nil {
+				// Valid label but not usable with a break/continue here, e.g.:
+				// for {
+				// 	continue abc
+				// }
+				// abc:
+				// for {}
+				s.Error("invalid %s label %v", op, sym)
+				lab.reported = true
+				return
+			}
+		}
+
+		b := s.endBlock()
+		b.AddEdgeTo(to)
+
+	case OFOR:
+		// OFOR: for Ninit; Left; Right { Nbody }
+		bCond := s.f.NewBlock(ssa.BlockPlain)
+		bBody := s.f.NewBlock(ssa.BlockPlain)
+		bIncr := s.f.NewBlock(ssa.BlockPlain)
+		bEnd := s.f.NewBlock(ssa.BlockPlain)
+
+		// first, jump to condition test
+		b := s.endBlock()
+		b.AddEdgeTo(bCond)
+
+		// generate code to test condition
+		s.startBlock(bCond)
+		if n.Left != nil {
+			s.condBranch(n.Left, bBody, bEnd, 1)
+		} else {
+			b := s.endBlock()
+			b.Kind = ssa.BlockPlain
+			b.AddEdgeTo(bBody)
+		}
+
+		// set up for continue/break in body
+		prevContinue := s.continueTo
+		prevBreak := s.breakTo
+		s.continueTo = bIncr
+		s.breakTo = bEnd
+		lab := s.labeledNodes[n]
+		if lab != nil {
+			// labeled for loop
+			lab.continueTarget = bIncr
+			lab.breakTarget = bEnd
+		}
+
+		// generate body
+		s.startBlock(bBody)
+		s.stmts(n.Nbody)
+
+		// tear down continue/break
+		s.continueTo = prevContinue
+		s.breakTo = prevBreak
+		if lab != nil {
+			lab.continueTarget = nil
+			lab.breakTarget = nil
+		}
+
+		// done with body, goto incr
+		if b := s.endBlock(); b != nil {
+			b.AddEdgeTo(bIncr)
+		}
+
+		// generate incr
+		s.startBlock(bIncr)
+		if n.Right != nil {
+			s.stmt(n.Right)
+		}
+		if b := s.endBlock(); b != nil {
+			b.AddEdgeTo(bCond)
+		}
+		s.startBlock(bEnd)
+
+	case OSWITCH, OSELECT:
+		// These have been mostly rewritten by the front end into their Nbody fields.
+		// Our main task is to correctly hook up any break statements.
+		bEnd := s.f.NewBlock(ssa.BlockPlain)
+
+		prevBreak := s.breakTo
+		s.breakTo = bEnd
+		lab := s.labeledNodes[n]
+		if lab != nil {
+			// labeled
+			lab.breakTarget = bEnd
+		}
+
+		// generate body code
+		s.stmts(n.Nbody)
+
+		s.breakTo = prevBreak
+		if lab != nil {
+			lab.breakTarget = nil
+		}
+
+		// OSWITCH never falls through (s.curBlock == nil here).
+		// OSELECT does not fall through if we're calling selectgo.
+		// OSELECT does fall through if we're calling selectnb{send,recv}[2].
+		// In those latter cases, go to the code after the select.
+		if b := s.endBlock(); b != nil {
+			b.AddEdgeTo(bEnd)
+		}
+		s.startBlock(bEnd)
+
+	case OVARKILL:
+		// Insert a varkill op to record that a variable is no longer live.
+		// We only care about liveness info at call sites, so putting the
+		// varkill in the store chain is enough to keep it correctly ordered
+		// with respect to call ops.
+		if !s.canSSA(n.Left) {
+			s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, ssa.TypeMem, n.Left, s.mem())
+		}
+
+	case OVARLIVE:
+		// Insert a varlive op to record that a variable is still live.
+		if !n.Left.Addrtaken {
+			s.Fatalf("VARLIVE variable %s must have Addrtaken set", n.Left)
+		}
+		s.vars[&memVar] = s.newValue1A(ssa.OpVarLive, ssa.TypeMem, n.Left, s.mem())
+
+	case OCHECKNIL:
+		p := s.expr(n.Left)
+		s.nilCheck(p)
+
+	default:
+		s.Unimplementedf("unhandled stmt %s", opnames[n.Op])
+	}
+}
+
+// exit processes any code that needs to be generated just before returning.
+// It returns a BlockRet block that ends the control flow.  Its control value
+// will be set to the final memory state.
+func (s *state) exit() *ssa.Block {
+	// Run exit code.  Typically, this code copies heap-allocated PPARAMOUT
+	// variables back to the stack.
+	s.stmts(s.exitCode)
+
+	// Store SSAable PPARAMOUT variables back to stack locations.
+	for _, n := range s.returns {
+		aux := &ssa.ArgSymbol{Typ: n.Type, Node: n}
+		addr := s.newValue1A(ssa.OpAddr, Ptrto(n.Type), aux, s.sp)
+		val := s.variable(n, n.Type)
+		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, n, s.mem())
+		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, n.Type.Size(), addr, val, s.mem())
+		// TODO: if val is ever spilled, we'd like to use the
+		// PPARAMOUT slot for spilling it.  That won't happen
+		// currently.
+	}
+
+	// Do actual return.
+	m := s.mem()
+	b := s.endBlock()
+	b.Kind = ssa.BlockRet
+	b.Control = m
+	return b
+}
+
+type opAndType struct {
+	op    Op
+	etype EType
+}
+
+var opToSSA = map[opAndType]ssa.Op{
+	opAndType{OADD, TINT8}:    ssa.OpAdd8,
+	opAndType{OADD, TUINT8}:   ssa.OpAdd8,
+	opAndType{OADD, TINT16}:   ssa.OpAdd16,
+	opAndType{OADD, TUINT16}:  ssa.OpAdd16,
+	opAndType{OADD, TINT32}:   ssa.OpAdd32,
+	opAndType{OADD, TUINT32}:  ssa.OpAdd32,
+	opAndType{OADD, TPTR32}:   ssa.OpAdd32,
+	opAndType{OADD, TINT64}:   ssa.OpAdd64,
+	opAndType{OADD, TUINT64}:  ssa.OpAdd64,
+	opAndType{OADD, TPTR64}:   ssa.OpAdd64,
+	opAndType{OADD, TFLOAT32}: ssa.OpAdd32F,
+	opAndType{OADD, TFLOAT64}: ssa.OpAdd64F,
+
+	opAndType{OSUB, TINT8}:    ssa.OpSub8,
+	opAndType{OSUB, TUINT8}:   ssa.OpSub8,
+	opAndType{OSUB, TINT16}:   ssa.OpSub16,
+	opAndType{OSUB, TUINT16}:  ssa.OpSub16,
+	opAndType{OSUB, TINT32}:   ssa.OpSub32,
+	opAndType{OSUB, TUINT32}:  ssa.OpSub32,
+	opAndType{OSUB, TINT64}:   ssa.OpSub64,
+	opAndType{OSUB, TUINT64}:  ssa.OpSub64,
+	opAndType{OSUB, TFLOAT32}: ssa.OpSub32F,
+	opAndType{OSUB, TFLOAT64}: ssa.OpSub64F,
+
+	opAndType{ONOT, TBOOL}: ssa.OpNot,
+
+	opAndType{OMINUS, TINT8}:    ssa.OpNeg8,
+	opAndType{OMINUS, TUINT8}:   ssa.OpNeg8,
+	opAndType{OMINUS, TINT16}:   ssa.OpNeg16,
+	opAndType{OMINUS, TUINT16}:  ssa.OpNeg16,
+	opAndType{OMINUS, TINT32}:   ssa.OpNeg32,
+	opAndType{OMINUS, TUINT32}:  ssa.OpNeg32,
+	opAndType{OMINUS, TINT64}:   ssa.OpNeg64,
+	opAndType{OMINUS, TUINT64}:  ssa.OpNeg64,
+	opAndType{OMINUS, TFLOAT32}: ssa.OpNeg32F,
+	opAndType{OMINUS, TFLOAT64}: ssa.OpNeg64F,
+
+	opAndType{OCOM, TINT8}:   ssa.OpCom8,
+	opAndType{OCOM, TUINT8}:  ssa.OpCom8,
+	opAndType{OCOM, TINT16}:  ssa.OpCom16,
+	opAndType{OCOM, TUINT16}: ssa.OpCom16,
+	opAndType{OCOM, TINT32}:  ssa.OpCom32,
+	opAndType{OCOM, TUINT32}: ssa.OpCom32,
+	opAndType{OCOM, TINT64}:  ssa.OpCom64,
+	opAndType{OCOM, TUINT64}: ssa.OpCom64,
+
+	opAndType{OIMAG, TCOMPLEX64}:  ssa.OpComplexImag,
+	opAndType{OIMAG, TCOMPLEX128}: ssa.OpComplexImag,
+	opAndType{OREAL, TCOMPLEX64}:  ssa.OpComplexReal,
+	opAndType{OREAL, TCOMPLEX128}: ssa.OpComplexReal,
+
+	opAndType{OMUL, TINT8}:    ssa.OpMul8,
+	opAndType{OMUL, TUINT8}:   ssa.OpMul8,
+	opAndType{OMUL, TINT16}:   ssa.OpMul16,
+	opAndType{OMUL, TUINT16}:  ssa.OpMul16,
+	opAndType{OMUL, TINT32}:   ssa.OpMul32,
+	opAndType{OMUL, TUINT32}:  ssa.OpMul32,
+	opAndType{OMUL, TINT64}:   ssa.OpMul64,
+	opAndType{OMUL, TUINT64}:  ssa.OpMul64,
+	opAndType{OMUL, TFLOAT32}: ssa.OpMul32F,
+	opAndType{OMUL, TFLOAT64}: ssa.OpMul64F,
+
+	opAndType{ODIV, TFLOAT32}: ssa.OpDiv32F,
+	opAndType{ODIV, TFLOAT64}: ssa.OpDiv64F,
+
+	opAndType{OHMUL, TINT8}:   ssa.OpHmul8,
+	opAndType{OHMUL, TUINT8}:  ssa.OpHmul8u,
+	opAndType{OHMUL, TINT16}:  ssa.OpHmul16,
+	opAndType{OHMUL, TUINT16}: ssa.OpHmul16u,
+	opAndType{OHMUL, TINT32}:  ssa.OpHmul32,
+	opAndType{OHMUL, TUINT32}: ssa.OpHmul32u,
+
+	opAndType{ODIV, TINT8}:   ssa.OpDiv8,
+	opAndType{ODIV, TUINT8}:  ssa.OpDiv8u,
+	opAndType{ODIV, TINT16}:  ssa.OpDiv16,
+	opAndType{ODIV, TUINT16}: ssa.OpDiv16u,
+	opAndType{ODIV, TINT32}:  ssa.OpDiv32,
+	opAndType{ODIV, TUINT32}: ssa.OpDiv32u,
+	opAndType{ODIV, TINT64}:  ssa.OpDiv64,
+	opAndType{ODIV, TUINT64}: ssa.OpDiv64u,
+
+	opAndType{OMOD, TINT8}:   ssa.OpMod8,
+	opAndType{OMOD, TUINT8}:  ssa.OpMod8u,
+	opAndType{OMOD, TINT16}:  ssa.OpMod16,
+	opAndType{OMOD, TUINT16}: ssa.OpMod16u,
+	opAndType{OMOD, TINT32}:  ssa.OpMod32,
+	opAndType{OMOD, TUINT32}: ssa.OpMod32u,
+	opAndType{OMOD, TINT64}:  ssa.OpMod64,
+	opAndType{OMOD, TUINT64}: ssa.OpMod64u,
+
+	opAndType{OAND, TINT8}:   ssa.OpAnd8,
+	opAndType{OAND, TUINT8}:  ssa.OpAnd8,
+	opAndType{OAND, TINT16}:  ssa.OpAnd16,
+	opAndType{OAND, TUINT16}: ssa.OpAnd16,
+	opAndType{OAND, TINT32}:  ssa.OpAnd32,
+	opAndType{OAND, TUINT32}: ssa.OpAnd32,
+	opAndType{OAND, TINT64}:  ssa.OpAnd64,
+	opAndType{OAND, TUINT64}: ssa.OpAnd64,
+
+	opAndType{OOR, TINT8}:   ssa.OpOr8,
+	opAndType{OOR, TUINT8}:  ssa.OpOr8,
+	opAndType{OOR, TINT16}:  ssa.OpOr16,
+	opAndType{OOR, TUINT16}: ssa.OpOr16,
+	opAndType{OOR, TINT32}:  ssa.OpOr32,
+	opAndType{OOR, TUINT32}: ssa.OpOr32,
+	opAndType{OOR, TINT64}:  ssa.OpOr64,
+	opAndType{OOR, TUINT64}: ssa.OpOr64,
+
+	opAndType{OXOR, TINT8}:   ssa.OpXor8,
+	opAndType{OXOR, TUINT8}:  ssa.OpXor8,
+	opAndType{OXOR, TINT16}:  ssa.OpXor16,
+	opAndType{OXOR, TUINT16}: ssa.OpXor16,
+	opAndType{OXOR, TINT32}:  ssa.OpXor32,
+	opAndType{OXOR, TUINT32}: ssa.OpXor32,
+	opAndType{OXOR, TINT64}:  ssa.OpXor64,
+	opAndType{OXOR, TUINT64}: ssa.OpXor64,
+
+	opAndType{OEQ, TBOOL}:      ssa.OpEq8,
+	opAndType{OEQ, TINT8}:      ssa.OpEq8,
+	opAndType{OEQ, TUINT8}:     ssa.OpEq8,
+	opAndType{OEQ, TINT16}:     ssa.OpEq16,
+	opAndType{OEQ, TUINT16}:    ssa.OpEq16,
+	opAndType{OEQ, TINT32}:     ssa.OpEq32,
+	opAndType{OEQ, TUINT32}:    ssa.OpEq32,
+	opAndType{OEQ, TINT64}:     ssa.OpEq64,
+	opAndType{OEQ, TUINT64}:    ssa.OpEq64,
+	opAndType{OEQ, TINTER}:     ssa.OpEqInter,
+	opAndType{OEQ, TARRAY}:     ssa.OpEqSlice,
+	opAndType{OEQ, TFUNC}:      ssa.OpEqPtr,
+	opAndType{OEQ, TMAP}:       ssa.OpEqPtr,
+	opAndType{OEQ, TCHAN}:      ssa.OpEqPtr,
+	opAndType{OEQ, TPTR64}:     ssa.OpEqPtr,
+	opAndType{OEQ, TUINTPTR}:   ssa.OpEqPtr,
+	opAndType{OEQ, TUNSAFEPTR}: ssa.OpEqPtr,
+	opAndType{OEQ, TFLOAT64}:   ssa.OpEq64F,
+	opAndType{OEQ, TFLOAT32}:   ssa.OpEq32F,
+
+	opAndType{ONE, TBOOL}:      ssa.OpNeq8,
+	opAndType{ONE, TINT8}:      ssa.OpNeq8,
+	opAndType{ONE, TUINT8}:     ssa.OpNeq8,
+	opAndType{ONE, TINT16}:     ssa.OpNeq16,
+	opAndType{ONE, TUINT16}:    ssa.OpNeq16,
+	opAndType{ONE, TINT32}:     ssa.OpNeq32,
+	opAndType{ONE, TUINT32}:    ssa.OpNeq32,
+	opAndType{ONE, TINT64}:     ssa.OpNeq64,
+	opAndType{ONE, TUINT64}:    ssa.OpNeq64,
+	opAndType{ONE, TINTER}:     ssa.OpNeqInter,
+	opAndType{ONE, TARRAY}:     ssa.OpNeqSlice,
+	opAndType{ONE, TFUNC}:      ssa.OpNeqPtr,
+	opAndType{ONE, TMAP}:       ssa.OpNeqPtr,
+	opAndType{ONE, TCHAN}:      ssa.OpNeqPtr,
+	opAndType{ONE, TPTR64}:     ssa.OpNeqPtr,
+	opAndType{ONE, TUINTPTR}:   ssa.OpNeqPtr,
+	opAndType{ONE, TUNSAFEPTR}: ssa.OpNeqPtr,
+	opAndType{ONE, TFLOAT64}:   ssa.OpNeq64F,
+	opAndType{ONE, TFLOAT32}:   ssa.OpNeq32F,
+
+	opAndType{OLT, TINT8}:    ssa.OpLess8,
+	opAndType{OLT, TUINT8}:   ssa.OpLess8U,
+	opAndType{OLT, TINT16}:   ssa.OpLess16,
+	opAndType{OLT, TUINT16}:  ssa.OpLess16U,
+	opAndType{OLT, TINT32}:   ssa.OpLess32,
+	opAndType{OLT, TUINT32}:  ssa.OpLess32U,
+	opAndType{OLT, TINT64}:   ssa.OpLess64,
+	opAndType{OLT, TUINT64}:  ssa.OpLess64U,
+	opAndType{OLT, TFLOAT64}: ssa.OpLess64F,
+	opAndType{OLT, TFLOAT32}: ssa.OpLess32F,
+
+	opAndType{OGT, TINT8}:    ssa.OpGreater8,
+	opAndType{OGT, TUINT8}:   ssa.OpGreater8U,
+	opAndType{OGT, TINT16}:   ssa.OpGreater16,
+	opAndType{OGT, TUINT16}:  ssa.OpGreater16U,
+	opAndType{OGT, TINT32}:   ssa.OpGreater32,
+	opAndType{OGT, TUINT32}:  ssa.OpGreater32U,
+	opAndType{OGT, TINT64}:   ssa.OpGreater64,
+	opAndType{OGT, TUINT64}:  ssa.OpGreater64U,
+	opAndType{OGT, TFLOAT64}: ssa.OpGreater64F,
+	opAndType{OGT, TFLOAT32}: ssa.OpGreater32F,
+
+	opAndType{OLE, TINT8}:    ssa.OpLeq8,
+	opAndType{OLE, TUINT8}:   ssa.OpLeq8U,
+	opAndType{OLE, TINT16}:   ssa.OpLeq16,
+	opAndType{OLE, TUINT16}:  ssa.OpLeq16U,
+	opAndType{OLE, TINT32}:   ssa.OpLeq32,
+	opAndType{OLE, TUINT32}:  ssa.OpLeq32U,
+	opAndType{OLE, TINT64}:   ssa.OpLeq64,
+	opAndType{OLE, TUINT64}:  ssa.OpLeq64U,
+	opAndType{OLE, TFLOAT64}: ssa.OpLeq64F,
+	opAndType{OLE, TFLOAT32}: ssa.OpLeq32F,
+
+	opAndType{OGE, TINT8}:    ssa.OpGeq8,
+	opAndType{OGE, TUINT8}:   ssa.OpGeq8U,
+	opAndType{OGE, TINT16}:   ssa.OpGeq16,
+	opAndType{OGE, TUINT16}:  ssa.OpGeq16U,
+	opAndType{OGE, TINT32}:   ssa.OpGeq32,
+	opAndType{OGE, TUINT32}:  ssa.OpGeq32U,
+	opAndType{OGE, TINT64}:   ssa.OpGeq64,
+	opAndType{OGE, TUINT64}:  ssa.OpGeq64U,
+	opAndType{OGE, TFLOAT64}: ssa.OpGeq64F,
+	opAndType{OGE, TFLOAT32}: ssa.OpGeq32F,
+
+	opAndType{OLROT, TUINT8}:  ssa.OpLrot8,
+	opAndType{OLROT, TUINT16}: ssa.OpLrot16,
+	opAndType{OLROT, TUINT32}: ssa.OpLrot32,
+	opAndType{OLROT, TUINT64}: ssa.OpLrot64,
+
+	opAndType{OSQRT, TFLOAT64}: ssa.OpSqrt,
+}
+
+func (s *state) concreteEtype(t *Type) EType {
+	e := t.Etype
+	switch e {
+	default:
+		return e
+	case TINT:
+		if s.config.IntSize == 8 {
+			return TINT64
+		}
+		return TINT32
+	case TUINT:
+		if s.config.IntSize == 8 {
+			return TUINT64
+		}
+		return TUINT32
+	case TUINTPTR:
+		if s.config.PtrSize == 8 {
+			return TUINT64
+		}
+		return TUINT32
+	}
+}
+
+func (s *state) ssaOp(op Op, t *Type) ssa.Op {
+	etype := s.concreteEtype(t)
+	x, ok := opToSSA[opAndType{op, etype}]
+	if !ok {
+		s.Unimplementedf("unhandled binary op %s %s", opnames[op], Econv(etype))
+	}
+	return x
+}
+
+func floatForComplex(t *Type) *Type {
+	if t.Size() == 8 {
+		return Types[TFLOAT32]
+	} else {
+		return Types[TFLOAT64]
+	}
+}
+
+type opAndTwoTypes struct {
+	op     Op
+	etype1 EType
+	etype2 EType
+}
+
+type twoTypes struct {
+	etype1 EType
+	etype2 EType
+}
+
+type twoOpsAndType struct {
+	op1              ssa.Op
+	op2              ssa.Op
+	intermediateType EType
+}
+
+var fpConvOpToSSA = map[twoTypes]twoOpsAndType{
+
+	twoTypes{TINT8, TFLOAT32}:  twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to32F, TINT32},
+	twoTypes{TINT16, TFLOAT32}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to32F, TINT32},
+	twoTypes{TINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to32F, TINT32},
+	twoTypes{TINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to32F, TINT64},
+
+	twoTypes{TINT8, TFLOAT64}:  twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to64F, TINT32},
+	twoTypes{TINT16, TFLOAT64}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to64F, TINT32},
+	twoTypes{TINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to64F, TINT32},
+	twoTypes{TINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to64F, TINT64},
+
+	twoTypes{TFLOAT32, TINT8}:  twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32},
+	twoTypes{TFLOAT32, TINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32},
+	twoTypes{TFLOAT32, TINT32}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpCopy, TINT32},
+	twoTypes{TFLOAT32, TINT64}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpCopy, TINT64},
+
+	twoTypes{TFLOAT64, TINT8}:  twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32},
+	twoTypes{TFLOAT64, TINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32},
+	twoTypes{TFLOAT64, TINT32}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpCopy, TINT32},
+	twoTypes{TFLOAT64, TINT64}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpCopy, TINT64},
+	// unsigned
+	twoTypes{TUINT8, TFLOAT32}:  twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to32F, TINT32},
+	twoTypes{TUINT16, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to32F, TINT32},
+	twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to32F, TINT64}, // go wide to dodge unsigned
+	twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64},            // Cvt64Uto32F, branchy code expansion instead
+
+	twoTypes{TUINT8, TFLOAT64}:  twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to64F, TINT32},
+	twoTypes{TUINT16, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to64F, TINT32},
+	twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to64F, TINT64}, // go wide to dodge unsigned
+	twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64},            // Cvt64Uto64F, branchy code expansion instead
+
+	twoTypes{TFLOAT32, TUINT8}:  twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32},
+	twoTypes{TFLOAT32, TUINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32},
+	twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned
+	twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64},          // Cvt32Fto64U, branchy code expansion instead
+
+	twoTypes{TFLOAT64, TUINT8}:  twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32},
+	twoTypes{TFLOAT64, TUINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32},
+	twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned
+	twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64},          // Cvt64Fto64U, branchy code expansion instead
+
+	// float
+	twoTypes{TFLOAT64, TFLOAT32}: twoOpsAndType{ssa.OpCvt64Fto32F, ssa.OpCopy, TFLOAT32},
+	twoTypes{TFLOAT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCopy, TFLOAT64},
+	twoTypes{TFLOAT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCopy, TFLOAT32},
+	twoTypes{TFLOAT32, TFLOAT64}: twoOpsAndType{ssa.OpCvt32Fto64F, ssa.OpCopy, TFLOAT64},
+}
+
+var shiftOpToSSA = map[opAndTwoTypes]ssa.Op{
+	opAndTwoTypes{OLSH, TINT8, TUINT8}:   ssa.OpLsh8x8,
+	opAndTwoTypes{OLSH, TUINT8, TUINT8}:  ssa.OpLsh8x8,
+	opAndTwoTypes{OLSH, TINT8, TUINT16}:  ssa.OpLsh8x16,
+	opAndTwoTypes{OLSH, TUINT8, TUINT16}: ssa.OpLsh8x16,
+	opAndTwoTypes{OLSH, TINT8, TUINT32}:  ssa.OpLsh8x32,
+	opAndTwoTypes{OLSH, TUINT8, TUINT32}: ssa.OpLsh8x32,
+	opAndTwoTypes{OLSH, TINT8, TUINT64}:  ssa.OpLsh8x64,
+	opAndTwoTypes{OLSH, TUINT8, TUINT64}: ssa.OpLsh8x64,
+
+	opAndTwoTypes{OLSH, TINT16, TUINT8}:   ssa.OpLsh16x8,
+	opAndTwoTypes{OLSH, TUINT16, TUINT8}:  ssa.OpLsh16x8,
+	opAndTwoTypes{OLSH, TINT16, TUINT16}:  ssa.OpLsh16x16,
+	opAndTwoTypes{OLSH, TUINT16, TUINT16}: ssa.OpLsh16x16,
+	opAndTwoTypes{OLSH, TINT16, TUINT32}:  ssa.OpLsh16x32,
+	opAndTwoTypes{OLSH, TUINT16, TUINT32}: ssa.OpLsh16x32,
+	opAndTwoTypes{OLSH, TINT16, TUINT64}:  ssa.OpLsh16x64,
+	opAndTwoTypes{OLSH, TUINT16, TUINT64}: ssa.OpLsh16x64,
+
+	opAndTwoTypes{OLSH, TINT32, TUINT8}:   ssa.OpLsh32x8,
+	opAndTwoTypes{OLSH, TUINT32, TUINT8}:  ssa.OpLsh32x8,
+	opAndTwoTypes{OLSH, TINT32, TUINT16}:  ssa.OpLsh32x16,
+	opAndTwoTypes{OLSH, TUINT32, TUINT16}: ssa.OpLsh32x16,
+	opAndTwoTypes{OLSH, TINT32, TUINT32}:  ssa.OpLsh32x32,
+	opAndTwoTypes{OLSH, TUINT32, TUINT32}: ssa.OpLsh32x32,
+	opAndTwoTypes{OLSH, TINT32, TUINT64}:  ssa.OpLsh32x64,
+	opAndTwoTypes{OLSH, TUINT32, TUINT64}: ssa.OpLsh32x64,
+
+	opAndTwoTypes{OLSH, TINT64, TUINT8}:   ssa.OpLsh64x8,
+	opAndTwoTypes{OLSH, TUINT64, TUINT8}:  ssa.OpLsh64x8,
+	opAndTwoTypes{OLSH, TINT64, TUINT16}:  ssa.OpLsh64x16,
+	opAndTwoTypes{OLSH, TUINT64, TUINT16}: ssa.OpLsh64x16,
+	opAndTwoTypes{OLSH, TINT64, TUINT32}:  ssa.OpLsh64x32,
+	opAndTwoTypes{OLSH, TUINT64, TUINT32}: ssa.OpLsh64x32,
+	opAndTwoTypes{OLSH, TINT64, TUINT64}:  ssa.OpLsh64x64,
+	opAndTwoTypes{OLSH, TUINT64, TUINT64}: ssa.OpLsh64x64,
+
+	opAndTwoTypes{ORSH, TINT8, TUINT8}:   ssa.OpRsh8x8,
+	opAndTwoTypes{ORSH, TUINT8, TUINT8}:  ssa.OpRsh8Ux8,
+	opAndTwoTypes{ORSH, TINT8, TUINT16}:  ssa.OpRsh8x16,
+	opAndTwoTypes{ORSH, TUINT8, TUINT16}: ssa.OpRsh8Ux16,
+	opAndTwoTypes{ORSH, TINT8, TUINT32}:  ssa.OpRsh8x32,
+	opAndTwoTypes{ORSH, TUINT8, TUINT32}: ssa.OpRsh8Ux32,
+	opAndTwoTypes{ORSH, TINT8, TUINT64}:  ssa.OpRsh8x64,
+	opAndTwoTypes{ORSH, TUINT8, TUINT64}: ssa.OpRsh8Ux64,
+
+	opAndTwoTypes{ORSH, TINT16, TUINT8}:   ssa.OpRsh16x8,
+	opAndTwoTypes{ORSH, TUINT16, TUINT8}:  ssa.OpRsh16Ux8,
+	opAndTwoTypes{ORSH, TINT16, TUINT16}:  ssa.OpRsh16x16,
+	opAndTwoTypes{ORSH, TUINT16, TUINT16}: ssa.OpRsh16Ux16,
+	opAndTwoTypes{ORSH, TINT16, TUINT32}:  ssa.OpRsh16x32,
+	opAndTwoTypes{ORSH, TUINT16, TUINT32}: ssa.OpRsh16Ux32,
+	opAndTwoTypes{ORSH, TINT16, TUINT64}:  ssa.OpRsh16x64,
+	opAndTwoTypes{ORSH, TUINT16, TUINT64}: ssa.OpRsh16Ux64,
+
+	opAndTwoTypes{ORSH, TINT32, TUINT8}:   ssa.OpRsh32x8,
+	opAndTwoTypes{ORSH, TUINT32, TUINT8}:  ssa.OpRsh32Ux8,
+	opAndTwoTypes{ORSH, TINT32, TUINT16}:  ssa.OpRsh32x16,
+	opAndTwoTypes{ORSH, TUINT32, TUINT16}: ssa.OpRsh32Ux16,
+	opAndTwoTypes{ORSH, TINT32, TUINT32}:  ssa.OpRsh32x32,
+	opAndTwoTypes{ORSH, TUINT32, TUINT32}: ssa.OpRsh32Ux32,
+	opAndTwoTypes{ORSH, TINT32, TUINT64}:  ssa.OpRsh32x64,
+	opAndTwoTypes{ORSH, TUINT32, TUINT64}: ssa.OpRsh32Ux64,
+
+	opAndTwoTypes{ORSH, TINT64, TUINT8}:   ssa.OpRsh64x8,
+	opAndTwoTypes{ORSH, TUINT64, TUINT8}:  ssa.OpRsh64Ux8,
+	opAndTwoTypes{ORSH, TINT64, TUINT16}:  ssa.OpRsh64x16,
+	opAndTwoTypes{ORSH, TUINT64, TUINT16}: ssa.OpRsh64Ux16,
+	opAndTwoTypes{ORSH, TINT64, TUINT32}:  ssa.OpRsh64x32,
+	opAndTwoTypes{ORSH, TUINT64, TUINT32}: ssa.OpRsh64Ux32,
+	opAndTwoTypes{ORSH, TINT64, TUINT64}:  ssa.OpRsh64x64,
+	opAndTwoTypes{ORSH, TUINT64, TUINT64}: ssa.OpRsh64Ux64,
+}
+
+func (s *state) ssaShiftOp(op Op, t *Type, u *Type) ssa.Op {
+	etype1 := s.concreteEtype(t)
+	etype2 := s.concreteEtype(u)
+	x, ok := shiftOpToSSA[opAndTwoTypes{op, etype1, etype2}]
+	if !ok {
+		s.Unimplementedf("unhandled shift op %s etype=%s/%s", opnames[op], Econv(etype1), Econv(etype2))
+	}
+	return x
+}
+
+func (s *state) ssaRotateOp(op Op, t *Type) ssa.Op {
+	etype1 := s.concreteEtype(t)
+	x, ok := opToSSA[opAndType{op, etype1}]
+	if !ok {
+		s.Unimplementedf("unhandled rotate op %s etype=%s", opnames[op], Econv(etype1))
+	}
+	return x
+}
+
+// expr converts the expression n to ssa, adds it to s and returns the ssa result.
+func (s *state) expr(n *Node) *ssa.Value {
+	s.pushLine(n.Lineno)
+	defer s.popLine()
+
+	s.stmtList(n.Ninit)
+	switch n.Op {
+	case OCFUNC:
+		aux := s.lookupSymbol(n, &ssa.ExternSymbol{n.Type, n.Left.Sym})
+		return s.entryNewValue1A(ssa.OpAddr, n.Type, aux, s.sb)
+	case OPARAM:
+		addr := s.addr(n, false)
+		return s.newValue2(ssa.OpLoad, n.Left.Type, addr, s.mem())
+	case ONAME:
+		if n.Class == PFUNC {
+			// "value" of a function is the address of the function's closure
+			sym := funcsym(n.Sym)
+			aux := &ssa.ExternSymbol{n.Type, sym}
+			return s.entryNewValue1A(ssa.OpAddr, Ptrto(n.Type), aux, s.sb)
+		}
+		if s.canSSA(n) {
+			return s.variable(n, n.Type)
+		}
+		addr := s.addr(n, false)
+		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
+	case OCLOSUREVAR:
+		addr := s.addr(n, false)
+		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
+	case OLITERAL:
+		switch n.Val().Ctype() {
+		case CTINT:
+			i := Mpgetfix(n.Val().U.(*Mpint))
+			switch n.Type.Size() {
+			case 1:
+				return s.constInt8(n.Type, int8(i))
+			case 2:
+				return s.constInt16(n.Type, int16(i))
+			case 4:
+				return s.constInt32(n.Type, int32(i))
+			case 8:
+				return s.constInt64(n.Type, i)
+			default:
+				s.Fatalf("bad integer size %d", n.Type.Size())
+				return nil
+			}
+		case CTSTR:
+			return s.entryNewValue0A(ssa.OpConstString, n.Type, n.Val().U)
+		case CTBOOL:
+			v := s.constBool(n.Val().U.(bool))
+			// For some reason the frontend gets the line numbers of
+			// CTBOOL literals totally wrong.  Fix it here by grabbing
+			// the line number of the enclosing AST node.
+			if len(s.line) >= 2 {
+				v.Line = s.line[len(s.line)-2]
+			}
+			return v
+		case CTNIL:
+			t := n.Type
+			switch {
+			case t.IsSlice():
+				return s.entryNewValue0(ssa.OpConstSlice, t)
+			case t.IsInterface():
+				return s.entryNewValue0(ssa.OpConstInterface, t)
+			default:
+				return s.entryNewValue0(ssa.OpConstNil, t)
+			}
+		case CTFLT:
+			f := n.Val().U.(*Mpflt)
+			switch n.Type.Size() {
+			case 4:
+				return s.constFloat32(n.Type, mpgetflt32(f))
+			case 8:
+				return s.constFloat64(n.Type, mpgetflt(f))
+			default:
+				s.Fatalf("bad float size %d", n.Type.Size())
+				return nil
+			}
+		case CTCPLX:
+			c := n.Val().U.(*Mpcplx)
+			r := &c.Real
+			i := &c.Imag
+			switch n.Type.Size() {
+			case 8:
+				{
+					pt := Types[TFLOAT32]
+					return s.newValue2(ssa.OpComplexMake, n.Type,
+						s.constFloat32(pt, mpgetflt32(r)),
+						s.constFloat32(pt, mpgetflt32(i)))
+				}
+			case 16:
+				{
+					pt := Types[TFLOAT64]
+					return s.newValue2(ssa.OpComplexMake, n.Type,
+						s.constFloat64(pt, mpgetflt(r)),
+						s.constFloat64(pt, mpgetflt(i)))
+				}
+			default:
+				s.Fatalf("bad float size %d", n.Type.Size())
+				return nil
+			}
+
+		default:
+			s.Unimplementedf("unhandled OLITERAL %v", n.Val().Ctype())
+			return nil
+		}
+	case OCONVNOP:
+		to := n.Type
+		from := n.Left.Type
+
+		// Assume everything will work out, so set up our return value.
+		// Anything interesting that happens from here is a fatal.
+		x := s.expr(n.Left)
+
+		// Special case for not confusing GC and liveness.
+		// We don't want pointers accidentally classified
+		// as not-pointers or vice-versa because of copy
+		// elision.
+		if to.IsPtr() != from.IsPtr() {
+			return s.newValue2(ssa.OpConvert, to, x, s.mem())
+		}
+
+		v := s.newValue1(ssa.OpCopy, to, x) // ensure that v has the right type
+
+		// CONVNOP closure
+		if to.Etype == TFUNC && from.IsPtr() {
+			return v
+		}
+
+		// named <--> unnamed type or typed <--> untyped const
+		if from.Etype == to.Etype {
+			return v
+		}
+
+		// unsafe.Pointer <--> *T
+		if to.Etype == TUNSAFEPTR && from.IsPtr() || from.Etype == TUNSAFEPTR && to.IsPtr() {
+			return v
+		}
+
+		dowidth(from)
+		dowidth(to)
+		if from.Width != to.Width {
+			s.Fatalf("CONVNOP width mismatch %v (%d) -> %v (%d)\n", from, from.Width, to, to.Width)
+			return nil
+		}
+		if etypesign(from.Etype) != etypesign(to.Etype) {
+			s.Fatalf("CONVNOP sign mismatch %v (%s) -> %v (%s)\n", from, Econv(from.Etype), to, Econv(to.Etype))
+			return nil
+		}
+
+		if flag_race != 0 {
+			// These appear to be fine, but they fail the
+			// integer constraint below, so okay them here.
+			// Sample non-integer conversion: map[string]string -> *uint8
+			return v
+		}
+
+		if etypesign(from.Etype) == 0 {
+			s.Fatalf("CONVNOP unrecognized non-integer %v -> %v\n", from, to)
+			return nil
+		}
+
+		// integer, same width, same sign
+		return v
+
+	case OCONV:
+		x := s.expr(n.Left)
+		ft := n.Left.Type // from type
+		tt := n.Type      // to type
+		if ft.IsInteger() && tt.IsInteger() {
+			var op ssa.Op
+			if tt.Size() == ft.Size() {
+				op = ssa.OpCopy
+			} else if tt.Size() < ft.Size() {
+				// truncation
+				switch 10*ft.Size() + tt.Size() {
+				case 21:
+					op = ssa.OpTrunc16to8
+				case 41:
+					op = ssa.OpTrunc32to8
+				case 42:
+					op = ssa.OpTrunc32to16
+				case 81:
+					op = ssa.OpTrunc64to8
+				case 82:
+					op = ssa.OpTrunc64to16
+				case 84:
+					op = ssa.OpTrunc64to32
+				default:
+					s.Fatalf("weird integer truncation %s -> %s", ft, tt)
+				}
+			} else if ft.IsSigned() {
+				// sign extension
+				switch 10*ft.Size() + tt.Size() {
+				case 12:
+					op = ssa.OpSignExt8to16
+				case 14:
+					op = ssa.OpSignExt8to32
+				case 18:
+					op = ssa.OpSignExt8to64
+				case 24:
+					op = ssa.OpSignExt16to32
+				case 28:
+					op = ssa.OpSignExt16to64
+				case 48:
+					op = ssa.OpSignExt32to64
+				default:
+					s.Fatalf("bad integer sign extension %s -> %s", ft, tt)
+				}
+			} else {
+				// zero extension
+				switch 10*ft.Size() + tt.Size() {
+				case 12:
+					op = ssa.OpZeroExt8to16
+				case 14:
+					op = ssa.OpZeroExt8to32
+				case 18:
+					op = ssa.OpZeroExt8to64
+				case 24:
+					op = ssa.OpZeroExt16to32
+				case 28:
+					op = ssa.OpZeroExt16to64
+				case 48:
+					op = ssa.OpZeroExt32to64
+				default:
+					s.Fatalf("weird integer sign extension %s -> %s", ft, tt)
+				}
+			}
+			return s.newValue1(op, n.Type, x)
+		}
+
+		if ft.IsFloat() || tt.IsFloat() {
+			conv, ok := fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]
+			if !ok {
+				s.Fatalf("weird float conversion %s -> %s", ft, tt)
+			}
+			op1, op2, it := conv.op1, conv.op2, conv.intermediateType
+
+			if op1 != ssa.OpInvalid && op2 != ssa.OpInvalid {
+				// normal case, not tripping over unsigned 64
+				if op1 == ssa.OpCopy {
+					if op2 == ssa.OpCopy {
+						return x
+					}
+					return s.newValue1(op2, n.Type, x)
+				}
+				if op2 == ssa.OpCopy {
+					return s.newValue1(op1, n.Type, x)
+				}
+				return s.newValue1(op2, n.Type, s.newValue1(op1, Types[it], x))
+			}
+			// Tricky 64-bit unsigned cases.
+			if ft.IsInteger() {
+				// therefore tt is float32 or float64, and ft is also unsigned
+				if tt.Size() == 4 {
+					return s.uint64Tofloat32(n, x, ft, tt)
+				}
+				if tt.Size() == 8 {
+					return s.uint64Tofloat64(n, x, ft, tt)
+				}
+				s.Fatalf("weird unsigned integer to float conversion %s -> %s", ft, tt)
+			}
+			// therefore ft is float32 or float64, and tt is unsigned integer
+			if ft.Size() == 4 {
+				return s.float32ToUint64(n, x, ft, tt)
+			}
+			if ft.Size() == 8 {
+				return s.float64ToUint64(n, x, ft, tt)
+			}
+			s.Fatalf("weird float to unsigned integer conversion %s -> %s", ft, tt)
+			return nil
+		}
+
+		if ft.IsComplex() && tt.IsComplex() {
+			var op ssa.Op
+			if ft.Size() == tt.Size() {
+				op = ssa.OpCopy
+			} else if ft.Size() == 8 && tt.Size() == 16 {
+				op = ssa.OpCvt32Fto64F
+			} else if ft.Size() == 16 && tt.Size() == 8 {
+				op = ssa.OpCvt64Fto32F
+			} else {
+				s.Fatalf("weird complex conversion %s -> %s", ft, tt)
+			}
+			ftp := floatForComplex(ft)
+			ttp := floatForComplex(tt)
+			return s.newValue2(ssa.OpComplexMake, tt,
+				s.newValue1(op, ttp, s.newValue1(ssa.OpComplexReal, ftp, x)),
+				s.newValue1(op, ttp, s.newValue1(ssa.OpComplexImag, ftp, x)))
+		}
+
+		s.Unimplementedf("unhandled OCONV %s -> %s", Econv(n.Left.Type.Etype), Econv(n.Type.Etype))
+		return nil
+
+	case ODOTTYPE:
+		res, _ := s.dottype(n, false)
+		return res
+
+	// binary ops
+	case OLT, OEQ, ONE, OLE, OGE, OGT:
+		a := s.expr(n.Left)
+		b := s.expr(n.Right)
+		if n.Left.Type.IsComplex() {
+			pt := floatForComplex(n.Left.Type)
+			op := s.ssaOp(OEQ, pt)
+			r := s.newValue2(op, Types[TBOOL], s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b))
+			i := s.newValue2(op, Types[TBOOL], s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b))
+			c := s.newValue2(ssa.OpAnd8, Types[TBOOL], r, i)
+			switch n.Op {
+			case OEQ:
+				return c
+			case ONE:
+				return s.newValue1(ssa.OpNot, Types[TBOOL], c)
+			default:
+				s.Fatalf("ordered complex compare %s", opnames[n.Op])
+			}
+		}
+		return s.newValue2(s.ssaOp(n.Op, n.Left.Type), Types[TBOOL], a, b)
+	case OMUL:
+		a := s.expr(n.Left)
+		b := s.expr(n.Right)
+		if n.Type.IsComplex() {
+			mulop := ssa.OpMul64F
+			addop := ssa.OpAdd64F
+			subop := ssa.OpSub64F
+			pt := floatForComplex(n.Type) // Could be Float32 or Float64
+			wt := Types[TFLOAT64]         // Compute in Float64 to minimize cancellation error
+
+			areal := s.newValue1(ssa.OpComplexReal, pt, a)
+			breal := s.newValue1(ssa.OpComplexReal, pt, b)
+			aimag := s.newValue1(ssa.OpComplexImag, pt, a)
+			bimag := s.newValue1(ssa.OpComplexImag, pt, b)
+
+			if pt != wt { // Widen for calculation
+				areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal)
+				breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal)
+				aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag)
+				bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag)
+			}
+
+			xreal := s.newValue2(subop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag))
+			ximag := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, bimag), s.newValue2(mulop, wt, aimag, breal))
+
+			if pt != wt { // Narrow to store back
+				xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal)
+				ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag)
+			}
+
+			return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag)
+		}
+		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
+
+	case ODIV:
+		a := s.expr(n.Left)
+		b := s.expr(n.Right)
+		if n.Type.IsComplex() {
+			// TODO this is not executed because the front-end substitutes a runtime call.
+			// That probably ought to change; with modest optimization the widen/narrow
+			// conversions could all be elided in larger expression trees.
+			mulop := ssa.OpMul64F
+			addop := ssa.OpAdd64F
+			subop := ssa.OpSub64F
+			divop := ssa.OpDiv64F
+			pt := floatForComplex(n.Type) // Could be Float32 or Float64
+			wt := Types[TFLOAT64]         // Compute in Float64 to minimize cancellation error
+
+			areal := s.newValue1(ssa.OpComplexReal, pt, a)
+			breal := s.newValue1(ssa.OpComplexReal, pt, b)
+			aimag := s.newValue1(ssa.OpComplexImag, pt, a)
+			bimag := s.newValue1(ssa.OpComplexImag, pt, b)
+
+			if pt != wt { // Widen for calculation
+				areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal)
+				breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal)
+				aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag)
+				bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag)
+			}
+
+			denom := s.newValue2(addop, wt, s.newValue2(mulop, wt, breal, breal), s.newValue2(mulop, wt, bimag, bimag))
+			xreal := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag))
+			ximag := s.newValue2(subop, wt, s.newValue2(mulop, wt, aimag, breal), s.newValue2(mulop, wt, areal, bimag))
+
+			// TODO not sure if this is best done in wide precision or narrow
+			// Double-rounding might be an issue.
+			// Note that the pre-SSA implementation does the entire calculation
+			// in wide format, so wide is compatible.
+			xreal = s.newValue2(divop, wt, xreal, denom)
+			ximag = s.newValue2(divop, wt, ximag, denom)
+
+			if pt != wt { // Narrow to store back
+				xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal)
+				ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag)
+			}
+			return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag)
+		}
+		if n.Type.IsFloat() {
+			return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
+		} else {
+			// do a size-appropriate check for zero
+			cmp := s.newValue2(s.ssaOp(ONE, n.Type), Types[TBOOL], b, s.zeroVal(n.Type))
+			s.check(cmp, panicdivide)
+			return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
+		}
+	case OMOD:
+		a := s.expr(n.Left)
+		b := s.expr(n.Right)
+		// do a size-appropriate check for zero
+		cmp := s.newValue2(s.ssaOp(ONE, n.Type), Types[TBOOL], b, s.zeroVal(n.Type))
+		s.check(cmp, panicdivide)
+		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
+	case OADD, OSUB:
+		a := s.expr(n.Left)
+		b := s.expr(n.Right)
+		if n.Type.IsComplex() {
+			pt := floatForComplex(n.Type)
+			op := s.ssaOp(n.Op, pt)
+			return s.newValue2(ssa.OpComplexMake, n.Type,
+				s.newValue2(op, pt, s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)),
+				s.newValue2(op, pt, s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b)))
+		}
+		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
+	case OAND, OOR, OHMUL, OXOR:
+		a := s.expr(n.Left)
+		b := s.expr(n.Right)
+		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
+	case OLSH, ORSH:
+		a := s.expr(n.Left)
+		b := s.expr(n.Right)
+		return s.newValue2(s.ssaShiftOp(n.Op, n.Type, n.Right.Type), a.Type, a, b)
+	case OLROT:
+		a := s.expr(n.Left)
+		i := n.Right.Int()
+		if i <= 0 || i >= n.Type.Size()*8 {
+			s.Fatalf("Wrong rotate distance for LROT, expected 1 through %d, saw %d", n.Type.Size()*8-1, i)
+		}
+		return s.newValue1I(s.ssaRotateOp(n.Op, n.Type), a.Type, i, a)
+	case OANDAND, OOROR:
+		// To implement OANDAND (and OOROR), we introduce a
+		// new temporary variable to hold the result. The
+		// variable is associated with the OANDAND node in the
+		// s.vars table (normally variables are only
+		// associated with ONAME nodes). We convert
+		//     A && B
+		// to
+		//     var = A
+		//     if var {
+		//         var = B
+		//     }
+		// Using var in the subsequent block introduces the
+		// necessary phi variable.
+		el := s.expr(n.Left)
+		s.vars[n] = el
+
+		b := s.endBlock()
+		b.Kind = ssa.BlockIf
+		b.Control = el
+		// In theory, we should set b.Likely here based on context.
+		// However, gc only gives us likeliness hints
+		// in a single place, for plain OIF statements,
+		// and passing around context is finnicky, so don't bother for now.
+
+		bRight := s.f.NewBlock(ssa.BlockPlain)
+		bResult := s.f.NewBlock(ssa.BlockPlain)
+		if n.Op == OANDAND {
+			b.AddEdgeTo(bRight)
+			b.AddEdgeTo(bResult)
+		} else if n.Op == OOROR {
+			b.AddEdgeTo(bResult)
+			b.AddEdgeTo(bRight)
+		}
+
+		s.startBlock(bRight)
+		er := s.expr(n.Right)
+		s.vars[n] = er
+
+		b = s.endBlock()
+		b.AddEdgeTo(bResult)
+
+		s.startBlock(bResult)
+		return s.variable(n, Types[TBOOL])
+	case OCOMPLEX:
+		r := s.expr(n.Left)
+		i := s.expr(n.Right)
+		return s.newValue2(ssa.OpComplexMake, n.Type, r, i)
+
+	// unary ops
+	case OMINUS:
+		a := s.expr(n.Left)
+		if n.Type.IsComplex() {
+			tp := floatForComplex(n.Type)
+			negop := s.ssaOp(n.Op, tp)
+			return s.newValue2(ssa.OpComplexMake, n.Type,
+				s.newValue1(negop, tp, s.newValue1(ssa.OpComplexReal, tp, a)),
+				s.newValue1(negop, tp, s.newValue1(ssa.OpComplexImag, tp, a)))
+		}
+		return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a)
+	case ONOT, OCOM, OSQRT:
+		a := s.expr(n.Left)
+		return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a)
+	case OIMAG, OREAL:
+		a := s.expr(n.Left)
+		return s.newValue1(s.ssaOp(n.Op, n.Left.Type), n.Type, a)
+	case OPLUS:
+		return s.expr(n.Left)
+
+	case OADDR:
+		return s.addr(n.Left, n.Bounded)
+
+	case OINDREG:
+		if int(n.Reg) != Thearch.REGSP {
+			s.Unimplementedf("OINDREG of non-SP register %s in expr: %v", obj.Rconv(int(n.Reg)), n)
+			return nil
+		}
+		addr := s.entryNewValue1I(ssa.OpOffPtr, Ptrto(n.Type), n.Xoffset, s.sp)
+		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
+
+	case OIND:
+		p := s.expr(n.Left)
+		s.nilCheck(p)
+		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
+
+	case ODOT:
+		t := n.Left.Type
+		if canSSAType(t) {
+			v := s.expr(n.Left)
+			return s.newValue1I(ssa.OpStructSelect, n.Type, fieldIdx(n), v)
+		}
+		p := s.addr(n, false)
+		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
+
+	case ODOTPTR:
+		p := s.expr(n.Left)
+		s.nilCheck(p)
+		p = s.newValue2(ssa.OpAddPtr, p.Type, p, s.constInt(Types[TINT], n.Xoffset))
+		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
+
+	case OINDEX:
+		switch {
+		case n.Left.Type.IsString():
+			a := s.expr(n.Left)
+			i := s.expr(n.Right)
+			i = s.extendIndex(i)
+			if !n.Bounded {
+				len := s.newValue1(ssa.OpStringLen, Types[TINT], a)
+				s.boundsCheck(i, len)
+			}
+			ptrtyp := Ptrto(Types[TUINT8])
+			ptr := s.newValue1(ssa.OpStringPtr, ptrtyp, a)
+			ptr = s.newValue2(ssa.OpAddPtr, ptrtyp, ptr, i)
+			return s.newValue2(ssa.OpLoad, Types[TUINT8], ptr, s.mem())
+		case n.Left.Type.IsSlice():
+			p := s.addr(n, false)
+			return s.newValue2(ssa.OpLoad, n.Left.Type.Type, p, s.mem())
+		case n.Left.Type.IsArray():
+			// TODO: fix when we can SSA arrays of length 1.
+			p := s.addr(n, false)
+			return s.newValue2(ssa.OpLoad, n.Left.Type.Type, p, s.mem())
+		default:
+			s.Fatalf("bad type for index %v", n.Left.Type)
+			return nil
+		}
+
+	case OLEN, OCAP:
+		switch {
+		case n.Left.Type.IsSlice():
+			op := ssa.OpSliceLen
+			if n.Op == OCAP {
+				op = ssa.OpSliceCap
+			}
+			return s.newValue1(op, Types[TINT], s.expr(n.Left))
+		case n.Left.Type.IsString(): // string; not reachable for OCAP
+			return s.newValue1(ssa.OpStringLen, Types[TINT], s.expr(n.Left))
+		case n.Left.Type.IsMap(), n.Left.Type.IsChan():
+			return s.referenceTypeBuiltin(n, s.expr(n.Left))
+		default: // array
+			return s.constInt(Types[TINT], n.Left.Type.Bound)
+		}
+
+	case OSPTR:
+		a := s.expr(n.Left)
+		if n.Left.Type.IsSlice() {
+			return s.newValue1(ssa.OpSlicePtr, n.Type, a)
+		} else {
+			return s.newValue1(ssa.OpStringPtr, n.Type, a)
+		}
+
+	case OITAB:
+		a := s.expr(n.Left)
+		return s.newValue1(ssa.OpITab, n.Type, a)
+
+	case OEFACE:
+		tab := s.expr(n.Left)
+		data := s.expr(n.Right)
+		// The frontend allows putting things like struct{*byte} in
+		// the data portion of an eface.  But we don't want struct{*byte}
+		// as a register type because (among other reasons) the liveness
+		// analysis is confused by the "fat" variables that result from
+		// such types being spilled.
+		// So here we ensure that we are selecting the underlying pointer
+		// when we build an eface.
+		// TODO: get rid of this now that structs can be SSA'd?
+		for !data.Type.IsPtr() {
+			switch {
+			case data.Type.IsArray():
+				data = s.newValue2(ssa.OpArrayIndex, data.Type.Elem(), data, s.constInt(Types[TINT], 0))
+			case data.Type.IsStruct():
+				for i := data.Type.NumFields() - 1; i >= 0; i-- {
+					f := data.Type.FieldType(i)
+					if f.Size() == 0 {
+						// eface type could also be struct{p *byte; q [0]int}
+						continue
+					}
+					data = s.newValue1I(ssa.OpStructSelect, f, i, data)
+					break
+				}
+			default:
+				s.Fatalf("type being put into an eface isn't a pointer")
+			}
+		}
+		return s.newValue2(ssa.OpIMake, n.Type, tab, data)
+
+	case OSLICE, OSLICEARR:
+		v := s.expr(n.Left)
+		var i, j *ssa.Value
+		if n.Right.Left != nil {
+			i = s.extendIndex(s.expr(n.Right.Left))
+		}
+		if n.Right.Right != nil {
+			j = s.extendIndex(s.expr(n.Right.Right))
+		}
+		p, l, c := s.slice(n.Left.Type, v, i, j, nil)
+		return s.newValue3(ssa.OpSliceMake, n.Type, p, l, c)
+	case OSLICESTR:
+		v := s.expr(n.Left)
+		var i, j *ssa.Value
+		if n.Right.Left != nil {
+			i = s.extendIndex(s.expr(n.Right.Left))
+		}
+		if n.Right.Right != nil {
+			j = s.extendIndex(s.expr(n.Right.Right))
+		}
+		p, l, _ := s.slice(n.Left.Type, v, i, j, nil)
+		return s.newValue2(ssa.OpStringMake, n.Type, p, l)
+	case OSLICE3, OSLICE3ARR:
+		v := s.expr(n.Left)
+		var i *ssa.Value
+		if n.Right.Left != nil {
+			i = s.extendIndex(s.expr(n.Right.Left))
+		}
+		j := s.extendIndex(s.expr(n.Right.Right.Left))
+		k := s.extendIndex(s.expr(n.Right.Right.Right))
+		p, l, c := s.slice(n.Left.Type, v, i, j, k)
+		return s.newValue3(ssa.OpSliceMake, n.Type, p, l, c)
+
+	case OCALLFUNC, OCALLINTER, OCALLMETH:
+		a := s.call(n, callNormal)
+		return s.newValue2(ssa.OpLoad, n.Type, a, s.mem())
+
+	case OGETG:
+		return s.newValue1(ssa.OpGetG, n.Type, s.mem())
+
+	case OAPPEND:
+		// append(s, e1, e2, e3).  Compile like:
+		// ptr,len,cap := s
+		// newlen := len + 3
+		// if newlen > s.cap {
+		//     ptr,_,cap = growslice(s, newlen)
+		// }
+		// *(ptr+len) = e1
+		// *(ptr+len+1) = e2
+		// *(ptr+len+2) = e3
+		// makeslice(ptr,newlen,cap)
+
+		et := n.Type.Type
+		pt := Ptrto(et)
+
+		// Evaluate slice
+		slice := s.expr(n.List.N)
+
+		// Allocate new blocks
+		grow := s.f.NewBlock(ssa.BlockPlain)
+		assign := s.f.NewBlock(ssa.BlockPlain)
+
+		// Decide if we need to grow
+		nargs := int64(count(n.List) - 1)
+		p := s.newValue1(ssa.OpSlicePtr, pt, slice)
+		l := s.newValue1(ssa.OpSliceLen, Types[TINT], slice)
+		c := s.newValue1(ssa.OpSliceCap, Types[TINT], slice)
+		nl := s.newValue2(s.ssaOp(OADD, Types[TINT]), Types[TINT], l, s.constInt(Types[TINT], nargs))
+		cmp := s.newValue2(s.ssaOp(OGT, Types[TINT]), Types[TBOOL], nl, c)
+		s.vars[&ptrVar] = p
+		s.vars[&capVar] = c
+		b := s.endBlock()
+		b.Kind = ssa.BlockIf
+		b.Likely = ssa.BranchUnlikely
+		b.Control = cmp
+		b.AddEdgeTo(grow)
+		b.AddEdgeTo(assign)
+
+		// Call growslice
+		s.startBlock(grow)
+		taddr := s.newValue1A(ssa.OpAddr, Types[TUINTPTR], &ssa.ExternSymbol{Types[TUINTPTR], typenamesym(n.Type)}, s.sb)
+
+		r := s.rtcall(growslice, true, []*Type{pt, Types[TINT], Types[TINT]}, taddr, p, l, c, nl)
+
+		s.vars[&ptrVar] = r[0]
+		// Note: we don't need to read r[1], the result's length.  It will be nl.
+		// (or maybe we should, we just have to spill/restore nl otherwise?)
+		s.vars[&capVar] = r[2]
+		b = s.endBlock()
+		b.AddEdgeTo(assign)
+
+		// assign new elements to slots
+		s.startBlock(assign)
+
+		// Evaluate args
+		args := make([]*ssa.Value, 0, nargs)
+		store := make([]bool, 0, nargs)
+		for l := n.List.Next; l != nil; l = l.Next {
+			if canSSAType(l.N.Type) {
+				args = append(args, s.expr(l.N))
+				store = append(store, true)
+			} else {
+				args = append(args, s.addr(l.N, false))
+				store = append(store, false)
+			}
+		}
+
+		p = s.variable(&ptrVar, pt)          // generates phi for ptr
+		c = s.variable(&capVar, Types[TINT]) // generates phi for cap
+		p2 := s.newValue2(ssa.OpPtrIndex, pt, p, l)
+		// TODO: just one write barrier call for all of these writes?
+		// TODO: maybe just one writeBarrier.enabled check?
+		for i, arg := range args {
+			addr := s.newValue2(ssa.OpPtrIndex, pt, p2, s.constInt(Types[TINT], int64(i)))
+			if store[i] {
+				if haspointers(et) {
+					s.insertWBstore(et, addr, arg, n.Lineno)
+				} else {
+					s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, et.Size(), addr, arg, s.mem())
+				}
+			} else {
+				if haspointers(et) {
+					s.insertWBmove(et, addr, arg, n.Lineno)
+				} else {
+					s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, et.Size(), addr, arg, s.mem())
+				}
+			}
+		}
+
+		// make result
+		delete(s.vars, &ptrVar)
+		delete(s.vars, &capVar)
+		return s.newValue3(ssa.OpSliceMake, n.Type, p, nl, c)
+
+	default:
+		s.Unimplementedf("unhandled expr %s", opnames[n.Op])
+		return nil
+	}
+}
+
+// condBranch evaluates the boolean expression cond and branches to yes
+// if cond is true and no if cond is false.
+// This function is intended to handle && and || better than just calling
+// s.expr(cond) and branching on the result.
+func (s *state) condBranch(cond *Node, yes, no *ssa.Block, likely int8) {
+	if cond.Op == OANDAND {
+		mid := s.f.NewBlock(ssa.BlockPlain)
+		s.stmtList(cond.Ninit)
+		s.condBranch(cond.Left, mid, no, max8(likely, 0))
+		s.startBlock(mid)
+		s.condBranch(cond.Right, yes, no, likely)
+		return
+		// Note: if likely==1, then both recursive calls pass 1.
+		// If likely==-1, then we don't have enough information to decide
+		// whether the first branch is likely or not.  So we pass 0 for
+		// the likeliness of the first branch.
+		// TODO: have the frontend give us branch prediction hints for
+		// OANDAND and OOROR nodes (if it ever has such info).
+	}
+	if cond.Op == OOROR {
+		mid := s.f.NewBlock(ssa.BlockPlain)
+		s.stmtList(cond.Ninit)
+		s.condBranch(cond.Left, yes, mid, min8(likely, 0))
+		s.startBlock(mid)
+		s.condBranch(cond.Right, yes, no, likely)
+		return
+		// Note: if likely==-1, then both recursive calls pass -1.
+		// If likely==1, then we don't have enough info to decide
+		// the likelihood of the first branch.
+	}
+	if cond.Op == ONOT {
+		s.stmtList(cond.Ninit)
+		s.condBranch(cond.Left, no, yes, -likely)
+		return
+	}
+	c := s.expr(cond)
+	b := s.endBlock()
+	b.Kind = ssa.BlockIf
+	b.Control = c
+	b.Likely = ssa.BranchPrediction(likely) // gc and ssa both use -1/0/+1 for likeliness
+	b.AddEdgeTo(yes)
+	b.AddEdgeTo(no)
+}
+
+// assign does left = right.
+// Right has already been evaluated to ssa, left has not.
+// If deref is true, then we do left = *right instead (and right has already been nil-checked).
+// If deref is true and right == nil, just do left = 0.
+// Include a write barrier if wb is true.
+func (s *state) assign(left *Node, right *ssa.Value, wb, deref bool, line int32) {
+	if left.Op == ONAME && isblank(left) {
+		return
+	}
+	t := left.Type
+	dowidth(t)
+	if s.canSSA(left) {
+		if deref {
+			s.Fatalf("can SSA LHS %s but not RHS %s", left, right)
+		}
+		if left.Op == ODOT {
+			// We're assigning to a field of an ssa-able value.
+			// We need to build a new structure with the new value for the
+			// field we're assigning and the old values for the other fields.
+			// For instance:
+			//   type T struct {a, b, c int}
+			//   var T x
+			//   x.b = 5
+			// For the x.b = 5 assignment we want to generate x = T{x.a, 5, x.c}
+
+			// Grab information about the structure type.
+			t := left.Left.Type
+			nf := t.NumFields()
+			idx := fieldIdx(left)
+
+			// Grab old value of structure.
+			old := s.expr(left.Left)
+
+			// Make new structure.
+			new := s.newValue0(ssa.StructMakeOp(t.NumFields()), t)
+
+			// Add fields as args.
+			for i := int64(0); i < nf; i++ {
+				if i == idx {
+					new.AddArg(right)
+				} else {
+					new.AddArg(s.newValue1I(ssa.OpStructSelect, t.FieldType(i), i, old))
+				}
+			}
+
+			// Recursively assign the new value we've made to the base of the dot op.
+			s.assign(left.Left, new, false, false, line)
+			// TODO: do we need to update named values here?
+			return
+		}
+		// Update variable assignment.
+		s.vars[left] = right
+		s.addNamedValue(left, right)
+		return
+	}
+	// Left is not ssa-able.  Compute its address.
+	addr := s.addr(left, false)
+	if left.Op == ONAME {
+		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, left, s.mem())
+	}
+	if deref {
+		// Treat as a mem->mem move.
+		if right == nil {
+			s.vars[&memVar] = s.newValue2I(ssa.OpZero, ssa.TypeMem, t.Size(), addr, s.mem())
+			return
+		}
+		if wb {
+			s.insertWBmove(t, addr, right, line)
+			return
+		}
+		s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, t.Size(), addr, right, s.mem())
+		return
+	}
+	// Treat as a store.
+	if wb {
+		s.insertWBstore(t, addr, right, line)
+		return
+	}
+	s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, t.Size(), addr, right, s.mem())
+}
+
+// zeroVal returns the zero value for type t.
+func (s *state) zeroVal(t *Type) *ssa.Value {
+	switch {
+	case t.IsInteger():
+		switch t.Size() {
+		case 1:
+			return s.constInt8(t, 0)
+		case 2:
+			return s.constInt16(t, 0)
+		case 4:
+			return s.constInt32(t, 0)
+		case 8:
+			return s.constInt64(t, 0)
+		default:
+			s.Fatalf("bad sized integer type %s", t)
+		}
+	case t.IsFloat():
+		switch t.Size() {
+		case 4:
+			return s.constFloat32(t, 0)
+		case 8:
+			return s.constFloat64(t, 0)
+		default:
+			s.Fatalf("bad sized float type %s", t)
+		}
+	case t.IsComplex():
+		switch t.Size() {
+		case 8:
+			z := s.constFloat32(Types[TFLOAT32], 0)
+			return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
+		case 16:
+			z := s.constFloat64(Types[TFLOAT64], 0)
+			return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
+		default:
+			s.Fatalf("bad sized complex type %s", t)
+		}
+
+	case t.IsString():
+		return s.entryNewValue0A(ssa.OpConstString, t, "")
+	case t.IsPtr():
+		return s.entryNewValue0(ssa.OpConstNil, t)
+	case t.IsBoolean():
+		return s.constBool(false)
+	case t.IsInterface():
+		return s.entryNewValue0(ssa.OpConstInterface, t)
+	case t.IsSlice():
+		return s.entryNewValue0(ssa.OpConstSlice, t)
+	case t.IsStruct():
+		n := t.NumFields()
+		v := s.entryNewValue0(ssa.StructMakeOp(t.NumFields()), t)
+		for i := int64(0); i < n; i++ {
+			v.AddArg(s.zeroVal(t.FieldType(i).(*Type)))
+		}
+		return v
+	}
+	s.Unimplementedf("zero for type %v not implemented", t)
+	return nil
+}
+
+type callKind int8
+
+const (
+	callNormal callKind = iota
+	callDefer
+	callGo
+)
+
+// Calls the function n using the specified call type.
+// Returns the address of the return value (or nil if none).
+func (s *state) call(n *Node, k callKind) *ssa.Value {
+	var sym *Sym           // target symbol (if static)
+	var closure *ssa.Value // ptr to closure to run (if dynamic)
+	var codeptr *ssa.Value // ptr to target code (if dynamic)
+	var rcvr *ssa.Value    // receiver to set
+	fn := n.Left
+	switch n.Op {
+	case OCALLFUNC:
+		if k == callNormal && fn.Op == ONAME && fn.Class == PFUNC {
+			sym = fn.Sym
+			break
+		}
+		closure = s.expr(fn)
+	case OCALLMETH:
+		if fn.Op != ODOTMETH {
+			Fatalf("OCALLMETH: n.Left not an ODOTMETH: %v", fn)
+		}
+		if fn.Right.Op != ONAME {
+			Fatalf("OCALLMETH: n.Left.Right not a ONAME: %v", fn.Right)
+		}
+		if k == callNormal {
+			sym = fn.Right.Sym
+			break
+		}
+		n2 := *fn.Right
+		n2.Class = PFUNC
+		closure = s.expr(&n2)
+		// Note: receiver is already assigned in n.List, so we don't
+		// want to set it here.
+	case OCALLINTER:
+		if fn.Op != ODOTINTER {
+			Fatalf("OCALLINTER: n.Left not an ODOTINTER: %v", Oconv(int(fn.Op), 0))
+		}
+		i := s.expr(fn.Left)
+		itab := s.newValue1(ssa.OpITab, Types[TUINTPTR], i)
+		itabidx := fn.Xoffset + 3*int64(Widthptr) + 8 // offset of fun field in runtime.itab
+		itab = s.newValue1I(ssa.OpOffPtr, Types[TUINTPTR], itabidx, itab)
+		if k == callNormal {
+			codeptr = s.newValue2(ssa.OpLoad, Types[TUINTPTR], itab, s.mem())
+		} else {
+			closure = itab
+		}
+		rcvr = s.newValue1(ssa.OpIData, Types[TUINTPTR], i)
+	}
+	dowidth(fn.Type)
+	stksize := fn.Type.Argwid // includes receiver
+
+	// Run all argument assignments.  The arg slots have already
+	// been offset by the appropriate amount (+2*widthptr for go/defer,
+	// +widthptr for interface calls).
+	// For OCALLMETH, the receiver is set in these statements.
+	s.stmtList(n.List)
+
+	// Set receiver (for interface calls)
+	if rcvr != nil {
+		argStart := Ctxt.FixedFrameSize()
+		if k != callNormal {
+			argStart += int64(2 * Widthptr)
+		}
+		addr := s.entryNewValue1I(ssa.OpOffPtr, Types[TUINTPTR], argStart, s.sp)
+		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, int64(Widthptr), addr, rcvr, s.mem())
+	}
+
+	// Defer/go args
+	if k != callNormal {
+		// Write argsize and closure (args to Newproc/Deferproc).
+		argsize := s.constInt32(Types[TUINT32], int32(stksize))
+		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, 4, s.sp, argsize, s.mem())
+		addr := s.entryNewValue1I(ssa.OpOffPtr, Ptrto(Types[TUINTPTR]), int64(Widthptr), s.sp)
+		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, int64(Widthptr), addr, closure, s.mem())
+		stksize += 2 * int64(Widthptr)
+	}
+
+	// call target
+	bNext := s.f.NewBlock(ssa.BlockPlain)
+	var call *ssa.Value
+	switch {
+	case k == callDefer:
+		call = s.newValue1(ssa.OpDeferCall, ssa.TypeMem, s.mem())
+	case k == callGo:
+		call = s.newValue1(ssa.OpGoCall, ssa.TypeMem, s.mem())
+	case closure != nil:
+		codeptr = s.newValue2(ssa.OpLoad, Types[TUINTPTR], closure, s.mem())
+		call = s.newValue3(ssa.OpClosureCall, ssa.TypeMem, codeptr, closure, s.mem())
+	case codeptr != nil:
+		call = s.newValue2(ssa.OpInterCall, ssa.TypeMem, codeptr, s.mem())
+	case sym != nil:
+		call = s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, sym, s.mem())
+	default:
+		Fatalf("bad call type %s %v", opnames[n.Op], n)
+	}
+	call.AuxInt = stksize // Call operations carry the argsize of the callee along with them
+
+	// Finish call block
+	s.vars[&memVar] = call
+	b := s.endBlock()
+	b.Kind = ssa.BlockCall
+	b.Control = call
+	b.AddEdgeTo(bNext)
+
+	// Start exit block, find address of result.
+	s.startBlock(bNext)
+	var titer Iter
+	fp := Structfirst(&titer, Getoutarg(n.Left.Type))
+	if fp == nil || k != callNormal {
+		// call has no return value. Continue with the next statement.
+		return nil
+	}
+	return s.entryNewValue1I(ssa.OpOffPtr, Ptrto(fp.Type), fp.Width, s.sp)
+}
+
+// etypesign returns the signed-ness of e, for integer/pointer etypes.
+// -1 means signed, +1 means unsigned, 0 means non-integer/non-pointer.
+func etypesign(e EType) int8 {
+	switch e {
+	case TINT8, TINT16, TINT32, TINT64, TINT:
+		return -1
+	case TUINT8, TUINT16, TUINT32, TUINT64, TUINT, TUINTPTR, TUNSAFEPTR:
+		return +1
+	}
+	return 0
+}
+
+// lookupSymbol is used to retrieve the symbol (Extern, Arg or Auto) used for a particular node.
+// This improves the effectiveness of cse by using the same Aux values for the
+// same symbols.
+func (s *state) lookupSymbol(n *Node, sym interface{}) interface{} {
+	switch sym.(type) {
+	default:
+		s.Fatalf("sym %v is of uknown type %T", sym, sym)
+	case *ssa.ExternSymbol, *ssa.ArgSymbol, *ssa.AutoSymbol:
+		// these are the only valid types
+	}
+
+	if lsym, ok := s.varsyms[n]; ok {
+		return lsym
+	} else {
+		s.varsyms[n] = sym
+		return sym
+	}
+}
+
+// addr converts the address of the expression n to SSA, adds it to s and returns the SSA result.
+// The value that the returned Value represents is guaranteed to be non-nil.
+// If bounded is true then this address does not require a nil check for its operand
+// even if that would otherwise be implied.
+func (s *state) addr(n *Node, bounded bool) *ssa.Value {
+	t := Ptrto(n.Type)
+	switch n.Op {
+	case ONAME:
+		switch n.Class {
+		case PEXTERN:
+			// global variable
+			aux := s.lookupSymbol(n, &ssa.ExternSymbol{n.Type, n.Sym})
+			v := s.entryNewValue1A(ssa.OpAddr, t, aux, s.sb)
+			// TODO: Make OpAddr use AuxInt as well as Aux.
+			if n.Xoffset != 0 {
+				v = s.entryNewValue1I(ssa.OpOffPtr, v.Type, n.Xoffset, v)
+			}
+			return v
+		case PPARAM:
+			// parameter slot
+			v := s.decladdrs[n]
+			if v != nil {
+				return v
+			}
+			if n.String() == ".fp" {
+				// Special arg that points to the frame pointer.
+				// (Used by the race detector, others?)
+				aux := s.lookupSymbol(n, &ssa.ArgSymbol{Typ: n.Type, Node: n})
+				return s.entryNewValue1A(ssa.OpAddr, t, aux, s.sp)
+			}
+			s.Fatalf("addr of undeclared ONAME %v. declared: %v", n, s.decladdrs)
+			return nil
+		case PAUTO:
+			// We need to regenerate the address of autos
+			// at every use.  This prevents LEA instructions
+			// from occurring before the corresponding VarDef
+			// op and confusing the liveness analysis into thinking
+			// the variable is live at function entry.
+			// TODO: I'm not sure if this really works or we're just
+			// getting lucky.  We might need a real dependency edge
+			// between vardef and addr ops.
+			aux := &ssa.AutoSymbol{Typ: n.Type, Node: n}
+			return s.newValue1A(ssa.OpAddr, t, aux, s.sp)
+		case PPARAMOUT: // Same as PAUTO -- cannot generate LEA early.
+			// ensure that we reuse symbols for out parameters so
+			// that cse works on their addresses
+			aux := s.lookupSymbol(n, &ssa.ArgSymbol{Typ: n.Type, Node: n})
+			return s.newValue1A(ssa.OpAddr, t, aux, s.sp)
+		case PAUTO | PHEAP, PPARAM | PHEAP, PPARAMOUT | PHEAP, PPARAMREF:
+			return s.expr(n.Name.Heapaddr)
+		default:
+			s.Unimplementedf("variable address class %v not implemented", n.Class)
+			return nil
+		}
+	case OINDREG:
+		// indirect off a register
+		// used for storing/loading arguments/returns to/from callees
+		if int(n.Reg) != Thearch.REGSP {
+			s.Unimplementedf("OINDREG of non-SP register %s in addr: %v", obj.Rconv(int(n.Reg)), n)
+			return nil
+		}
+		return s.entryNewValue1I(ssa.OpOffPtr, t, n.Xoffset, s.sp)
+	case OINDEX:
+		if n.Left.Type.IsSlice() {
+			a := s.expr(n.Left)
+			i := s.expr(n.Right)
+			i = s.extendIndex(i)
+			len := s.newValue1(ssa.OpSliceLen, Types[TINT], a)
+			if !n.Bounded {
+				s.boundsCheck(i, len)
+			}
+			p := s.newValue1(ssa.OpSlicePtr, t, a)
+			return s.newValue2(ssa.OpPtrIndex, t, p, i)
+		} else { // array
+			a := s.addr(n.Left, bounded)
+			i := s.expr(n.Right)
+			i = s.extendIndex(i)
+			len := s.constInt(Types[TINT], n.Left.Type.Bound)
+			if !n.Bounded {
+				s.boundsCheck(i, len)
+			}
+			return s.newValue2(ssa.OpPtrIndex, Ptrto(n.Left.Type.Type), a, i)
+		}
+	case OIND:
+		p := s.expr(n.Left)
+		if !bounded {
+			s.nilCheck(p)
+		}
+		return p
+	case ODOT:
+		p := s.addr(n.Left, bounded)
+		return s.newValue2(ssa.OpAddPtr, t, p, s.constInt(Types[TINT], n.Xoffset))
+	case ODOTPTR:
+		p := s.expr(n.Left)
+		if !bounded {
+			s.nilCheck(p)
+		}
+		return s.newValue2(ssa.OpAddPtr, t, p, s.constInt(Types[TINT], n.Xoffset))
+	case OCLOSUREVAR:
+		return s.newValue2(ssa.OpAddPtr, t,
+			s.entryNewValue0(ssa.OpGetClosurePtr, Ptrto(Types[TUINT8])),
+			s.constInt(Types[TINT], n.Xoffset))
+	case OPARAM:
+		p := n.Left
+		if p.Op != ONAME || !(p.Class == PPARAM|PHEAP || p.Class == PPARAMOUT|PHEAP) {
+			s.Fatalf("OPARAM not of ONAME,{PPARAM,PPARAMOUT}|PHEAP, instead %s", nodedump(p, 0))
+		}
+
+		// Recover original offset to address passed-in param value.
+		original_p := *p
+		original_p.Xoffset = n.Xoffset
+		aux := &ssa.ArgSymbol{Typ: n.Type, Node: &original_p}
+		return s.entryNewValue1A(ssa.OpAddr, t, aux, s.sp)
+	case OCONVNOP:
+		addr := s.addr(n.Left, bounded)
+		return s.newValue1(ssa.OpCopy, t, addr) // ensure that addr has the right type
+	case OCALLFUNC, OCALLINTER, OCALLMETH:
+		return s.call(n, callNormal)
+
+	default:
+		s.Unimplementedf("unhandled addr %v", Oconv(int(n.Op), 0))
+		return nil
+	}
+}
+
+// canSSA reports whether n is SSA-able.
+// n must be an ONAME (or an ODOT sequence with an ONAME base).
+func (s *state) canSSA(n *Node) bool {
+	for n.Op == ODOT {
+		n = n.Left
+	}
+	if n.Op != ONAME {
+		return false
+	}
+	if n.Addrtaken {
+		return false
+	}
+	if n.Class&PHEAP != 0 {
+		return false
+	}
+	switch n.Class {
+	case PEXTERN, PPARAMREF:
+		// TODO: maybe treat PPARAMREF with an Arg-like op to read from closure?
+		return false
+	case PPARAMOUT:
+		if hasdefer {
+			// TODO: handle this case?  Named return values must be
+			// in memory so that the deferred function can see them.
+			// Maybe do: if !strings.HasPrefix(n.String(), "~") { return false }
+			return false
+		}
+		if s.cgoUnsafeArgs {
+			// Cgo effectively takes the address of all result args,
+			// but the compiler can't see that.
+			return false
+		}
+	}
+	if n.Class == PPARAM && n.String() == ".this" {
+		// wrappers generated by genwrapper need to update
+		// the .this pointer in place.
+		// TODO: treat as a PPARMOUT?
+		return false
+	}
+	return canSSAType(n.Type)
+	// TODO: try to make more variables SSAable?
+}
+
+// canSSA reports whether variables of type t are SSA-able.
+func canSSAType(t *Type) bool {
+	dowidth(t)
+	if t.Width > int64(4*Widthptr) {
+		// 4*Widthptr is an arbitrary constant.  We want it
+		// to be at least 3*Widthptr so slices can be registerized.
+		// Too big and we'll introduce too much register pressure.
+		return false
+	}
+	switch t.Etype {
+	case TARRAY:
+		if Isslice(t) {
+			return true
+		}
+		// We can't do arrays because dynamic indexing is
+		// not supported on SSA variables.
+		// TODO: maybe allow if length is <=1?  All indexes
+		// are constant?  Might be good for the arrays
+		// introduced by the compiler for variadic functions.
+		return false
+	case TSTRUCT:
+		if countfield(t) > ssa.MaxStruct {
+			return false
+		}
+		for t1 := t.Type; t1 != nil; t1 = t1.Down {
+			if !canSSAType(t1.Type) {
+				return false
+			}
+		}
+		return true
+	default:
+		return true
+	}
+}
+
+// nilCheck generates nil pointer checking code.
+// Starts a new block on return, unless nil checks are disabled.
+// Used only for automatically inserted nil checks,
+// not for user code like 'x != nil'.
+func (s *state) nilCheck(ptr *ssa.Value) {
+	if Disable_checknil != 0 {
+		return
+	}
+	chk := s.newValue2(ssa.OpNilCheck, ssa.TypeVoid, ptr, s.mem())
+	b := s.endBlock()
+	b.Kind = ssa.BlockCheck
+	b.Control = chk
+	bNext := s.f.NewBlock(ssa.BlockPlain)
+	b.AddEdgeTo(bNext)
+	s.startBlock(bNext)
+}
+
+// boundsCheck generates bounds checking code.  Checks if 0 <= idx < len, branches to exit if not.
+// Starts a new block on return.
+func (s *state) boundsCheck(idx, len *ssa.Value) {
+	if Debug['B'] != 0 {
+		return
+	}
+	// TODO: convert index to full width?
+	// TODO: if index is 64-bit and we're compiling to 32-bit, check that high 32 bits are zero.
+
+	// bounds check
+	cmp := s.newValue2(ssa.OpIsInBounds, Types[TBOOL], idx, len)
+	s.check(cmp, Panicindex)
+}
+
+// sliceBoundsCheck generates slice bounds checking code.  Checks if 0 <= idx <= len, branches to exit if not.
+// Starts a new block on return.
+func (s *state) sliceBoundsCheck(idx, len *ssa.Value) {
+	if Debug['B'] != 0 {
+		return
+	}
+	// TODO: convert index to full width?
+	// TODO: if index is 64-bit and we're compiling to 32-bit, check that high 32 bits are zero.
+
+	// bounds check
+	cmp := s.newValue2(ssa.OpIsSliceInBounds, Types[TBOOL], idx, len)
+	s.check(cmp, panicslice)
+}
+
+// If cmp (a bool) is true, panic using the given function.
+func (s *state) check(cmp *ssa.Value, fn *Node) {
+	b := s.endBlock()
+	b.Kind = ssa.BlockIf
+	b.Control = cmp
+	b.Likely = ssa.BranchLikely
+	bNext := s.f.NewBlock(ssa.BlockPlain)
+	line := s.peekLine()
+	bPanic := s.panics[funcLine{fn, line}]
+	if bPanic == nil {
+		bPanic = s.f.NewBlock(ssa.BlockPlain)
+		s.panics[funcLine{fn, line}] = bPanic
+		s.startBlock(bPanic)
+		// The panic call takes/returns memory to ensure that the right
+		// memory state is observed if the panic happens.
+		s.rtcall(fn, false, nil)
+	}
+	b.AddEdgeTo(bNext)
+	b.AddEdgeTo(bPanic)
+	s.startBlock(bNext)
+}
+
+// rtcall issues a call to the given runtime function fn with the listed args.
+// Returns a slice of results of the given result types.
+// The call is added to the end of the current block.
+// If returns is false, the block is marked as an exit block.
+// If returns is true, the block is marked as a call block.  A new block
+// is started to load the return values.
+func (s *state) rtcall(fn *Node, returns bool, results []*Type, args ...*ssa.Value) []*ssa.Value {
+	// Write args to the stack
+	var off int64 // TODO: arch-dependent starting offset?
+	for _, arg := range args {
+		t := arg.Type
+		off = Rnd(off, t.Alignment())
+		ptr := s.sp
+		if off != 0 {
+			ptr = s.newValue1I(ssa.OpOffPtr, Types[TUINTPTR], off, s.sp)
+		}
+		size := t.Size()
+		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, size, ptr, arg, s.mem())
+		off += size
+	}
+	off = Rnd(off, int64(Widthptr))
+
+	// Issue call
+	call := s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, fn.Sym, s.mem())
+	s.vars[&memVar] = call
+
+	// Finish block
+	b := s.endBlock()
+	if !returns {
+		b.Kind = ssa.BlockExit
+		b.Control = call
+		call.AuxInt = off
+		if len(results) > 0 {
+			Fatalf("panic call can't have results")
+		}
+		return nil
+	}
+	b.Kind = ssa.BlockCall
+	b.Control = call
+	bNext := s.f.NewBlock(ssa.BlockPlain)
+	b.AddEdgeTo(bNext)
+	s.startBlock(bNext)
+
+	// Load results
+	res := make([]*ssa.Value, len(results))
+	for i, t := range results {
+		off = Rnd(off, t.Alignment())
+		ptr := s.sp
+		if off != 0 {
+			ptr = s.newValue1I(ssa.OpOffPtr, Types[TUINTPTR], off, s.sp)
+		}
+		res[i] = s.newValue2(ssa.OpLoad, t, ptr, s.mem())
+		off += t.Size()
+	}
+	off = Rnd(off, int64(Widthptr))
+
+	// Remember how much callee stack space we needed.
+	call.AuxInt = off
+
+	return res
+}
+
+// insertWBmove inserts the assignment *left = *right including a write barrier.
+// t is the type being assigned.
+func (s *state) insertWBmove(t *Type, left, right *ssa.Value, line int32) {
+	// if writeBarrier.enabled {
+	//   typedmemmove(&t, left, right)
+	// } else {
+	//   *left = *right
+	// }
+	bThen := s.f.NewBlock(ssa.BlockPlain)
+	bElse := s.f.NewBlock(ssa.BlockPlain)
+	bEnd := s.f.NewBlock(ssa.BlockPlain)
+
+	aux := &ssa.ExternSymbol{Types[TBOOL], syslook("writeBarrier", 0).Sym}
+	flagaddr := s.newValue1A(ssa.OpAddr, Ptrto(Types[TUINT32]), aux, s.sb)
+	// TODO: select the .enabled field.  It is currently first, so not needed for now.
+	// Load word, test byte, avoiding partial register write from load byte.
+	flag := s.newValue2(ssa.OpLoad, Types[TUINT32], flagaddr, s.mem())
+	flag = s.newValue1(ssa.OpTrunc64to8, Types[TBOOL], flag)
+	b := s.endBlock()
+	b.Kind = ssa.BlockIf
+	b.Likely = ssa.BranchUnlikely
+	b.Control = flag
+	b.AddEdgeTo(bThen)
+	b.AddEdgeTo(bElse)
+
+	s.startBlock(bThen)
+	taddr := s.newValue1A(ssa.OpAddr, Types[TUINTPTR], &ssa.ExternSymbol{Types[TUINTPTR], typenamesym(t)}, s.sb)
+	s.rtcall(typedmemmove, true, nil, taddr, left, right)
+	s.endBlock().AddEdgeTo(bEnd)
+
+	s.startBlock(bElse)
+	s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, t.Size(), left, right, s.mem())
+	s.endBlock().AddEdgeTo(bEnd)
+
+	s.startBlock(bEnd)
+
+	if Debug_wb > 0 {
+		Warnl(int(line), "write barrier")
+	}
+}
+
+// insertWBstore inserts the assignment *left = right including a write barrier.
+// t is the type being assigned.
+func (s *state) insertWBstore(t *Type, left, right *ssa.Value, line int32) {
+	// store scalar fields
+	// if writeBarrier.enabled {
+	//   writebarrierptr for pointer fields
+	// } else {
+	//   store pointer fields
+	// }
+
+	s.storeTypeScalars(t, left, right)
+
+	bThen := s.f.NewBlock(ssa.BlockPlain)
+	bElse := s.f.NewBlock(ssa.BlockPlain)
+	bEnd := s.f.NewBlock(ssa.BlockPlain)
+
+	aux := &ssa.ExternSymbol{Types[TBOOL], syslook("writeBarrier", 0).Sym}
+	flagaddr := s.newValue1A(ssa.OpAddr, Ptrto(Types[TUINT32]), aux, s.sb)
+	// TODO: select the .enabled field.  It is currently first, so not needed for now.
+	// Load word, test byte, avoiding partial register write from load byte.
+	flag := s.newValue2(ssa.OpLoad, Types[TUINT32], flagaddr, s.mem())
+	flag = s.newValue1(ssa.OpTrunc64to8, Types[TBOOL], flag)
+	b := s.endBlock()
+	b.Kind = ssa.BlockIf
+	b.Likely = ssa.BranchUnlikely
+	b.Control = flag
+	b.AddEdgeTo(bThen)
+	b.AddEdgeTo(bElse)
+
+	// Issue write barriers for pointer writes.
+	s.startBlock(bThen)
+	s.storeTypePtrsWB(t, left, right)
+	s.endBlock().AddEdgeTo(bEnd)
+
+	// Issue regular stores for pointer writes.
+	s.startBlock(bElse)
+	s.storeTypePtrs(t, left, right)
+	s.endBlock().AddEdgeTo(bEnd)
+
+	s.startBlock(bEnd)
+
+	if Debug_wb > 0 {
+		Warnl(int(line), "write barrier")
+	}
+}
+
+// do *left = right for all scalar (non-pointer) parts of t.
+func (s *state) storeTypeScalars(t *Type, left, right *ssa.Value) {
+	switch {
+	case t.IsBoolean() || t.IsInteger() || t.IsFloat() || t.IsComplex():
+		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, t.Size(), left, right, s.mem())
+	case t.IsPtr() || t.IsMap() || t.IsChan():
+		// no scalar fields.
+	case t.IsString():
+		len := s.newValue1(ssa.OpStringLen, Types[TINT], right)
+		lenAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TINT]), s.config.IntSize, left)
+		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, lenAddr, len, s.mem())
+	case t.IsSlice():
+		len := s.newValue1(ssa.OpSliceLen, Types[TINT], right)
+		cap := s.newValue1(ssa.OpSliceCap, Types[TINT], right)
+		lenAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TINT]), s.config.IntSize, left)
+		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, lenAddr, len, s.mem())
+		capAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TINT]), 2*s.config.IntSize, left)
+		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, capAddr, cap, s.mem())
+	case t.IsInterface():
+		// itab field doesn't need a write barrier (even though it is a pointer).
+		itab := s.newValue1(ssa.OpITab, Ptrto(Types[TUINT8]), right)
+		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, left, itab, s.mem())
+	case t.IsStruct():
+		n := t.NumFields()
+		for i := int64(0); i < n; i++ {
+			ft := t.FieldType(i)
+			addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
+			val := s.newValue1I(ssa.OpStructSelect, ft, i, right)
+			s.storeTypeScalars(ft.(*Type), addr, val)
+		}
+	default:
+		s.Fatalf("bad write barrier type %s", t)
+	}
+}
+
+// do *left = right for all pointer parts of t.
+func (s *state) storeTypePtrs(t *Type, left, right *ssa.Value) {
+	switch {
+	case t.IsPtr() || t.IsMap() || t.IsChan():
+		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, left, right, s.mem())
+	case t.IsString():
+		ptr := s.newValue1(ssa.OpStringPtr, Ptrto(Types[TUINT8]), right)
+		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, left, ptr, s.mem())
+	case t.IsSlice():
+		ptr := s.newValue1(ssa.OpSlicePtr, Ptrto(Types[TUINT8]), right)
+		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, left, ptr, s.mem())
+	case t.IsInterface():
+		// itab field is treated as a scalar.
+		idata := s.newValue1(ssa.OpIData, Ptrto(Types[TUINT8]), right)
+		idataAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TUINT8]), s.config.PtrSize, left)
+		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, idataAddr, idata, s.mem())
+	case t.IsStruct():
+		n := t.NumFields()
+		for i := int64(0); i < n; i++ {
+			ft := t.FieldType(i)
+			if !haspointers(ft.(*Type)) {
+				continue
+			}
+			addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
+			val := s.newValue1I(ssa.OpStructSelect, ft, i, right)
+			s.storeTypePtrs(ft.(*Type), addr, val)
+		}
+	default:
+		s.Fatalf("bad write barrier type %s", t)
+	}
+}
+
+// do *left = right with a write barrier for all pointer parts of t.
+func (s *state) storeTypePtrsWB(t *Type, left, right *ssa.Value) {
+	switch {
+	case t.IsPtr() || t.IsMap() || t.IsChan():
+		s.rtcall(writebarrierptr, true, nil, left, right)
+	case t.IsString():
+		ptr := s.newValue1(ssa.OpStringPtr, Ptrto(Types[TUINT8]), right)
+		s.rtcall(writebarrierptr, true, nil, left, ptr)
+	case t.IsSlice():
+		ptr := s.newValue1(ssa.OpSlicePtr, Ptrto(Types[TUINT8]), right)
+		s.rtcall(writebarrierptr, true, nil, left, ptr)
+	case t.IsInterface():
+		idata := s.newValue1(ssa.OpIData, Ptrto(Types[TUINT8]), right)
+		idataAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TUINT8]), s.config.PtrSize, left)
+		s.rtcall(writebarrierptr, true, nil, idataAddr, idata)
+	case t.IsStruct():
+		n := t.NumFields()
+		for i := int64(0); i < n; i++ {
+			ft := t.FieldType(i)
+			if !haspointers(ft.(*Type)) {
+				continue
+			}
+			addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
+			val := s.newValue1I(ssa.OpStructSelect, ft, i, right)
+			s.storeTypePtrsWB(ft.(*Type), addr, val)
+		}
+	default:
+		s.Fatalf("bad write barrier type %s", t)
+	}
+}
+
+// slice computes the slice v[i:j:k] and returns ptr, len, and cap of result.
+// i,j,k may be nil, in which case they are set to their default value.
+// t is a slice, ptr to array, or string type.
+func (s *state) slice(t *Type, v, i, j, k *ssa.Value) (p, l, c *ssa.Value) {
+	var elemtype *Type
+	var ptrtype *Type
+	var ptr *ssa.Value
+	var len *ssa.Value
+	var cap *ssa.Value
+	zero := s.constInt(Types[TINT], 0)
+	switch {
+	case t.IsSlice():
+		elemtype = t.Type
+		ptrtype = Ptrto(elemtype)
+		ptr = s.newValue1(ssa.OpSlicePtr, ptrtype, v)
+		len = s.newValue1(ssa.OpSliceLen, Types[TINT], v)
+		cap = s.newValue1(ssa.OpSliceCap, Types[TINT], v)
+	case t.IsString():
+		elemtype = Types[TUINT8]
+		ptrtype = Ptrto(elemtype)
+		ptr = s.newValue1(ssa.OpStringPtr, ptrtype, v)
+		len = s.newValue1(ssa.OpStringLen, Types[TINT], v)
+		cap = len
+	case t.IsPtr():
+		if !t.Type.IsArray() {
+			s.Fatalf("bad ptr to array in slice %v\n", t)
+		}
+		elemtype = t.Type.Type
+		ptrtype = Ptrto(elemtype)
+		s.nilCheck(v)
+		ptr = v
+		len = s.constInt(Types[TINT], t.Type.Bound)
+		cap = len
+	default:
+		s.Fatalf("bad type in slice %v\n", t)
+	}
+
+	// Set default values
+	if i == nil {
+		i = zero
+	}
+	if j == nil {
+		j = len
+	}
+	if k == nil {
+		k = cap
+	}
+
+	// Panic if slice indices are not in bounds.
+	s.sliceBoundsCheck(i, j)
+	if j != k {
+		s.sliceBoundsCheck(j, k)
+	}
+	if k != cap {
+		s.sliceBoundsCheck(k, cap)
+	}
+
+	// Generate the following code assuming that indexes are in bounds.
+	// The conditional is to make sure that we don't generate a slice
+	// that points to the next object in memory.
+	// rlen = (Sub64 j i)
+	// rcap = (Sub64 k i)
+	// p = ptr
+	// if rcap != 0 {
+	//    p = (AddPtr ptr (Mul64 low (Const64 size)))
+	// }
+	// result = (SliceMake p size)
+	subOp := s.ssaOp(OSUB, Types[TINT])
+	neqOp := s.ssaOp(ONE, Types[TINT])
+	mulOp := s.ssaOp(OMUL, Types[TINT])
+	rlen := s.newValue2(subOp, Types[TINT], j, i)
+	var rcap *ssa.Value
+	switch {
+	case t.IsString():
+		// Capacity of the result is unimportant.  However, we use
+		// rcap to test if we've generated a zero-length slice.
+		// Use length of strings for that.
+		rcap = rlen
+	case j == k:
+		rcap = rlen
+	default:
+		rcap = s.newValue2(subOp, Types[TINT], k, i)
+	}
+
+	s.vars[&ptrVar] = ptr
+
+	// Generate code to test the resulting slice length.
+	cmp := s.newValue2(neqOp, Types[TBOOL], rcap, s.constInt(Types[TINT], 0))
+
+	b := s.endBlock()
+	b.Kind = ssa.BlockIf
+	b.Likely = ssa.BranchLikely
+	b.Control = cmp
+
+	// Generate code for non-zero length slice case.
+	nz := s.f.NewBlock(ssa.BlockPlain)
+	b.AddEdgeTo(nz)
+	s.startBlock(nz)
+	var inc *ssa.Value
+	if elemtype.Width == 1 {
+		inc = i
+	} else {
+		inc = s.newValue2(mulOp, Types[TINT], i, s.constInt(Types[TINT], elemtype.Width))
+	}
+	s.vars[&ptrVar] = s.newValue2(ssa.OpAddPtr, ptrtype, ptr, inc)
+	s.endBlock()
+
+	// All done.
+	merge := s.f.NewBlock(ssa.BlockPlain)
+	b.AddEdgeTo(merge)
+	nz.AddEdgeTo(merge)
+	s.startBlock(merge)
+	rptr := s.variable(&ptrVar, ptrtype)
+	delete(s.vars, &ptrVar)
+	return rptr, rlen, rcap
+}
+
+type u2fcvtTab struct {
+	geq, cvt2F, and, rsh, or, add ssa.Op
+	one                           func(*state, ssa.Type, int64) *ssa.Value
+}
+
+var u64_f64 u2fcvtTab = u2fcvtTab{
+	geq:   ssa.OpGeq64,
+	cvt2F: ssa.OpCvt64to64F,
+	and:   ssa.OpAnd64,
+	rsh:   ssa.OpRsh64Ux64,
+	or:    ssa.OpOr64,
+	add:   ssa.OpAdd64F,
+	one:   (*state).constInt64,
+}
+
+var u64_f32 u2fcvtTab = u2fcvtTab{
+	geq:   ssa.OpGeq64,
+	cvt2F: ssa.OpCvt64to32F,
+	and:   ssa.OpAnd64,
+	rsh:   ssa.OpRsh64Ux64,
+	or:    ssa.OpOr64,
+	add:   ssa.OpAdd32F,
+	one:   (*state).constInt64,
+}
+
+// Excess generality on a machine with 64-bit integer registers.
+// Not used on AMD64.
+var u32_f32 u2fcvtTab = u2fcvtTab{
+	geq:   ssa.OpGeq32,
+	cvt2F: ssa.OpCvt32to32F,
+	and:   ssa.OpAnd32,
+	rsh:   ssa.OpRsh32Ux32,
+	or:    ssa.OpOr32,
+	add:   ssa.OpAdd32F,
+	one: func(s *state, t ssa.Type, x int64) *ssa.Value {
+		return s.constInt32(t, int32(x))
+	},
+}
+
+func (s *state) uint64Tofloat64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
+	return s.uintTofloat(&u64_f64, n, x, ft, tt)
+}
+
+func (s *state) uint64Tofloat32(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
+	return s.uintTofloat(&u64_f32, n, x, ft, tt)
+}
+
+func (s *state) uintTofloat(cvttab *u2fcvtTab, n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
+	// if x >= 0 {
+	//    result = (floatY) x
+	// } else {
+	// 	  y = uintX(x) ; y = x & 1
+	// 	  z = uintX(x) ; z = z >> 1
+	// 	  z = z >> 1
+	// 	  z = z | y
+	// 	  result = floatY(z)
+	// 	  result = result + result
+	// }
+	//
+	// Code borrowed from old code generator.
+	// What's going on: large 64-bit "unsigned" looks like
+	// negative number to hardware's integer-to-float
+	// conversion.  However, because the mantissa is only
+	// 63 bits, we don't need the LSB, so instead we do an
+	// unsigned right shift (divide by two), convert, and
+	// double.  However, before we do that, we need to be
+	// sure that we do not lose a "1" if that made the
+	// difference in the resulting rounding.  Therefore, we
+	// preserve it, and OR (not ADD) it back in.  The case
+	// that matters is when the eleven discarded bits are
+	// equal to 10000000001; that rounds up, and the 1 cannot
+	// be lost else it would round down if the LSB of the
+	// candidate mantissa is 0.
+	cmp := s.newValue2(cvttab.geq, Types[TBOOL], x, s.zeroVal(ft))
+	b := s.endBlock()
+	b.Kind = ssa.BlockIf
+	b.Control = cmp
+	b.Likely = ssa.BranchLikely
+
+	bThen := s.f.NewBlock(ssa.BlockPlain)
+	bElse := s.f.NewBlock(ssa.BlockPlain)
+	bAfter := s.f.NewBlock(ssa.BlockPlain)
+
+	b.AddEdgeTo(bThen)
+	s.startBlock(bThen)
+	a0 := s.newValue1(cvttab.cvt2F, tt, x)
+	s.vars[n] = a0
+	s.endBlock()
+	bThen.AddEdgeTo(bAfter)
+
+	b.AddEdgeTo(bElse)
+	s.startBlock(bElse)
+	one := cvttab.one(s, ft, 1)
+	y := s.newValue2(cvttab.and, ft, x, one)
+	z := s.newValue2(cvttab.rsh, ft, x, one)
+	z = s.newValue2(cvttab.or, ft, z, y)
+	a := s.newValue1(cvttab.cvt2F, tt, z)
+	a1 := s.newValue2(cvttab.add, tt, a, a)
+	s.vars[n] = a1
+	s.endBlock()
+	bElse.AddEdgeTo(bAfter)
+
+	s.startBlock(bAfter)
+	return s.variable(n, n.Type)
+}
+
+// referenceTypeBuiltin generates code for the len/cap builtins for maps and channels.
+func (s *state) referenceTypeBuiltin(n *Node, x *ssa.Value) *ssa.Value {
+	if !n.Left.Type.IsMap() && !n.Left.Type.IsChan() {
+		s.Fatalf("node must be a map or a channel")
+	}
+	// if n == nil {
+	//   return 0
+	// } else {
+	//   // len
+	//   return *((*int)n)
+	//   // cap
+	//   return *(((*int)n)+1)
+	// }
+	lenType := n.Type
+	nilValue := s.newValue0(ssa.OpConstNil, Types[TUINTPTR])
+	cmp := s.newValue2(ssa.OpEqPtr, Types[TBOOL], x, nilValue)
+	b := s.endBlock()
+	b.Kind = ssa.BlockIf
+	b.Control = cmp
+	b.Likely = ssa.BranchUnlikely
+
+	bThen := s.f.NewBlock(ssa.BlockPlain)
+	bElse := s.f.NewBlock(ssa.BlockPlain)
+	bAfter := s.f.NewBlock(ssa.BlockPlain)
+
+	// length/capacity of a nil map/chan is zero
+	b.AddEdgeTo(bThen)
+	s.startBlock(bThen)
+	s.vars[n] = s.zeroVal(lenType)
+	s.endBlock()
+	bThen.AddEdgeTo(bAfter)
+
+	b.AddEdgeTo(bElse)
+	s.startBlock(bElse)
+	if n.Op == OLEN {
+		// length is stored in the first word for map/chan
+		s.vars[n] = s.newValue2(ssa.OpLoad, lenType, x, s.mem())
+	} else if n.Op == OCAP {
+		// capacity is stored in the second word for chan
+		sw := s.newValue1I(ssa.OpOffPtr, lenType.PtrTo(), lenType.Width, x)
+		s.vars[n] = s.newValue2(ssa.OpLoad, lenType, sw, s.mem())
+	} else {
+		s.Fatalf("op must be OLEN or OCAP")
+	}
+	s.endBlock()
+	bElse.AddEdgeTo(bAfter)
+
+	s.startBlock(bAfter)
+	return s.variable(n, lenType)
+}
+
+type f2uCvtTab struct {
+	ltf, cvt2U, subf ssa.Op
+	value            func(*state, ssa.Type, float64) *ssa.Value
+}
+
+var f32_u64 f2uCvtTab = f2uCvtTab{
+	ltf:   ssa.OpLess32F,
+	cvt2U: ssa.OpCvt32Fto64,
+	subf:  ssa.OpSub32F,
+	value: (*state).constFloat32,
+}
+
+var f64_u64 f2uCvtTab = f2uCvtTab{
+	ltf:   ssa.OpLess64F,
+	cvt2U: ssa.OpCvt64Fto64,
+	subf:  ssa.OpSub64F,
+	value: (*state).constFloat64,
+}
+
+func (s *state) float32ToUint64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
+	return s.floatToUint(&f32_u64, n, x, ft, tt)
+}
+func (s *state) float64ToUint64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
+	return s.floatToUint(&f64_u64, n, x, ft, tt)
+}
+
+func (s *state) floatToUint(cvttab *f2uCvtTab, n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
+	// if x < 9223372036854775808.0 {
+	// 	result = uintY(x)
+	// } else {
+	// 	y = x - 9223372036854775808.0
+	// 	z = uintY(y)
+	// 	result = z | -9223372036854775808
+	// }
+	twoToThe63 := cvttab.value(s, ft, 9223372036854775808.0)
+	cmp := s.newValue2(cvttab.ltf, Types[TBOOL], x, twoToThe63)
+	b := s.endBlock()
+	b.Kind = ssa.BlockIf
+	b.Control = cmp
+	b.Likely = ssa.BranchLikely
+
+	bThen := s.f.NewBlock(ssa.BlockPlain)
+	bElse := s.f.NewBlock(ssa.BlockPlain)
+	bAfter := s.f.NewBlock(ssa.BlockPlain)
+
+	b.AddEdgeTo(bThen)
+	s.startBlock(bThen)
+	a0 := s.newValue1(cvttab.cvt2U, tt, x)
+	s.vars[n] = a0
+	s.endBlock()
+	bThen.AddEdgeTo(bAfter)
+
+	b.AddEdgeTo(bElse)
+	s.startBlock(bElse)
+	y := s.newValue2(cvttab.subf, ft, x, twoToThe63)
+	y = s.newValue1(cvttab.cvt2U, tt, y)
+	z := s.constInt64(tt, -9223372036854775808)
+	a1 := s.newValue2(ssa.OpOr64, tt, y, z)
+	s.vars[n] = a1
+	s.endBlock()
+	bElse.AddEdgeTo(bAfter)
+
+	s.startBlock(bAfter)
+	return s.variable(n, n.Type)
+}
+
+// ifaceType returns the value for the word containing the type.
+// n is the node for the interface expression.
+// v is the corresponding value.
+func (s *state) ifaceType(n *Node, v *ssa.Value) *ssa.Value {
+	byteptr := Ptrto(Types[TUINT8]) // type used in runtime prototypes for runtime type (*byte)
+
+	if isnilinter(n.Type) {
+		// Have *eface. The type is the first word in the struct.
+		return s.newValue1(ssa.OpITab, byteptr, v)
+	}
+
+	// Have *iface.
+	// The first word in the struct is the *itab.
+	// If the *itab is nil, return 0.
+	// Otherwise, the second word in the *itab is the type.
+
+	tab := s.newValue1(ssa.OpITab, byteptr, v)
+	s.vars[&typVar] = tab
+	isnonnil := s.newValue2(ssa.OpNeqPtr, Types[TBOOL], tab, s.entryNewValue0(ssa.OpConstNil, byteptr))
+	b := s.endBlock()
+	b.Kind = ssa.BlockIf
+	b.Control = isnonnil
+	b.Likely = ssa.BranchLikely
+
+	bLoad := s.f.NewBlock(ssa.BlockPlain)
+	bEnd := s.f.NewBlock(ssa.BlockPlain)
+
+	b.AddEdgeTo(bLoad)
+	b.AddEdgeTo(bEnd)
+	bLoad.AddEdgeTo(bEnd)
+
+	s.startBlock(bLoad)
+	off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), tab)
+	s.vars[&typVar] = s.newValue2(ssa.OpLoad, byteptr, off, s.mem())
+	s.endBlock()
+
+	s.startBlock(bEnd)
+	typ := s.variable(&typVar, byteptr)
+	delete(s.vars, &typVar)
+	return typ
+}
+
+// dottype generates SSA for a type assertion node.
+// commaok indicates whether to panic or return a bool.
+// If commaok is false, resok will be nil.
+func (s *state) dottype(n *Node, commaok bool) (res, resok *ssa.Value) {
+	iface := s.expr(n.Left)
+	typ := s.ifaceType(n.Left, iface)  // actual concrete type
+	target := s.expr(typename(n.Type)) // target type
+	if !isdirectiface(n.Type) {
+		// walk rewrites ODOTTYPE/OAS2DOTTYPE into runtime calls except for this case.
+		Fatalf("dottype needs a direct iface type %s", n.Type)
+	}
+
+	if Debug_typeassert > 0 {
+		Warnl(int(n.Lineno), "type assertion inlined")
+	}
+
+	// TODO:  If we have a nonempty interface and its itab field is nil,
+	// then this test is redundant and ifaceType should just branch directly to bFail.
+	cond := s.newValue2(ssa.OpEqPtr, Types[TBOOL], typ, target)
+	b := s.endBlock()
+	b.Kind = ssa.BlockIf
+	b.Control = cond
+	b.Likely = ssa.BranchLikely
+
+	byteptr := Ptrto(Types[TUINT8])
+
+	bOk := s.f.NewBlock(ssa.BlockPlain)
+	bFail := s.f.NewBlock(ssa.BlockPlain)
+	b.AddEdgeTo(bOk)
+	b.AddEdgeTo(bFail)
+
+	if !commaok {
+		// on failure, panic by calling panicdottype
+		s.startBlock(bFail)
+		taddr := s.newValue1A(ssa.OpAddr, byteptr, &ssa.ExternSymbol{byteptr, typenamesym(n.Left.Type)}, s.sb)
+		s.rtcall(panicdottype, false, nil, typ, target, taddr)
+
+		// on success, return idata field
+		s.startBlock(bOk)
+		return s.newValue1(ssa.OpIData, n.Type, iface), nil
+	}
+
+	// commaok is the more complicated case because we have
+	// a control flow merge point.
+	bEnd := s.f.NewBlock(ssa.BlockPlain)
+
+	// type assertion succeeded
+	s.startBlock(bOk)
+	s.vars[&idataVar] = s.newValue1(ssa.OpIData, n.Type, iface)
+	s.vars[&okVar] = s.constBool(true)
+	s.endBlock()
+	bOk.AddEdgeTo(bEnd)
+
+	// type assertion failed
+	s.startBlock(bFail)
+	s.vars[&idataVar] = s.entryNewValue0(ssa.OpConstNil, byteptr)
+	s.vars[&okVar] = s.constBool(false)
+	s.endBlock()
+	bFail.AddEdgeTo(bEnd)
+
+	// merge point
+	s.startBlock(bEnd)
+	res = s.variable(&idataVar, byteptr)
+	resok = s.variable(&okVar, Types[TBOOL])
+	delete(s.vars, &idataVar)
+	delete(s.vars, &okVar)
+	return res, resok
+}
+
+// checkgoto checks that a goto from from to to does not
+// jump into a block or jump over variable declarations.
+// It is a copy of checkgoto in the pre-SSA backend,
+// modified only for line number handling.
+// TODO: document how this works and why it is designed the way it is.
+func (s *state) checkgoto(from *Node, to *Node) {
+	if from.Sym == to.Sym {
+		return
+	}
+
+	nf := 0
+	for fs := from.Sym; fs != nil; fs = fs.Link {
+		nf++
+	}
+	nt := 0
+	for fs := to.Sym; fs != nil; fs = fs.Link {
+		nt++
+	}
+	fs := from.Sym
+	for ; nf > nt; nf-- {
+		fs = fs.Link
+	}
+	if fs != to.Sym {
+		// decide what to complain about.
+		// prefer to complain about 'into block' over declarations,
+		// so scan backward to find most recent block or else dcl.
+		var block *Sym
+
+		var dcl *Sym
+		ts := to.Sym
+		for ; nt > nf; nt-- {
+			if ts.Pkg == nil {
+				block = ts
+			} else {
+				dcl = ts
+			}
+			ts = ts.Link
+		}
+
+		for ts != fs {
+			if ts.Pkg == nil {
+				block = ts
+			} else {
+				dcl = ts
+			}
+			ts = ts.Link
+			fs = fs.Link
+		}
+
+		lno := int(from.Left.Lineno)
+		if block != nil {
+			yyerrorl(lno, "goto %v jumps into block starting at %v", from.Left.Sym, Ctxt.Line(int(block.Lastlineno)))
+		} else {
+			yyerrorl(lno, "goto %v jumps over declaration of %v at %v", from.Left.Sym, dcl, Ctxt.Line(int(dcl.Lastlineno)))
+		}
+	}
+}
+
+// variable returns the value of a variable at the current location.
+func (s *state) variable(name *Node, t ssa.Type) *ssa.Value {
+	v := s.vars[name]
+	if v == nil {
+		v = s.newValue0A(ssa.OpFwdRef, t, name)
+		s.fwdRefs = append(s.fwdRefs, v)
+		s.vars[name] = v
+		s.addNamedValue(name, v)
+	}
+	return v
+}
+
+func (s *state) mem() *ssa.Value {
+	return s.variable(&memVar, ssa.TypeMem)
+}
+
+func (s *state) linkForwardReferences() {
+	// Build SSA graph.  Each variable on its first use in a basic block
+	// leaves a FwdRef in that block representing the incoming value
+	// of that variable.  This function links that ref up with possible definitions,
+	// inserting Phi values as needed.  This is essentially the algorithm
+	// described by Braun, Buchwald, Hack, Leißa, Mallon, and Zwinkau:
+	// http://pp.info.uni-karlsruhe.de/uploads/publikationen/braun13cc.pdf
+	// Differences:
+	//   - We use FwdRef nodes to postpone phi building until the CFG is
+	//     completely built.  That way we can avoid the notion of "sealed"
+	//     blocks.
+	//   - Phi optimization is a separate pass (in ../ssa/phielim.go).
+	for len(s.fwdRefs) > 0 {
+		v := s.fwdRefs[len(s.fwdRefs)-1]
+		s.fwdRefs = s.fwdRefs[:len(s.fwdRefs)-1]
+		s.resolveFwdRef(v)
+	}
+}
+
+// resolveFwdRef modifies v to be the variable's value at the start of its block.
+// v must be a FwdRef op.
+func (s *state) resolveFwdRef(v *ssa.Value) {
+	b := v.Block
+	name := v.Aux.(*Node)
+	v.Aux = nil
+	if b == s.f.Entry {
+		// Live variable at start of function.
+		if s.canSSA(name) {
+			v.Op = ssa.OpArg
+			v.Aux = name
+			return
+		}
+		// Not SSAable.  Load it.
+		addr := s.decladdrs[name]
+		if addr == nil {
+			// TODO: closure args reach here.
+			s.Unimplementedf("unhandled closure arg %s at entry to function %s", name, b.Func.Name)
+		}
+		if _, ok := addr.Aux.(*ssa.ArgSymbol); !ok {
+			s.Fatalf("variable live at start of function %s is not an argument %s", b.Func.Name, name)
+		}
+		v.Op = ssa.OpLoad
+		v.AddArgs(addr, s.startmem)
+		return
+	}
+	if len(b.Preds) == 0 {
+		// This block is dead; we have no predecessors and we're not the entry block.
+		// It doesn't matter what we use here as long as it is well-formed.
+		v.Op = ssa.OpUnknown
+		return
+	}
+	// Find variable value on each predecessor.
+	var argstore [4]*ssa.Value
+	args := argstore[:0]
+	for _, p := range b.Preds {
+		args = append(args, s.lookupVarOutgoing(p, v.Type, name, v.Line))
+	}
+
+	// Decide if we need a phi or not.  We need a phi if there
+	// are two different args (which are both not v).
+	var w *ssa.Value
+	for _, a := range args {
+		if a == v {
+			continue // self-reference
+		}
+		if a == w {
+			continue // already have this witness
+		}
+		if w != nil {
+			// two witnesses, need a phi value
+			v.Op = ssa.OpPhi
+			v.AddArgs(args...)
+			return
+		}
+		w = a // save witness
+	}
+	if w == nil {
+		s.Fatalf("no witness for reachable phi %s", v)
+	}
+	// One witness.  Make v a copy of w.
+	v.Op = ssa.OpCopy
+	v.AddArg(w)
+}
+
+// lookupVarOutgoing finds the variable's value at the end of block b.
+func (s *state) lookupVarOutgoing(b *ssa.Block, t ssa.Type, name *Node, line int32) *ssa.Value {
+	m := s.defvars[b.ID]
+	if v, ok := m[name]; ok {
+		return v
+	}
+	// The variable is not defined by b and we haven't
+	// looked it up yet.  Generate a FwdRef for the variable and return that.
+	v := b.NewValue0A(line, ssa.OpFwdRef, t, name)
+	s.fwdRefs = append(s.fwdRefs, v)
+	m[name] = v
+	s.addNamedValue(name, v)
+	return v
+}
+
+func (s *state) addNamedValue(n *Node, v *ssa.Value) {
+	if n.Class == Pxxx {
+		// Don't track our dummy nodes (&memVar etc.).
+		return
+	}
+	if strings.HasPrefix(n.Sym.Name, "autotmp_") {
+		// Don't track autotmp_ variables.
+		return
+	}
+	if n.Class == PAUTO && (v.Type.IsString() || v.Type.IsSlice() || v.Type.IsInterface()) {
+		// TODO: can't handle auto compound objects with pointers yet.
+		// The live variable analysis barfs because we don't put VARDEF
+		// pseudos in the right place when we spill to these nodes.
+		return
+	}
+	if n.Class == PAUTO && n.Xoffset != 0 {
+		s.Fatalf("AUTO var with offset %s %d", n, n.Xoffset)
+	}
+	loc := ssa.LocalSlot{N: n, Type: n.Type, Off: 0}
+	values, ok := s.f.NamedValues[loc]
+	if !ok {
+		s.f.Names = append(s.f.Names, loc)
+	}
+	s.f.NamedValues[loc] = append(values, v)
+}
+
+// an unresolved branch
+type branch struct {
+	p *obj.Prog  // branch instruction
+	b *ssa.Block // target
+}
+
+type genState struct {
+	// branches remembers all the branch instructions we've seen
+	// and where they would like to go.
+	branches []branch
+
+	// bstart remembers where each block starts (indexed by block ID)
+	bstart []*obj.Prog
+
+	// deferBranches remembers all the defer branches we've seen.
+	deferBranches []*obj.Prog
+
+	// deferTarget remembers the (last) deferreturn call site.
+	deferTarget *obj.Prog
+}
+
+// genssa appends entries to ptxt for each instruction in f.
+// gcargs and gclocals are filled in with pointer maps for the frame.
+func genssa(f *ssa.Func, ptxt *obj.Prog, gcargs, gclocals *Sym) {
+	var s genState
+
+	e := f.Config.Frontend().(*ssaExport)
+	// We're about to emit a bunch of Progs.
+	// Since the only way to get here is to explicitly request it,
+	// just fail on unimplemented instead of trying to unwind our mess.
+	e.mustImplement = true
+
+	// Remember where each block starts.
+	s.bstart = make([]*obj.Prog, f.NumBlocks())
+
+	var valueProgs map[*obj.Prog]*ssa.Value
+	var blockProgs map[*obj.Prog]*ssa.Block
+	const logProgs = true
+	if logProgs {
+		valueProgs = make(map[*obj.Prog]*ssa.Value, f.NumValues())
+		blockProgs = make(map[*obj.Prog]*ssa.Block, f.NumBlocks())
+		f.Logf("genssa %s\n", f.Name)
+		blockProgs[Pc] = f.Blocks[0]
+	}
+
+	// Emit basic blocks
+	for i, b := range f.Blocks {
+		s.bstart[b.ID] = Pc
+		// Emit values in block
+		s.markMoves(b)
+		for _, v := range b.Values {
+			x := Pc
+			s.genValue(v)
+			if logProgs {
+				for ; x != Pc; x = x.Link {
+					valueProgs[x] = v
+				}
+			}
+		}
+		// Emit control flow instructions for block
+		var next *ssa.Block
+		if i < len(f.Blocks)-1 && (Debug['N'] == 0 || b.Kind == ssa.BlockCall) {
+			// If -N, leave next==nil so every block with successors
+			// ends in a JMP (except call blocks - plive doesn't like
+			// select{send,recv} followed by a JMP call).  Helps keep
+			// line numbers for otherwise empty blocks.
+			next = f.Blocks[i+1]
+		}
+		x := Pc
+		s.genBlock(b, next)
+		if logProgs {
+			for ; x != Pc; x = x.Link {
+				blockProgs[x] = b
+			}
+		}
+	}
+
+	// Resolve branches
+	for _, br := range s.branches {
+		br.p.To.Val = s.bstart[br.b.ID]
+	}
+	if s.deferBranches != nil && s.deferTarget == nil {
+		// This can happen when the function has a defer but
+		// no return (because it has an infinite loop).
+		s.deferReturn()
+		Prog(obj.ARET)
+	}
+	for _, p := range s.deferBranches {
+		p.To.Val = s.deferTarget
+	}
+
+	if logProgs {
+		for p := ptxt; p != nil; p = p.Link {
+			var s string
+			if v, ok := valueProgs[p]; ok {
+				s = v.String()
+			} else if b, ok := blockProgs[p]; ok {
+				s = b.String()
+			} else {
+				s = "   " // most value and branch strings are 2-3 characters long
+			}
+			f.Logf("%s\t%s\n", s, p)
+		}
+		if f.Config.HTML != nil {
+			saved := ptxt.Ctxt.LineHist.PrintFilenameOnly
+			ptxt.Ctxt.LineHist.PrintFilenameOnly = true
+			var buf bytes.Buffer
+			buf.WriteString("<code>")
+			buf.WriteString("<dl class=\"ssa-gen\">")
+			for p := ptxt; p != nil; p = p.Link {
+				buf.WriteString("<dt class=\"ssa-prog-src\">")
+				if v, ok := valueProgs[p]; ok {
+					buf.WriteString(v.HTML())
+				} else if b, ok := blockProgs[p]; ok {
+					buf.WriteString(b.HTML())
+				}
+				buf.WriteString("</dt>")
+				buf.WriteString("<dd class=\"ssa-prog\">")
+				buf.WriteString(html.EscapeString(p.String()))
+				buf.WriteString("</dd>")
+				buf.WriteString("</li>")
+			}
+			buf.WriteString("</dl>")
+			buf.WriteString("</code>")
+			f.Config.HTML.WriteColumn("genssa", buf.String())
+			ptxt.Ctxt.LineHist.PrintFilenameOnly = saved
+		}
+	}
+
+	// Emit static data
+	if f.StaticData != nil {
+		for _, n := range f.StaticData.([]*Node) {
+			if !gen_as_init(n, false) {
+				Fatalf("non-static data marked as static: %v\n\n", n, f)
+			}
+		}
+	}
+
+	// Allocate stack frame
+	allocauto(ptxt)
+
+	// Generate gc bitmaps.
+	liveness(Curfn, ptxt, gcargs, gclocals)
+	gcsymdup(gcargs)
+	gcsymdup(gclocals)
+
+	// Add frame prologue.  Zero ambiguously live variables.
+	Thearch.Defframe(ptxt)
+	if Debug['f'] != 0 {
+		frame(0)
+	}
+
+	// Remove leftover instrumentation from the instruction stream.
+	removevardef(ptxt)
+
+	f.Config.HTML.Close()
+}
+
+// opregreg emits instructions for
+//     dest := dest(To) op src(From)
+// and also returns the created obj.Prog so it
+// may be further adjusted (offset, scale, etc).
+func opregreg(op int, dest, src int16) *obj.Prog {
+	p := Prog(op)
+	p.From.Type = obj.TYPE_REG
+	p.To.Type = obj.TYPE_REG
+	p.To.Reg = dest
+	p.From.Reg = src
+	return p
+}
+
+func (s *genState) genValue(v *ssa.Value) {
+	lineno = v.Line
+	switch v.Op {
+	case ssa.OpAMD64ADDQ, ssa.OpAMD64ADDL, ssa.OpAMD64ADDW:
+		r := regnum(v)
+		r1 := regnum(v.Args[0])
+		r2 := regnum(v.Args[1])
+		switch {
+		case r == r1:
+			p := Prog(v.Op.Asm())
+			p.From.Type = obj.TYPE_REG
+			p.From.Reg = r2
+			p.To.Type = obj.TYPE_REG
+			p.To.Reg = r
+		case r == r2:
+			p := Prog(v.Op.Asm())
+			p.From.Type = obj.TYPE_REG
+			p.From.Reg = r1
+			p.To.Type = obj.TYPE_REG
+			p.To.Reg = r
+		default:
+			var asm int
+			switch v.Op {
+			case ssa.OpAMD64ADDQ:
+				asm = x86.ALEAQ
+			case ssa.OpAMD64ADDL:
+				asm = x86.ALEAL
+			case ssa.OpAMD64ADDW:
+				asm = x86.ALEAL
+			}
+			p := Prog(asm)
+			p.From.Type = obj.TYPE_MEM
+			p.From.Reg = r1
+			p.From.Scale = 1
+			p.From.Index = r2
+			p.To.Type = obj.TYPE_REG
+			p.To.Reg = r
+		}
+	// 2-address opcode arithmetic, symmetric
+	case ssa.OpAMD64ADDB, ssa.OpAMD64ADDSS, ssa.OpAMD64ADDSD,
+		ssa.OpAMD64ANDQ, ssa.OpAMD64ANDL, ssa.OpAMD64ANDW, ssa.OpAMD64ANDB,
+		ssa.OpAMD64ORQ, ssa.OpAMD64ORL, ssa.OpAMD64ORW, ssa.OpAMD64ORB,
+		ssa.OpAMD64XORQ, ssa.OpAMD64XORL, ssa.OpAMD64XORW, ssa.OpAMD64XORB,
+		ssa.OpAMD64MULQ, ssa.OpAMD64MULL, ssa.OpAMD64MULW, ssa.OpAMD64MULB,
+		ssa.OpAMD64MULSS, ssa.OpAMD64MULSD, ssa.OpAMD64PXOR:
+		r := regnum(v)
+		x := regnum(v.Args[0])
+		y := regnum(v.Args[1])
+		if x != r && y != r {
+			opregreg(moveByType(v.Type), r, x)
+			x = r
+		}
+		p := Prog(v.Op.Asm())
+		p.From.Type = obj.TYPE_REG
+		p.To.Type = obj.TYPE_REG
+		p.To.Reg = r
+		if x == r {
+			p.From.Reg = y
+		} else {
+			p.From.Reg = x
+		}
+	// 2-address opcode arithmetic, not symmetric
+	case ssa.OpAMD64SUBQ, ssa.OpAMD64SUBL, ssa.OpAMD64SUBW, ssa.OpAMD64SUBB:
+		r := regnum(v)
+		x := regnum(v.Args[0])
+		y := regnum(v.Args[1])
+		var neg bool
+		if y == r {
+			// compute -(y-x) instead
+			x, y = y, x
+			neg = true
+		}
+		if x != r {
+			opregreg(moveByType(v.Type), r, x)
+		}
+		opregreg(v.Op.Asm(), r, y)
+
+		if neg {
+			if v.Op == ssa.OpAMD64SUBQ {
+				p := Prog(x86.ANEGQ)
+				p.To.Type = obj.TYPE_REG
+				p.To.Reg = r
+			} else { // Avoids partial registers write
+				p := Prog(x86.ANEGL)
+				p.To.Type = obj.TYPE_REG
+				p.To.Reg = r
+			}
+		}
+	case ssa.OpAMD64SUBSS, ssa.OpAMD64SUBSD, ssa.OpAMD64DIVSS, ssa.OpAMD64DIVSD:
+		r := regnum(v)
+		x := regnum(v.Args[0])
+		y := regnum(v.Args[1])
+		if y == r && x != r {
+			// r/y := x op r/y, need to preserve x and rewrite to
+			// r/y := r/y op x15
+			x15 := int16(x86.REG_X15)
+			// register move y to x15
+			// register move x to y
+			// rename y with x15
+			opregreg(moveByType(v.Type), x15, y)
+			opregreg(moveByType(v.Type), r, x)
+			y = x15
+		} else if x != r {
+			opregreg(moveByType(v.Type), r, x)
+		}
+		opregreg(v.Op.Asm(), r, y)
+
+	case ssa.OpAMD64DIVQ, ssa.OpAMD64DIVL, ssa.OpAMD64DIVW,
+		ssa.OpAMD64DIVQU, ssa.OpAMD64DIVLU, ssa.OpAMD64DIVWU,
+		ssa.OpAMD64MODQ, ssa.OpAMD64MODL, ssa.OpAMD64MODW,
+		ssa.OpAMD64MODQU, ssa.OpAMD64MODLU, ssa.OpAMD64MODWU:
+
+		// Arg[0] is already in AX as it's the only register we allow
+		// and AX is the only output
+		x := regnum(v.Args[1])
+
+		// CPU faults upon signed overflow, which occurs when most
+		// negative int is divided by -1.
+		var j *obj.Prog
+		if v.Op == ssa.OpAMD64DIVQ || v.Op == ssa.OpAMD64DIVL ||
+			v.Op == ssa.OpAMD64DIVW || v.Op == ssa.OpAMD64MODQ ||
+			v.Op == ssa.OpAMD64MODL || v.Op == ssa.OpAMD64MODW {
+
+			var c *obj.Prog
+			switch v.Op {
+			case ssa.OpAMD64DIVQ, ssa.OpAMD64MODQ:
+				c = Prog(x86.ACMPQ)
+				j = Prog(x86.AJEQ)
+				// go ahead and sign extend to save doing it later
+				Prog(x86.ACQO)
+
+			case ssa.OpAMD64DIVL, ssa.OpAMD64MODL:
+				c = Prog(x86.ACMPL)
+				j = Prog(x86.AJEQ)
+				Prog(x86.ACDQ)
+
+			case ssa.OpAMD64DIVW, ssa.OpAMD64MODW:
+				c = Prog(x86.ACMPW)
+				j = Prog(x86.AJEQ)
+				Prog(x86.ACWD)
+			}
+			c.From.Type = obj.TYPE_REG
+			c.From.Reg = x
+			c.To.Type = obj.TYPE_CONST
+			c.To.Offset = -1
+
+			j.To.Type = obj.TYPE_BRANCH
+
+		}
+
+		// for unsigned ints, we sign extend by setting DX = 0
+		// signed ints were sign extended above
+		if v.Op == ssa.OpAMD64DIVQU || v.Op == ssa.OpAMD64MODQU ||
+			v.Op == ssa.OpAMD64DIVLU || v.Op == ssa.OpAMD64MODLU ||
+			v.Op == ssa.OpAMD64DIVWU || v.Op == ssa.OpAMD64MODWU {
+			c := Prog(x86.AXORQ)
+			c.From.Type = obj.TYPE_REG
+			c.From.Reg = x86.REG_DX
+			c.To.Type = obj.TYPE_REG
+			c.To.Reg = x86.REG_DX
+		}
+
+		p := Prog(v.Op.Asm())
+		p.From.Type = obj.TYPE_REG
+		p.From.Reg = x
+
+		// signed division, rest of the check for -1 case
+		if j != nil {
+			j2 := Prog(obj.AJMP)
+			j2.To.Type = obj.TYPE_BRANCH
+
+			var n *obj.Prog
+			if v.Op == ssa.OpAMD64DIVQ || v.Op == ssa.OpAMD64DIVL ||
+				v.Op == ssa.OpAMD64DIVW {
+				// n * -1 = -n
+				n = Prog(x86.ANEGQ)
+				n.To.Type = obj.TYPE_REG
+				n.To.Reg = x86.REG_AX
+			} else {
+				// n % -1 == 0
+				n = Prog(x86.AXORQ)
+				n.From.Type = obj.TYPE_REG
+				n.From.Reg = x86.REG_DX
+				n.To.Type = obj.TYPE_REG
+				n.To.Reg = x86.REG_DX
+			}
+
+			j.To.Val = n
+			j2.To.Val = Pc
+		}
+
+	case ssa.OpAMD64HMULQ, ssa.OpAMD64HMULL, ssa.OpAMD64HMULW, ssa.OpAMD64HMULB,
+		ssa.OpAMD64HMULQU, ssa.OpAMD64HMULLU, ssa.OpAMD64HMULWU, ssa.OpAMD64HMULBU:
+		// the frontend rewrites constant division by 8/16/32 bit integers into
+		// HMUL by a constant
+		// SSA rewrites generate the 64 bit versions
+
+		// Arg[0] is already in AX as it's the only register we allow
+		// and DX is the only output we care about (the high bits)
+		p := Prog(v.Op.Asm())
+		p.From.Type = obj.TYPE_REG
+		p.From.Reg = regnum(v.Args[1])
+
+		// IMULB puts the high portion in AH instead of DL,
+		// so move it to DL for consistency
+		if v.Type.Size() == 1 {
+			m := Prog(x86.AMOVB)
+			m.From.Type = obj.TYPE_REG
+			m.From.Reg = x86.REG_AH
+			m.To.Type = obj.TYPE_REG
+			m.To.Reg = x86.REG_DX
+		}
+
+	case ssa.OpAMD64AVGQU:
+		// compute (x+y)/2 unsigned.
+		// Do a 64-bit add, the overflow goes into the carry.
+		// Shift right once and pull the carry back into the 63rd bit.
+		r := regnum(v)
+		x := regnum(v.Args[0])
+		y := regnum(v.Args[1])
+		if x != r && y != r {
+			opregreg(moveByType(v.Type), r, x)
+			x = r
+		}
+		p := Prog(x86.AADDQ)
+		p.From.Type = obj.TYPE_REG
+		p.To.Type = obj.TYPE_REG
+		p.To.Reg = r
+		if x == r {
+			p.From.Reg = y
+		} else {
+			p.From.Reg = x
+		}
+		p = Prog(x86.ARCRQ)
+		p.From.Type = obj.TYPE_CONST
+		p.From.Offset = 1
+		p.To.Type = obj.TYPE_REG
+		p.To.Reg = r
+
+	case ssa.OpAMD64SHLQ, ssa.OpAMD64SHLL, ssa.OpAMD64SHLW, ssa.OpAMD64SHLB,
+		ssa.OpAMD64SHRQ, ssa.OpAMD64SHRL, ssa.OpAMD64SHRW, ssa.OpAMD64SHRB,
+		ssa.OpAMD64SARQ, ssa.OpAMD64SARL, ssa.OpAMD64SARW, ssa.OpAMD64SARB:
+		x := regnum(v.Args[0])
+		r := regnum(v)
+		if x != r {
+			if r == x86.REG_CX {
+				v.Fatalf("can't implement %s, target and shift both in CX", v.LongString())
+			}
+			p := Prog(moveByType(v.Type))
+			p.From.Type = obj.TYPE_REG
+			p.From.Reg = x
+			p.To.Type = obj.TYPE_REG
+			p.To.Reg = r
+		}
+		p := Prog(v.Op.Asm())
+		p.From.Type = obj.TYPE_REG
+		p.From.Reg = regnum(v.Args[1]) // should be CX
+		p.To.Type = obj.TYPE_REG
+		p.To.Reg = r
+	case ssa.OpAMD64ADDQconst, ssa.OpAMD64ADDLconst, ssa.OpAMD64ADDWconst:
+		r := regnum(v)
+		a := regnum(v.Args[0])
+		if r == a {
+			if v.AuxInt2Int64() == 1 {
+				var asm int
+				switch v.Op {
+				// Software optimization manual recommends add $1,reg.
+				// But inc/dec is 1 byte smaller. ICC always uses inc
+				// Clang/GCC choose depending on flags, but prefer add.
+				// Experiments show that inc/dec is both a little faster
+				// and make a binary a little smaller.
+				case ssa.OpAMD64ADDQconst:
+					asm = x86.AINCQ
+				case ssa.OpAMD64ADDLconst:
+					asm = x86.AINCL
+				case ssa.OpAMD64ADDWconst:
+					asm = x86.AINCL
+				}
+				p := Prog(asm)
+				p.To.Type = obj.TYPE_REG
+				p.To.Reg = r
+				return
+			} else if v.AuxInt2Int64() == -1 {
+				var asm int
+				switch v.Op {
+				case ssa.OpAMD64ADDQconst:
+					asm = x86.ADECQ
+				case ssa.OpAMD64ADDLconst:
+					asm = x86.ADECL
+				case ssa.OpAMD64ADDWconst:
+					asm = x86.ADECL
+				}
+				p := Prog(asm)
+				p.To.Type = obj.TYPE_REG
+				p.To.Reg = r
+				return
+			} else {
+				p := Prog(v.Op.Asm())
+				p.From.Type = obj.TYPE_CONST
+				p.From.Offset = v.AuxInt2Int64()
+				p.To.Type = obj.TYPE_REG
+				p.To.Reg = r
+				return
+			}
+		}
+		var asm int
+		switch v.Op {
+		case ssa.OpAMD64ADDQconst:
+			asm = x86.ALEAQ
+		case ssa.OpAMD64ADDLconst:
+			asm = x86.ALEAL
+		case ssa.OpAMD64ADDWconst:
+			asm = x86.ALEAL
+		}
+		p := Prog(asm)
+		p.From.Type = obj.TYPE_MEM
+		p.From.Reg = a
+		p.From.Offset = v.AuxInt2Int64()
+		p.To.Type = obj.TYPE_REG
+		p.To.Reg = r
+	case ssa.OpAMD64MULQconst, ssa.OpAMD64MULLconst, ssa.OpAMD64MULWconst, ssa.OpAMD64MULBconst:
+		r := regnum(v)
+		x := regnum(v.Args[0])
+		if r != x {
+			p := Prog(moveByType(v.Type))
+			p.From.Type = obj.TYPE_REG
+			p.From.Reg = x
+			p.To.Type = obj.TYPE_REG
+			p.To.Reg = r
+		}
+		p := Prog(v.Op.Asm())
+		p.From.Type = obj.TYPE_CONST
+		p.From.Offset = v.AuxInt2Int64()
+		p.To.Type = obj.TYPE_REG
+		p.To.Reg = r
+		// TODO: Teach doasm to compile the three-address multiply imul $c, r1, r2
+		// instead of using the MOVQ above.
+		//p.From3 = new(obj.Addr)
+		//p.From3.Type = obj.TYPE_REG
+		//p.From3.Reg = regnum(v.Args[0])
+	case ssa.OpAMD64SUBQconst, ssa.OpAMD64SUBLconst, ssa.OpAMD64SUBWconst:
+		x := regnum(v.Args[0])
+		r := regnum(v)
+		// We have 3-op add (lea), so transforming a = b - const into
+		// a = b + (- const), saves us 1 instruction. We can't fit
+		// - (-1 << 31) into  4 bytes offset in lea.
+		// We handle 2-address just fine below.
+		if v.AuxInt2Int64() == -1<<31 || x == r {
+			if x != r {
+				// This code compensates for the fact that the register allocator
+				// doesn't understand 2-address instructions yet.  TODO: fix that.
+				p := Prog(moveByType(v.Type))
+				p.From.Type = obj.TYPE_REG
+				p.From.Reg = x
+				p.To.Type = obj.TYPE_REG
+				p.To.Reg = r
+			}
+			p := Prog(v.Op.Asm())
+			p.From.Type = obj.TYPE_CONST
+			p.From.Offset = v.AuxInt2Int64()
+			p.To.Type = obj.TYPE_REG
+			p.To.Reg = r
+		} else if x == r && v.AuxInt2Int64() == -1 {
+			var asm int
+			// x = x - (-1) is the same as x++
+			// See OpAMD64ADDQconst comments about inc vs add $1,reg
+			switch v.Op {
+			case ssa.OpAMD64SUBQconst:
+				asm = x86.AINCQ
+			case ssa.OpAMD64SUBLconst:
+				asm = x86.AINCL
+			case ssa.OpAMD64SUBWconst:
+				asm = x86.AINCL
+			}
+			p := Prog(asm)
+			p.To.Type = obj.TYPE_REG
+			p.To.Reg = r
+		} else if x == r && v.AuxInt2Int64() == 1 {
+			var asm int
+			switch v.Op {
+			case ssa.OpAMD64SUBQconst:
+				asm = x86.ADECQ
+			case ssa.OpAMD64SUBLconst:
+				asm = x86.ADECL
+			case ssa.OpAMD64SUBWconst:
+				asm = x86.ADECL
+			}
+			p := Prog(asm)
+			p.To.Type = obj.TYPE_REG
+			p.To.Reg = r
+		} else {
+			var asm int
+			switch v.Op {
+			case ssa.OpAMD64SUBQconst:
+				asm = x86.ALEAQ
+			case ssa.OpAMD64SUBLconst:
+				asm = x86.ALEAL
+			case ssa.OpAMD64SUBWconst:
+				asm = x86.ALEAL
+			}
+			p := Prog(asm)
+			p.From.Type = obj.TYPE_MEM
+			p.From.Reg = x
+			p.From.Offset = -v.AuxInt2Int64()
+			p.To.Type = obj.TYPE_REG
+			p.To.Reg = r
+		}
+
+	case ssa.OpAMD64ADDBconst,
+		ssa.OpAMD64ANDQconst, ssa.OpAMD64ANDLconst, ssa.OpAMD64ANDWconst, ssa.OpAMD64ANDBconst,
+		ssa.OpAMD64ORQconst, ssa.OpAMD64ORLconst, ssa.OpAMD64ORWconst, ssa.OpAMD64ORBconst,
+		ssa.OpAMD64XORQconst, ssa.OpAMD64XORLconst, ssa.OpAMD64XORWconst, ssa.OpAMD64XORBconst,
+		ssa.OpAMD64SUBBconst, ssa.OpAMD64SHLQconst, ssa.OpAMD64SHLLconst, ssa.OpAMD64SHLWconst,
+		ssa.OpAMD64SHLBconst, ssa.OpAMD64SHRQconst, ssa.OpAMD64SHRLconst, ssa.OpAMD64SHRWconst,
+		ssa.OpAMD64SHRBconst, ssa.OpAMD64SARQconst, ssa.OpAMD64SARLconst, ssa.OpAMD64SARWconst,
+		ssa.OpAMD64SARBconst, ssa.OpAMD64ROLQconst, ssa.OpAMD64ROLLconst, ssa.OpAMD64ROLWconst,
+		ssa.OpAMD64ROLBconst:
+		// This code compensates for the fact that the register allocator
+		// doesn't understand 2-address instructions yet.  TODO: fix that.
+		x := regnum(v.Args[0])
+		r := regnum(v)
+		if x != r {
+			p := Prog(moveByType(v.Type))
+			p.From.Type = obj.TYPE_REG
+			p.From.Reg = x
+			p.To.Type = obj.TYPE_REG
+			p.To.Reg = r
+		}
+		p := Prog(v.Op.Asm())
+		p.From.Type = obj.TYPE_CONST
+		p.From.Offset = v.AuxInt2Int64()
+		p.To.Type = obj.TYPE_REG
+		p.To.Reg = r
+	case ssa.OpAMD64SBBQcarrymask, ssa.OpAMD64SBBLcarrymask:
+		r := regnum(v)
+		p := Prog(v.Op.Asm())
+		p.From.Type = obj.TYPE_REG
+		p.From.Reg = r
+		p.To.Type = obj.TYPE_REG
+		p.To.Reg = r
+	case ssa.OpAMD64LEAQ1, ssa.OpAMD64LEAQ2, ssa.OpAMD64LEAQ4, ssa.OpAMD64LEAQ8:
+		p := Prog(x86.ALEAQ)
+		p.From.Type = obj.TYPE_MEM
+		p.From.Reg = regnum(v.Args[0])
+		switch v.Op {
+		case ssa.OpAMD64LEAQ1:
+			p.From.Scale = 1
+		case ssa.OpAMD64LEAQ2:
+			p.From.Scale = 2
+		case ssa.OpAMD64LEAQ4:
+			p.From.Scale = 4
+		case ssa.OpAMD64LEAQ8:
+			p.From.Scale = 8
+		}
+		p.From.Index = regnum(v.Args[1])
+		addAux(&p.From, v)
+		p.To.Type = obj.TYPE_REG
+		p.To.Reg = regnum(v)
+	case ssa.OpAMD64LEAQ:
+		p := Prog(x86.ALEAQ)
+		p.From.Type = obj.TYPE_MEM
+		p.From.Reg = regnum(v.Args[0])
+		addAux(&p.From, v)
+		p.To.Type = obj.TYPE_REG
+		p.To.Reg = regnum(v)
+	case ssa.OpAMD64CMPQ, ssa.OpAMD64CMPL, ssa.OpAMD64CMPW, ssa.OpAMD64CMPB,
+		ssa.OpAMD64TESTQ, ssa.OpAMD64TESTL, ssa.OpAMD64TESTW, ssa.OpAMD64TESTB:
+		opregreg(v.Op.Asm(), regnum(v.Args[1]), regnum(v.Args[0]))
+	case ssa.OpAMD64UCOMISS, ssa.OpAMD64UCOMISD:
+		// Go assembler has swapped operands for UCOMISx relative to CMP,
+		// must account for that right here.
+		opregreg(v.Op.Asm(), regnum(v.Args[0]), regnum(v.Args[1]))
+	case ssa.OpAMD64CMPQconst, ssa.OpAMD64CMPLconst, ssa.OpAMD64CMPWconst, ssa.OpAMD64CMPBconst:
+		p := Prog(v.Op.Asm())
+		p.From.Type = obj.TYPE_REG
+		p.From.Reg = regnum(v.Args[0])
+		p.To.Type = obj.TYPE_CONST
+		p.To.Offset = v.AuxInt2Int64()
+	case ssa.OpAMD64TESTQconst, ssa.OpAMD64TESTLconst, ssa.OpAMD64TESTWconst, ssa.OpAMD64TESTBconst:
+		p := Prog(v.Op.Asm())
+		p.From.Type = obj.TYPE_CONST
+		p.From.Offset = v.AuxInt2Int64()
+		p.To.Type = obj.TYPE_REG
+		p.To.Reg = regnum(v.Args[0])
+	case ssa.OpAMD64MOVBconst, ssa.OpAMD64MOVWconst, ssa.OpAMD64MOVLconst, ssa.OpAMD64MOVQconst:
+		x := regnum(v)
+		p := Prog(v.Op.Asm())
+		p.From.Type = obj.TYPE_CONST
+		p.From.Offset = v.AuxInt2Int64()
+		p.To.Type = obj.TYPE_REG
+		p.To.Reg = x
+		// If flags are live at this instruction, suppress the
+		// MOV $0,AX -> XOR AX,AX optimization.
+		if v.Aux != nil {
+			p.Mark |= x86.PRESERVEFLAGS
+		}
+	case ssa.OpAMD64MOVSSconst, ssa.OpAMD64MOVSDconst:
+		x := regnum(v)
+		p := Prog(v.Op.Asm())
+		p.From.Type = obj.TYPE_FCONST
+		p.From.Val = math.Float64frombits(uint64(v.AuxInt))
+		p.To.Type = obj.TYPE_REG
+		p.To.Reg = x
+	case ssa.OpAMD64MOVQload, ssa.OpAMD64MOVSSload, ssa.OpAMD64MOVSDload, ssa.OpAMD64MOVLload, ssa.OpAMD64MOVWload, ssa.OpAMD64MOVBload, ssa.OpAMD64MOVBQSXload, ssa.OpAMD64MOVBQZXload, ssa.OpAMD64MOVWQSXload, ssa.OpAMD64MOVWQZXload, ssa.OpAMD64MOVLQSXload, ssa.OpAMD64MOVLQZXload, ssa.OpAMD64MOVOload:
+		p := Prog(v.Op.Asm())
+		p.From.Type = obj.TYPE_MEM
+		p.From.Reg = regnum(v.Args[0])
+		addAux(&p.From, v)
+		p.To.Type = obj.TYPE_REG
+		p.To.Reg = regnum(v)
+	case ssa.OpAMD64MOVQloadidx8, ssa.OpAMD64MOVSDloadidx8:
+		p := Prog(v.Op.Asm())
+		p.From.Type = obj.TYPE_MEM
+		p.From.Reg = regnum(v.Args[0])
+		addAux(&p.From, v)
+		p.From.Scale = 8
+		p.From.Index = regnum(v.Args[1])
+		p.To.Type = obj.TYPE_REG
+		p.To.Reg = regnum(v)
+	case ssa.OpAMD64MOVLloadidx4, ssa.OpAMD64MOVSSloadidx4:
+		p := Prog(v.Op.Asm())
+		p.From.Type = obj.TYPE_MEM
+		p.From.Reg = regnum(v.Args[0])
+		addAux(&p.From, v)
+		p.From.Scale = 4
+		p.From.Index = regnum(v.Args[1])
+		p.To.Type = obj.TYPE_REG
+		p.To.Reg = regnum(v)
+	case ssa.OpAMD64MOVWloadidx2:
+		p := Prog(v.Op.Asm())
+		p.From.Type = obj.TYPE_MEM
+		p.From.Reg = regnum(v.Args[0])
+		addAux(&p.From, v)
+		p.From.Scale = 2
+		p.From.Index = regnum(v.Args[1])
+		p.To.Type = obj.TYPE_REG
+		p.To.Reg = regnum(v)
+	case ssa.OpAMD64MOVBloadidx1:
+		p := Prog(v.Op.Asm())
+		p.From.Type = obj.TYPE_MEM
+		p.From.Reg = regnum(v.Args[0])
+		addAux(&p.From, v)
+		p.From.Scale = 1
+		p.From.Index = regnum(v.Args[1])
+		p.To.Type = obj.TYPE_REG
+		p.To.Reg = regnum(v)
+	case ssa.OpAMD64MOVQstore, ssa.OpAMD64MOVSSstore, ssa.OpAMD64MOVSDstore, ssa.OpAMD64MOVLstore, ssa.OpAMD64MOVWstore, ssa.OpAMD64MOVBstore, ssa.OpAMD64MOVOstore:
+		p := Prog(v.Op.Asm())
+		p.From.Type = obj.TYPE_REG
+		p.From.Reg = regnum(v.Args[1])
+		p.To.Type = obj.TYPE_MEM
+		p.To.Reg = regnum(v.Args[0])
+		addAux(&p.To, v)
+	case ssa.OpAMD64MOVQstoreidx8, ssa.OpAMD64MOVSDstoreidx8:
+		p := Prog(v.Op.Asm())
+		p.From.Type = obj.TYPE_REG
+		p.From.Reg = regnum(v.Args[2])
+		p.To.Type = obj.TYPE_MEM
+		p.To.Reg = regnum(v.Args[0])
+		p.To.Scale = 8
+		p.To.Index = regnum(v.Args[1])
+		addAux(&p.To, v)
+	case ssa.OpAMD64MOVSSstoreidx4, ssa.OpAMD64MOVLstoreidx4:
+		p := Prog(v.Op.Asm())
+		p.From.Type = obj.TYPE_REG
+		p.From.Reg = regnum(v.Args[2])
+		p.To.Type = obj.TYPE_MEM
+		p.To.Reg = regnum(v.Args[0])
+		p.To.Scale = 4
+		p.To.Index = regnum(v.Args[1])
+		addAux(&p.To, v)
+	case ssa.OpAMD64MOVWstoreidx2:
+		p := Prog(v.Op.Asm())
+		p.From.Type = obj.TYPE_REG
+		p.From.Reg = regnum(v.Args[2])
+		p.To.Type = obj.TYPE_MEM
+		p.To.Reg = regnum(v.Args[0])
+		p.To.Scale = 2
+		p.To.Index = regnum(v.Args[1])
+		addAux(&p.To, v)
+	case ssa.OpAMD64MOVBstoreidx1:
+		p := Prog(v.Op.Asm())
+		p.From.Type = obj.TYPE_REG
+		p.From.Reg = regnum(v.Args[2])
+		p.To.Type = obj.TYPE_MEM
+		p.To.Reg = regnum(v.Args[0])
+		p.To.Scale = 1
+		p.To.Index = regnum(v.Args[1])
+		addAux(&p.To, v)
+	case ssa.OpAMD64MOVQstoreconst, ssa.OpAMD64MOVLstoreconst, ssa.OpAMD64MOVWstoreconst, ssa.OpAMD64MOVBstoreconst:
+		p := Prog(v.Op.Asm())
+		p.From.Type = obj.TYPE_CONST
+		sc := v.AuxValAndOff()
+		i := sc.Val()
+		switch v.Op {
+		case ssa.OpAMD64MOVBstoreconst:
+			i = int64(int8(i))
+		case ssa.OpAMD64MOVWstoreconst:
+			i = int64(int16(i))
+		case ssa.OpAMD64MOVLstoreconst:
+			i = int64(int32(i))
+		case ssa.OpAMD64MOVQstoreconst:
+		}
+		p.From.Offset = i
+		p.To.Type = obj.TYPE_MEM
+		p.To.Reg = regnum(v.Args[0])
+		addAux2(&p.To, v, sc.Off())
+	case ssa.OpAMD64MOVQstoreconstidx8, ssa.OpAMD64MOVLstoreconstidx4, ssa.OpAMD64MOVWstoreconstidx2, ssa.OpAMD64MOVBstoreconstidx1:
+		p := Prog(v.Op.Asm())
+		p.From.Type = obj.TYPE_CONST
+		sc := v.AuxValAndOff()
+		switch v.Op {
+		case ssa.OpAMD64MOVBstoreconstidx1:
+			p.From.Offset = int64(int8(sc.Val()))
+			p.To.Scale = 1
+		case ssa.OpAMD64MOVWstoreconstidx2:
+			p.From.Offset = int64(int16(sc.Val()))
+			p.To.Scale = 2
+		case ssa.OpAMD64MOVLstoreconstidx4:
+			p.From.Offset = int64(int32(sc.Val()))
+			p.To.Scale = 4
+		case ssa.OpAMD64MOVQstoreconstidx8:
+			p.From.Offset = sc.Val()
+			p.To.Scale = 8
+		}
+		p.To.Type = obj.TYPE_MEM
+		p.To.Reg = regnum(v.Args[0])
+		p.To.Index = regnum(v.Args[1])
+		addAux2(&p.To, v, sc.Off())
+	case ssa.OpAMD64MOVLQSX, ssa.OpAMD64MOVWQSX, ssa.OpAMD64MOVBQSX, ssa.OpAMD64MOVLQZX, ssa.OpAMD64MOVWQZX, ssa.OpAMD64MOVBQZX,
+		ssa.OpAMD64CVTSL2SS, ssa.OpAMD64CVTSL2SD, ssa.OpAMD64CVTSQ2SS, ssa.OpAMD64CVTSQ2SD,
+		ssa.OpAMD64CVTTSS2SL, ssa.OpAMD64CVTTSD2SL, ssa.OpAMD64CVTTSS2SQ, ssa.OpAMD64CVTTSD2SQ,
+		ssa.OpAMD64CVTSS2SD, ssa.OpAMD64CVTSD2SS:
+		opregreg(v.Op.Asm(), regnum(v), regnum(v.Args[0]))
+	case ssa.OpAMD64DUFFZERO:
+		p := Prog(obj.ADUFFZERO)
+		p.To.Type = obj.TYPE_ADDR
+		p.To.Sym = Linksym(Pkglookup("duffzero", Runtimepkg))
+		p.To.Offset = v.AuxInt
+	case ssa.OpAMD64MOVOconst:
+		if v.AuxInt != 0 {
+			v.Unimplementedf("MOVOconst can only do constant=0")
+		}
+		r := regnum(v)
+		opregreg(x86.AXORPS, r, r)
+	case ssa.OpAMD64DUFFCOPY:
+		p := Prog(obj.ADUFFCOPY)
+		p.To.Type = obj.TYPE_ADDR
+		p.To.Sym = Linksym(Pkglookup("duffcopy", Runtimepkg))
+		p.To.Offset = v.AuxInt
+
+	case ssa.OpCopy, ssa.OpAMD64MOVQconvert: // TODO: use MOVQreg for reg->reg copies instead of OpCopy?
+		if v.Type.IsMemory() {
+			return
+		}
+		x := regnum(v.Args[0])
+		y := regnum(v)
+		if x != y {
+			opregreg(moveByType(v.Type), y, x)
+		}
+	case ssa.OpLoadReg:
+		if v.Type.IsFlags() {
+			v.Unimplementedf("load flags not implemented: %v", v.LongString())
+			return
+		}
+		p := Prog(loadByType(v.Type))
+		n, off := autoVar(v.Args[0])
+		p.From.Type = obj.TYPE_MEM
+		p.From.Node = n
+		p.From.Sym = Linksym(n.Sym)
+		p.From.Offset = off
+		if n.Class == PPARAM || n.Class == PPARAMOUT {
+			p.From.Name = obj.NAME_PARAM
+			p.From.Offset += n.Xoffset
+		} else {
+			p.From.Name = obj.NAME_AUTO
+		}
+		p.To.Type = obj.TYPE_REG
+		p.To.Reg = regnum(v)
+
+	case ssa.OpStoreReg:
+		if v.Type.IsFlags() {
+			v.Unimplementedf("store flags not implemented: %v", v.LongString())
+			return
+		}
+		p := Prog(storeByType(v.Type))
+		p.From.Type = obj.TYPE_REG
+		p.From.Reg = regnum(v.Args[0])
+		n, off := autoVar(v)
+		p.To.Type = obj.TYPE_MEM
+		p.To.Node = n
+		p.To.Sym = Linksym(n.Sym)
+		p.To.Offset = off
+		if n.Class == PPARAM || n.Class == PPARAMOUT {
+			p.To.Name = obj.NAME_PARAM
+			p.To.Offset += n.Xoffset
+		} else {
+			p.To.Name = obj.NAME_AUTO
+		}
+	case ssa.OpPhi:
+		// just check to make sure regalloc and stackalloc did it right
+		if v.Type.IsMemory() {
+			return
+		}
+		f := v.Block.Func
+		loc := f.RegAlloc[v.ID]
+		for _, a := range v.Args {
+			if aloc := f.RegAlloc[a.ID]; aloc != loc { // TODO: .Equal() instead?
+				v.Fatalf("phi arg at different location than phi: %v @ %v, but arg %v @ %v\n%s\n", v, loc, a, aloc, v.Block.Func)
+			}
+		}
+	case ssa.OpInitMem:
+		// memory arg needs no code
+	case ssa.OpArg:
+		// input args need no code
+	case ssa.OpAMD64LoweredGetClosurePtr:
+		// Output is hardwired to DX only,
+		// and DX contains the closure pointer on
+		// closure entry, and this "instruction"
+		// is scheduled to the very beginning
+		// of the entry block.
+	case ssa.OpAMD64LoweredGetG:
+		r := regnum(v)
+		// See the comments in cmd/internal/obj/x86/obj6.go
+		// near CanUse1InsnTLS for a detailed explanation of these instructions.
+		if x86.CanUse1InsnTLS(Ctxt) {
+			// MOVQ (TLS), r
+			p := Prog(x86.AMOVQ)
+			p.From.Type = obj.TYPE_MEM
+			p.From.Reg = x86.REG_TLS
+			p.To.Type = obj.TYPE_REG
+			p.To.Reg = r
+		} else {
+			// MOVQ TLS, r
+			// MOVQ (r)(TLS*1), r
+			p := Prog(x86.AMOVQ)
+			p.From.Type = obj.TYPE_REG
+			p.From.Reg = x86.REG_TLS
+			p.To.Type = obj.TYPE_REG
+			p.To.Reg = r
+			q := Prog(x86.AMOVQ)
+			q.From.Type = obj.TYPE_MEM
+			q.From.Reg = r
+			q.From.Index = x86.REG_TLS
+			q.From.Scale = 1
+			q.To.Type = obj.TYPE_REG
+			q.To.Reg = r
+		}
+	case ssa.OpAMD64CALLstatic:
+		p := Prog(obj.ACALL)
+		p.To.Type = obj.TYPE_MEM
+		p.To.Name = obj.NAME_EXTERN
+		p.To.Sym = Linksym(v.Aux.(*Sym))
+		if Maxarg < v.AuxInt {
+			Maxarg = v.AuxInt
+		}
+	case ssa.OpAMD64CALLclosure:
+		p := Prog(obj.ACALL)
+		p.To.Type = obj.TYPE_REG
+		p.To.Reg = regnum(v.Args[0])
+		if Maxarg < v.AuxInt {
+			Maxarg = v.AuxInt
+		}
+	case ssa.OpAMD64CALLdefer:
+		p := Prog(obj.ACALL)
+		p.To.Type = obj.TYPE_MEM
+		p.To.Name = obj.NAME_EXTERN
+		p.To.Sym = Linksym(Deferproc.Sym)
+		if Maxarg < v.AuxInt {
+			Maxarg = v.AuxInt
+		}
+		// defer returns in rax:
+		// 0 if we should continue executing
+		// 1 if we should jump to deferreturn call
+		p = Prog(x86.ATESTL)
+		p.From.Type = obj.TYPE_REG
+		p.From.Reg = x86.REG_AX
+		p.To.Type = obj.TYPE_REG
+		p.To.Reg = x86.REG_AX
+		p = Prog(x86.AJNE)
+		p.To.Type = obj.TYPE_BRANCH
+		s.deferBranches = append(s.deferBranches, p)
+	case ssa.OpAMD64CALLgo:
+		p := Prog(obj.ACALL)
+		p.To.Type = obj.TYPE_MEM
+		p.To.Name = obj.NAME_EXTERN
+		p.To.Sym = Linksym(Newproc.Sym)
+		if Maxarg < v.AuxInt {
+			Maxarg = v.AuxInt
+		}
+	case ssa.OpAMD64CALLinter:
+		p := Prog(obj.ACALL)
+		p.To.Type = obj.TYPE_REG
+		p.To.Reg = regnum(v.Args[0])
+		if Maxarg < v.AuxInt {
+			Maxarg = v.AuxInt
+		}
+	case ssa.OpAMD64NEGQ, ssa.OpAMD64NEGL, ssa.OpAMD64NEGW, ssa.OpAMD64NEGB,
+		ssa.OpAMD64NOTQ, ssa.OpAMD64NOTL, ssa.OpAMD64NOTW, ssa.OpAMD64NOTB:
+		x := regnum(v.Args[0])
+		r := regnum(v)
+		if x != r {
+			p := Prog(moveByType(v.Type))
+			p.From.Type = obj.TYPE_REG
+			p.From.Reg = x
+			p.To.Type = obj.TYPE_REG
+			p.To.Reg = r
+		}
+		p := Prog(v.Op.Asm())
+		p.To.Type = obj.TYPE_REG
+		p.To.Reg = r
+	case ssa.OpAMD64SQRTSD:
+		p := Prog(v.Op.Asm())
+		p.From.Type = obj.TYPE_REG
+		p.From.Reg = regnum(v.Args[0])
+		p.To.Type = obj.TYPE_REG
+		p.To.Reg = regnum(v)
+	case ssa.OpSP, ssa.OpSB:
+		// nothing to do
+	case ssa.OpAMD64SETEQ, ssa.OpAMD64SETNE,
+		ssa.OpAMD64SETL, ssa.OpAMD64SETLE,
+		ssa.OpAMD64SETG, ssa.OpAMD64SETGE,
+		ssa.OpAMD64SETGF, ssa.OpAMD64SETGEF,
+		ssa.OpAMD64SETB, ssa.OpAMD64SETBE,
+		ssa.OpAMD64SETORD, ssa.OpAMD64SETNAN,
+		ssa.OpAMD64SETA, ssa.OpAMD64SETAE:
+		p := Prog(v.Op.Asm())
+		p.To.Type = obj.TYPE_REG
+		p.To.Reg = regnum(v)
+
+	case ssa.OpAMD64SETNEF:
+		p := Prog(v.Op.Asm())
+		p.To.Type = obj.TYPE_REG
+		p.To.Reg = regnum(v)
+		q := Prog(x86.ASETPS)
+		q.To.Type = obj.TYPE_REG
+		q.To.Reg = x86.REG_AX
+		// ORL avoids partial register write and is smaller than ORQ, used by old compiler
+		opregreg(x86.AORL, regnum(v), x86.REG_AX)
+
+	case ssa.OpAMD64SETEQF:
+		p := Prog(v.Op.Asm())
+		p.To.Type = obj.TYPE_REG
+		p.To.Reg = regnum(v)
+		q := Prog(x86.ASETPC)
+		q.To.Type = obj.TYPE_REG
+		q.To.Reg = x86.REG_AX
+		// ANDL avoids partial register write and is smaller than ANDQ, used by old compiler
+		opregreg(x86.AANDL, regnum(v), x86.REG_AX)
+
+	case ssa.OpAMD64InvertFlags:
+		v.Fatalf("InvertFlags should never make it to codegen %v", v)
+	case ssa.OpAMD64FlagEQ, ssa.OpAMD64FlagLT_ULT, ssa.OpAMD64FlagLT_UGT, ssa.OpAMD64FlagGT_ULT, ssa.OpAMD64FlagGT_UGT:
+		v.Fatalf("Flag* ops should never make it to codegen %v", v)
+	case ssa.OpAMD64REPSTOSQ:
+		Prog(x86.AREP)
+		Prog(x86.ASTOSQ)
+	case ssa.OpAMD64REPMOVSQ:
+		Prog(x86.AREP)
+		Prog(x86.AMOVSQ)
+	case ssa.OpVarDef:
+		Gvardef(v.Aux.(*Node))
+	case ssa.OpVarKill:
+		gvarkill(v.Aux.(*Node))
+	case ssa.OpVarLive:
+		gvarlive(v.Aux.(*Node))
+	case ssa.OpAMD64LoweredNilCheck:
+		// Optimization - if the subsequent block has a load or store
+		// at the same address, we don't need to issue this instruction.
+		mem := v.Args[1]
+		for _, w := range v.Block.Succs[0].Values {
+			if w.Op == ssa.OpPhi {
+				if w.Type.IsMemory() {
+					mem = w
+				}
+				continue
+			}
+			if len(w.Args) == 0 || !w.Args[len(w.Args)-1].Type.IsMemory() {
+				// w doesn't use a store - can't be a memory op.
+				continue
+			}
+			if w.Args[len(w.Args)-1] != mem {
+				v.Fatalf("wrong store after nilcheck v=%s w=%s", v, w)
+			}
+			switch w.Op {
+			case ssa.OpAMD64MOVQload, ssa.OpAMD64MOVLload, ssa.OpAMD64MOVWload, ssa.OpAMD64MOVBload,
+				ssa.OpAMD64MOVQstore, ssa.OpAMD64MOVLstore, ssa.OpAMD64MOVWstore, ssa.OpAMD64MOVBstore,
+				ssa.OpAMD64MOVBQSXload, ssa.OpAMD64MOVBQZXload, ssa.OpAMD64MOVWQSXload,
+				ssa.OpAMD64MOVWQZXload, ssa.OpAMD64MOVLQSXload, ssa.OpAMD64MOVLQZXload,
+				ssa.OpAMD64MOVSSload, ssa.OpAMD64MOVSDload, ssa.OpAMD64MOVOload,
+				ssa.OpAMD64MOVSSstore, ssa.OpAMD64MOVSDstore, ssa.OpAMD64MOVOstore:
+				if w.Args[0] == v.Args[0] && w.Aux == nil && w.AuxInt >= 0 && w.AuxInt < minZeroPage {
+					if Debug_checknil != 0 && int(v.Line) > 1 {
+						Warnl(int(v.Line), "removed nil check")
+					}
+					return
+				}
+			case ssa.OpAMD64MOVQstoreconst, ssa.OpAMD64MOVLstoreconst, ssa.OpAMD64MOVWstoreconst, ssa.OpAMD64MOVBstoreconst:
+				off := ssa.ValAndOff(v.AuxInt).Off()
+				if w.Args[0] == v.Args[0] && w.Aux == nil && off >= 0 && off < minZeroPage {
+					if Debug_checknil != 0 && int(v.Line) > 1 {
+						Warnl(int(v.Line), "removed nil check")
+					}
+					return
+				}
+			}
+			if w.Type.IsMemory() {
+				if w.Op == ssa.OpVarDef || w.Op == ssa.OpVarKill || w.Op == ssa.OpVarLive {
+					// these ops are OK
+					mem = w
+					continue
+				}
+				// We can't delay the nil check past the next store.
+				break
+			}
+		}
+		// Issue a load which will fault if the input is nil.
+		// TODO: We currently use the 2-byte instruction TESTB AX, (reg).
+		// Should we use the 3-byte TESTB $0, (reg) instead?  It is larger
+		// but it doesn't have false dependency on AX.
+		// Or maybe allocate an output register and use MOVL (reg),reg2 ?
+		// That trades clobbering flags for clobbering a register.
+		p := Prog(x86.ATESTB)
+		p.From.Type = obj.TYPE_REG
+		p.From.Reg = x86.REG_AX
+		p.To.Type = obj.TYPE_MEM
+		p.To.Reg = regnum(v.Args[0])
+		addAux(&p.To, v)
+		if Debug_checknil != 0 && v.Line > 1 { // v.Line==1 in generated wrappers
+			Warnl(int(v.Line), "generated nil check")
+		}
+	default:
+		v.Unimplementedf("genValue not implemented: %s", v.LongString())
+	}
+}
+
+// markMoves marks any MOVXconst ops that need to avoid clobbering flags.
+func (s *genState) markMoves(b *ssa.Block) {
+	flive := b.FlagsLiveAtEnd
+	if b.Control != nil && b.Control.Type.IsFlags() {
+		flive = true
+	}
+	for i := len(b.Values) - 1; i >= 0; i-- {
+		v := b.Values[i]
+		if flive && (v.Op == ssa.OpAMD64MOVBconst || v.Op == ssa.OpAMD64MOVWconst || v.Op == ssa.OpAMD64MOVLconst || v.Op == ssa.OpAMD64MOVQconst) {
+			// The "mark" is any non-nil Aux value.
+			v.Aux = v
+		}
+		if v.Type.IsFlags() {
+			flive = false
+		}
+		for _, a := range v.Args {
+			if a.Type.IsFlags() {
+				flive = true
+			}
+		}
+	}
+}
+
+// movZero generates a register indirect move with a 0 immediate and keeps track of bytes left and next offset
+func movZero(as int, width int64, nbytes int64, offset int64, regnum int16) (nleft int64, noff int64) {
+	p := Prog(as)
+	// TODO: use zero register on archs that support it.
+	p.From.Type = obj.TYPE_CONST
+	p.From.Offset = 0
+	p.To.Type = obj.TYPE_MEM
+	p.To.Reg = regnum
+	p.To.Offset = offset
+	offset += width
+	nleft = nbytes - width
+	return nleft, offset
+}
+
+var blockJump = [...]struct {
+	asm, invasm int
+}{
+	ssa.BlockAMD64EQ:  {x86.AJEQ, x86.AJNE},
+	ssa.BlockAMD64NE:  {x86.AJNE, x86.AJEQ},
+	ssa.BlockAMD64LT:  {x86.AJLT, x86.AJGE},
+	ssa.BlockAMD64GE:  {x86.AJGE, x86.AJLT},
+	ssa.BlockAMD64LE:  {x86.AJLE, x86.AJGT},
+	ssa.BlockAMD64GT:  {x86.AJGT, x86.AJLE},
+	ssa.BlockAMD64ULT: {x86.AJCS, x86.AJCC},
+	ssa.BlockAMD64UGE: {x86.AJCC, x86.AJCS},
+	ssa.BlockAMD64UGT: {x86.AJHI, x86.AJLS},
+	ssa.BlockAMD64ULE: {x86.AJLS, x86.AJHI},
+	ssa.BlockAMD64ORD: {x86.AJPC, x86.AJPS},
+	ssa.BlockAMD64NAN: {x86.AJPS, x86.AJPC},
+}
+
+type floatingEQNEJump struct {
+	jump, index int
+}
+
+var eqfJumps = [2][2]floatingEQNEJump{
+	{{x86.AJNE, 1}, {x86.AJPS, 1}}, // next == b.Succs[0]
+	{{x86.AJNE, 1}, {x86.AJPC, 0}}, // next == b.Succs[1]
+}
+var nefJumps = [2][2]floatingEQNEJump{
+	{{x86.AJNE, 0}, {x86.AJPC, 1}}, // next == b.Succs[0]
+	{{x86.AJNE, 0}, {x86.AJPS, 0}}, // next == b.Succs[1]
+}
+
+func oneFPJump(b *ssa.Block, jumps *floatingEQNEJump, likely ssa.BranchPrediction, branches []branch) []branch {
+	p := Prog(jumps.jump)
+	p.To.Type = obj.TYPE_BRANCH
+	to := jumps.index
+	branches = append(branches, branch{p, b.Succs[to]})
+	if to == 1 {
+		likely = -likely
+	}
+	// liblink reorders the instruction stream as it sees fit.
+	// Pass along what we know so liblink can make use of it.
+	// TODO: Once we've fully switched to SSA,
+	// make liblink leave our output alone.
+	switch likely {
+	case ssa.BranchUnlikely:
+		p.From.Type = obj.TYPE_CONST
+		p.From.Offset = 0
+	case ssa.BranchLikely:
+		p.From.Type = obj.TYPE_CONST
+		p.From.Offset = 1
+	}
+	return branches
+}
+
+func genFPJump(s *genState, b, next *ssa.Block, jumps *[2][2]floatingEQNEJump) {
+	likely := b.Likely
+	switch next {
+	case b.Succs[0]:
+		s.branches = oneFPJump(b, &jumps[0][0], likely, s.branches)
+		s.branches = oneFPJump(b, &jumps[0][1], likely, s.branches)
+	case b.Succs[1]:
+		s.branches = oneFPJump(b, &jumps[1][0], likely, s.branches)
+		s.branches = oneFPJump(b, &jumps[1][1], likely, s.branches)
+	default:
+		s.branches = oneFPJump(b, &jumps[1][0], likely, s.branches)
+		s.branches = oneFPJump(b, &jumps[1][1], likely, s.branches)
+		q := Prog(obj.AJMP)
+		q.To.Type = obj.TYPE_BRANCH
+		s.branches = append(s.branches, branch{q, b.Succs[1]})
+	}
+}
+
+func (s *genState) genBlock(b, next *ssa.Block) {
+	lineno = b.Line
+
+	switch b.Kind {
+	case ssa.BlockPlain, ssa.BlockCall, ssa.BlockCheck:
+		if b.Succs[0] != next {
+			p := Prog(obj.AJMP)
+			p.To.Type = obj.TYPE_BRANCH
+			s.branches = append(s.branches, branch{p, b.Succs[0]})
+		}
+	case ssa.BlockExit:
+		Prog(obj.AUNDEF) // tell plive.go that we never reach here
+	case ssa.BlockRet:
+		if hasdefer {
+			s.deferReturn()
+		}
+		Prog(obj.ARET)
+	case ssa.BlockRetJmp:
+		p := Prog(obj.AJMP)
+		p.To.Type = obj.TYPE_MEM
+		p.To.Name = obj.NAME_EXTERN
+		p.To.Sym = Linksym(b.Aux.(*Sym))
+
+	case ssa.BlockAMD64EQF:
+		genFPJump(s, b, next, &eqfJumps)
+
+	case ssa.BlockAMD64NEF:
+		genFPJump(s, b, next, &nefJumps)
+
+	case ssa.BlockAMD64EQ, ssa.BlockAMD64NE,
+		ssa.BlockAMD64LT, ssa.BlockAMD64GE,
+		ssa.BlockAMD64LE, ssa.BlockAMD64GT,
+		ssa.BlockAMD64ULT, ssa.BlockAMD64UGT,
+		ssa.BlockAMD64ULE, ssa.BlockAMD64UGE:
+		jmp := blockJump[b.Kind]
+		likely := b.Likely
+		var p *obj.Prog
+		switch next {
+		case b.Succs[0]:
+			p = Prog(jmp.invasm)
+			likely *= -1
+			p.To.Type = obj.TYPE_BRANCH
+			s.branches = append(s.branches, branch{p, b.Succs[1]})
+		case b.Succs[1]:
+			p = Prog(jmp.asm)
+			p.To.Type = obj.TYPE_BRANCH
+			s.branches = append(s.branches, branch{p, b.Succs[0]})
+		default:
+			p = Prog(jmp.asm)
+			p.To.Type = obj.TYPE_BRANCH
+			s.branches = append(s.branches, branch{p, b.Succs[0]})
+			q := Prog(obj.AJMP)
+			q.To.Type = obj.TYPE_BRANCH
+			s.branches = append(s.branches, branch{q, b.Succs[1]})
+		}
+
+		// liblink reorders the instruction stream as it sees fit.
+		// Pass along what we know so liblink can make use of it.
+		// TODO: Once we've fully switched to SSA,
+		// make liblink leave our output alone.
+		switch likely {
+		case ssa.BranchUnlikely:
+			p.From.Type = obj.TYPE_CONST
+			p.From.Offset = 0
+		case ssa.BranchLikely:
+			p.From.Type = obj.TYPE_CONST
+			p.From.Offset = 1
+		}
+
+	default:
+		b.Unimplementedf("branch not implemented: %s. Control: %s", b.LongString(), b.Control.LongString())
+	}
+}
+
+func (s *genState) deferReturn() {
+	// Deferred calls will appear to be returning to
+	// the CALL deferreturn(SB) that we are about to emit.
+	// However, the stack trace code will show the line
+	// of the instruction byte before the return PC.
+	// To avoid that being an unrelated instruction,
+	// insert an actual hardware NOP that will have the right line number.
+	// This is different from obj.ANOP, which is a virtual no-op
+	// that doesn't make it into the instruction stream.
+	s.deferTarget = Pc
+	Thearch.Ginsnop()
+	p := Prog(obj.ACALL)
+	p.To.Type = obj.TYPE_MEM
+	p.To.Name = obj.NAME_EXTERN
+	p.To.Sym = Linksym(Deferreturn.Sym)
+}
+
+// addAux adds the offset in the aux fields (AuxInt and Aux) of v to a.
+func addAux(a *obj.Addr, v *ssa.Value) {
+	addAux2(a, v, v.AuxInt)
+}
+func addAux2(a *obj.Addr, v *ssa.Value, offset int64) {
+	if a.Type != obj.TYPE_MEM {
+		v.Fatalf("bad addAux addr %s", a)
+	}
+	// add integer offset
+	a.Offset += offset
+
+	// If no additional symbol offset, we're done.
+	if v.Aux == nil {
+		return
+	}
+	// Add symbol's offset from its base register.
+	switch sym := v.Aux.(type) {
+	case *ssa.ExternSymbol:
+		a.Name = obj.NAME_EXTERN
+		a.Sym = Linksym(sym.Sym.(*Sym))
+	case *ssa.ArgSymbol:
+		n := sym.Node.(*Node)
+		a.Name = obj.NAME_PARAM
+		a.Node = n
+		a.Sym = Linksym(n.Orig.Sym)
+		a.Offset += n.Xoffset // TODO: why do I have to add this here?  I don't for auto variables.
+	case *ssa.AutoSymbol:
+		n := sym.Node.(*Node)
+		a.Name = obj.NAME_AUTO
+		a.Node = n
+		a.Sym = Linksym(n.Sym)
+	default:
+		v.Fatalf("aux in %s not implemented %#v", v, v.Aux)
+	}
+}
+
+// extendIndex extends v to a full int width.
+func (s *state) extendIndex(v *ssa.Value) *ssa.Value {
+	size := v.Type.Size()
+	if size == s.config.IntSize {
+		return v
+	}
+	if size > s.config.IntSize {
+		// TODO: truncate 64-bit indexes on 32-bit pointer archs.  We'd need to test
+		// the high word and branch to out-of-bounds failure if it is not 0.
+		s.Unimplementedf("64->32 index truncation not implemented")
+		return v
+	}
+
+	// Extend value to the required size
+	var op ssa.Op
+	if v.Type.IsSigned() {
+		switch 10*size + s.config.IntSize {
+		case 14:
+			op = ssa.OpSignExt8to32
+		case 18:
+			op = ssa.OpSignExt8to64
+		case 24:
+			op = ssa.OpSignExt16to32
+		case 28:
+			op = ssa.OpSignExt16to64
+		case 48:
+			op = ssa.OpSignExt32to64
+		default:
+			s.Fatalf("bad signed index extension %s", v.Type)
+		}
+	} else {
+		switch 10*size + s.config.IntSize {
+		case 14:
+			op = ssa.OpZeroExt8to32
+		case 18:
+			op = ssa.OpZeroExt8to64
+		case 24:
+			op = ssa.OpZeroExt16to32
+		case 28:
+			op = ssa.OpZeroExt16to64
+		case 48:
+			op = ssa.OpZeroExt32to64
+		default:
+			s.Fatalf("bad unsigned index extension %s", v.Type)
+		}
+	}
+	return s.newValue1(op, Types[TINT], v)
+}
+
+// ssaRegToReg maps ssa register numbers to obj register numbers.
+var ssaRegToReg = [...]int16{
+	x86.REG_AX,
+	x86.REG_CX,
+	x86.REG_DX,
+	x86.REG_BX,
+	x86.REG_SP,
+	x86.REG_BP,
+	x86.REG_SI,
+	x86.REG_DI,
+	x86.REG_R8,
+	x86.REG_R9,
+	x86.REG_R10,
+	x86.REG_R11,
+	x86.REG_R12,
+	x86.REG_R13,
+	x86.REG_R14,
+	x86.REG_R15,
+	x86.REG_X0,
+	x86.REG_X1,
+	x86.REG_X2,
+	x86.REG_X3,
+	x86.REG_X4,
+	x86.REG_X5,
+	x86.REG_X6,
+	x86.REG_X7,
+	x86.REG_X8,
+	x86.REG_X9,
+	x86.REG_X10,
+	x86.REG_X11,
+	x86.REG_X12,
+	x86.REG_X13,
+	x86.REG_X14,
+	x86.REG_X15,
+	0, // SB isn't a real register.  We fill an Addr.Reg field with 0 in this case.
+	// TODO: arch-dependent
+}
+
+// loadByType returns the load instruction of the given type.
+func loadByType(t ssa.Type) int {
+	// Avoid partial register write
+	if !t.IsFloat() && t.Size() <= 2 {
+		if t.Size() == 1 {
+			return x86.AMOVBLZX
+		} else {
+			return x86.AMOVWLZX
+		}
+	}
+	// Otherwise, there's no difference between load and store opcodes.
+	return storeByType(t)
+}
+
+// storeByType returns the store instruction of the given type.
+func storeByType(t ssa.Type) int {
+	width := t.Size()
+	if t.IsFloat() {
+		switch width {
+		case 4:
+			return x86.AMOVSS
+		case 8:
+			return x86.AMOVSD
+		}
+	} else {
+		switch width {
+		case 1:
+			return x86.AMOVB
+		case 2:
+			return x86.AMOVW
+		case 4:
+			return x86.AMOVL
+		case 8:
+			return x86.AMOVQ
+		}
+	}
+	panic("bad store type")
+}
+
+// moveByType returns the reg->reg move instruction of the given type.
+func moveByType(t ssa.Type) int {
+	if t.IsFloat() {
+		// Moving the whole sse2 register is faster
+		// than moving just the correct low portion of it.
+		// There is no xmm->xmm move with 1 byte opcode,
+		// so use movups, which has 2 byte opcode.
+		return x86.AMOVUPS
+	} else {
+		switch t.Size() {
+		case 1:
+			// Avoids partial register write
+			return x86.AMOVL
+		case 2:
+			return x86.AMOVL
+		case 4:
+			return x86.AMOVL
+		case 8:
+			return x86.AMOVQ
+		default:
+			panic("bad int register width")
+		}
+	}
+	panic("bad register type")
+}
+
+// regnum returns the register (in cmd/internal/obj numbering) to
+// which v has been allocated.  Panics if v is not assigned to a
+// register.
+// TODO: Make this panic again once it stops happening routinely.
+func regnum(v *ssa.Value) int16 {
+	reg := v.Block.Func.RegAlloc[v.ID]
+	if reg == nil {
+		v.Unimplementedf("nil regnum for value: %s\n%s\n", v.LongString(), v.Block.Func)
+		return 0
+	}
+	return ssaRegToReg[reg.(*ssa.Register).Num]
+}
+
+// autoVar returns a *Node and int64 representing the auto variable and offset within it
+// where v should be spilled.
+func autoVar(v *ssa.Value) (*Node, int64) {
+	loc := v.Block.Func.RegAlloc[v.ID].(ssa.LocalSlot)
+	if v.Type.Size() > loc.Type.Size() {
+		v.Fatalf("spill/restore type %s doesn't fit in slot type %s", v.Type, loc.Type)
+	}
+	return loc.N.(*Node), loc.Off
+}
+
+// fieldIdx finds the index of the field referred to by the ODOT node n.
+func fieldIdx(n *Node) int64 {
+	t := n.Left.Type
+	f := n.Right
+	if t.Etype != TSTRUCT {
+		panic("ODOT's LHS is not a struct")
+	}
+
+	var i int64
+	for t1 := t.Type; t1 != nil; t1 = t1.Down {
+		if t1.Etype != TFIELD {
+			panic("non-TFIELD in TSTRUCT")
+		}
+		if t1.Sym != f.Sym {
+			i++
+			continue
+		}
+		if t1.Width != n.Xoffset {
+			panic("field offset doesn't match")
+		}
+		return i
+	}
+	panic(fmt.Sprintf("can't find field in expr %s\n", n))
+
+	// TODO: keep the result of this fucntion somewhere in the ODOT Node
+	// so we don't have to recompute it each time we need it.
+}
+
+// ssaExport exports a bunch of compiler services for the ssa backend.
+type ssaExport struct {
+	log           bool
+	unimplemented bool
+	mustImplement bool
+}
+
+func (s *ssaExport) TypeBool() ssa.Type    { return Types[TBOOL] }
+func (s *ssaExport) TypeInt8() ssa.Type    { return Types[TINT8] }
+func (s *ssaExport) TypeInt16() ssa.Type   { return Types[TINT16] }
+func (s *ssaExport) TypeInt32() ssa.Type   { return Types[TINT32] }
+func (s *ssaExport) TypeInt64() ssa.Type   { return Types[TINT64] }
+func (s *ssaExport) TypeUInt8() ssa.Type   { return Types[TUINT8] }
+func (s *ssaExport) TypeUInt16() ssa.Type  { return Types[TUINT16] }
+func (s *ssaExport) TypeUInt32() ssa.Type  { return Types[TUINT32] }
+func (s *ssaExport) TypeUInt64() ssa.Type  { return Types[TUINT64] }
+func (s *ssaExport) TypeFloat32() ssa.Type { return Types[TFLOAT32] }
+func (s *ssaExport) TypeFloat64() ssa.Type { return Types[TFLOAT64] }
+func (s *ssaExport) TypeInt() ssa.Type     { return Types[TINT] }
+func (s *ssaExport) TypeUintptr() ssa.Type { return Types[TUINTPTR] }
+func (s *ssaExport) TypeString() ssa.Type  { return Types[TSTRING] }
+func (s *ssaExport) TypeBytePtr() ssa.Type { return Ptrto(Types[TUINT8]) }
+
+// StringData returns a symbol (a *Sym wrapped in an interface) which
+// is the data component of a global string constant containing s.
+func (*ssaExport) StringData(s string) interface{} {
+	// TODO: is idealstring correct?  It might not matter...
+	_, data := stringsym(s)
+	return &ssa.ExternSymbol{Typ: idealstring, Sym: data}
+}
+
+func (e *ssaExport) Auto(t ssa.Type) ssa.GCNode {
+	n := temp(t.(*Type))   // Note: adds new auto to Curfn.Func.Dcl list
+	e.mustImplement = true // This modifies the input to SSA, so we want to make sure we succeed from here!
+	return n
+}
+
+func (e *ssaExport) CanSSA(t ssa.Type) bool {
+	return canSSAType(t.(*Type))
+}
+
+func (e *ssaExport) Line(line int32) string {
+	return Ctxt.Line(int(line))
+}
+
+// Log logs a message from the compiler.
+func (e *ssaExport) Logf(msg string, args ...interface{}) {
+	// If e was marked as unimplemented, anything could happen. Ignore.
+	if e.log && !e.unimplemented {
+		fmt.Printf(msg, args...)
+	}
+}
+
+func (e *ssaExport) Log() bool {
+	return e.log
+}
+
+// Fatal reports a compiler error and exits.
+func (e *ssaExport) Fatalf(line int32, msg string, args ...interface{}) {
+	// If e was marked as unimplemented, anything could happen. Ignore.
+	if !e.unimplemented {
+		lineno = line
+		Fatalf(msg, args...)
+	}
+}
+
+// Unimplemented reports that the function cannot be compiled.
+// It will be removed once SSA work is complete.
+func (e *ssaExport) Unimplementedf(line int32, msg string, args ...interface{}) {
+	if e.mustImplement {
+		lineno = line
+		Fatalf(msg, args...)
+	}
+	const alwaysLog = false // enable to calculate top unimplemented features
+	if !e.unimplemented && (e.log || alwaysLog) {
+		// first implementation failure, print explanation
+		fmt.Printf("SSA unimplemented: "+msg+"\n", args...)
+	}
+	e.unimplemented = true
+}
+
+// Warnl reports a "warning", which is usually flag-triggered
+// logging output for the benefit of tests.
+func (e *ssaExport) Warnl(line int, fmt_ string, args ...interface{}) {
+	Warnl(line, fmt_, args...)
+}
+
+func (e *ssaExport) Debug_checknil() bool {
+	return Debug_checknil != 0
+}
+
+func (n *Node) Typ() ssa.Type {
+	return n.Type
+}