| // Copyright 2012 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package big_test |
| |
| import ( |
| "fmt" |
| "log" |
| "math" |
| "math/big" |
| ) |
| |
| func ExampleRat_SetString() { |
| r := new(big.Rat) |
| r.SetString("355/113") |
| fmt.Println(r.FloatString(3)) |
| // Output: 3.142 |
| } |
| |
| func ExampleInt_SetString() { |
| i := new(big.Int) |
| i.SetString("644", 8) // octal |
| fmt.Println(i) |
| // Output: 420 |
| } |
| |
| func ExampleRat_Scan() { |
| // The Scan function is rarely used directly; |
| // the fmt package recognizes it as an implementation of fmt.Scanner. |
| r := new(big.Rat) |
| _, err := fmt.Sscan("1.5000", r) |
| if err != nil { |
| log.Println("error scanning value:", err) |
| } else { |
| fmt.Println(r) |
| } |
| // Output: 3/2 |
| } |
| |
| func ExampleInt_Scan() { |
| // The Scan function is rarely used directly; |
| // the fmt package recognizes it as an implementation of fmt.Scanner. |
| i := new(big.Int) |
| _, err := fmt.Sscan("18446744073709551617", i) |
| if err != nil { |
| log.Println("error scanning value:", err) |
| } else { |
| fmt.Println(i) |
| } |
| // Output: 18446744073709551617 |
| } |
| |
| // This example demonstrates how to use big.Int to compute the smallest |
| // Fibonacci number with 100 decimal digits and to test whether it is prime. |
| func Example_fibonacci() { |
| // Initialize two big ints with the first two numbers in the sequence. |
| a := big.NewInt(0) |
| b := big.NewInt(1) |
| |
| // Initialize limit as 10^99, the smallest integer with 100 digits. |
| var limit big.Int |
| limit.Exp(big.NewInt(10), big.NewInt(99), nil) |
| |
| // Loop while a is smaller than 1e100. |
| for a.Cmp(&limit) < 0 { |
| // Compute the next Fibonacci number, storing it in a. |
| a.Add(a, b) |
| // Swap a and b so that b is the next number in the sequence. |
| a, b = b, a |
| } |
| fmt.Println(a) // 100-digit Fibonacci number |
| |
| // Test a for primality. |
| // (ProbablyPrimes' argument sets the number of Miller-Rabin |
| // rounds to be performed. 20 is a good value.) |
| fmt.Println(a.ProbablyPrime(20)) |
| |
| // Output: |
| // 1344719667586153181419716641724567886890850696275767987106294472017884974410332069524504824747437757 |
| // false |
| } |
| |
| // This example shows how to use big.Float to compute the square root of 2 with |
| // a precision of 200 bits, and how to print the result as a decimal number. |
| func Example_sqrt2() { |
| // We'll do computations with 200 bits of precision in the mantissa. |
| const prec = 200 |
| |
| // Compute the square root of 2 using Newton's Method. We start with |
| // an initial estimate for sqrt(2), and then iterate: |
| // x_{n+1} = 1/2 * ( x_n + (2.0 / x_n) ) |
| |
| // Since Newton's Method doubles the number of correct digits at each |
| // iteration, we need at least log_2(prec) steps. |
| steps := int(math.Log2(prec)) |
| |
| // Initialize values we need for the computation. |
| two := new(big.Float).SetPrec(prec).SetInt64(2) |
| half := new(big.Float).SetPrec(prec).SetFloat64(0.5) |
| |
| // Use 1 as the initial estimate. |
| x := new(big.Float).SetPrec(prec).SetInt64(1) |
| |
| // We use t as a temporary variable. There's no need to set its precision |
| // since big.Float values with unset (== 0) precision automatically assume |
| // the largest precision of the arguments when used as the result (receiver) |
| // of a big.Float operation. |
| t := new(big.Float) |
| |
| // Iterate. |
| for i := 0; i <= steps; i++ { |
| t.Quo(two, x) // t = 2.0 / x_n |
| t.Add(x, t) // t = x_n + (2.0 / x_n) |
| x.Mul(half, t) // x_{n+1} = 0.5 * t |
| } |
| |
| // We can use the usual fmt.Printf verbs since big.Float implements fmt.Formatter |
| fmt.Printf("sqrt(2) = %.50f\n", x) |
| |
| // Print the error between 2 and x*x. |
| t.Mul(x, x) // t = x*x |
| fmt.Printf("error = %e\n", t.Sub(two, t)) |
| |
| // Output: |
| // sqrt(2) = 1.41421356237309504880168872420969807856967187537695 |
| // error = 0.000000e+00 |
| } |