| // Copyright 2021 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // This file implements typechecking of index/slice expressions. |
| |
| package types |
| |
| import ( |
| "go/ast" |
| "go/constant" |
| "go/internal/typeparams" |
| ) |
| |
| // If e is a valid function instantiation, indexExpr returns true. |
| // In that case x represents the uninstantiated function value and |
| // it is the caller's responsibility to instantiate the function. |
| func (check *Checker) indexExpr(x *operand, e *ast.IndexExpr) (isFuncInst bool) { |
| check.exprOrType(x, e.X) |
| |
| switch x.mode { |
| case invalid: |
| check.use(typeparams.UnpackExpr(e.Index)...) |
| return false |
| |
| case typexpr: |
| // type instantiation |
| x.mode = invalid |
| x.typ = check.varType(e) |
| if x.typ != Typ[Invalid] { |
| x.mode = typexpr |
| } |
| return false |
| |
| case value: |
| if sig := asSignature(x.typ); sig != nil && len(sig.tparams) > 0 { |
| // function instantiation |
| return true |
| } |
| } |
| |
| valid := false |
| length := int64(-1) // valid if >= 0 |
| switch typ := optype(x.typ).(type) { |
| case *Basic: |
| if isString(typ) { |
| valid = true |
| if x.mode == constant_ { |
| length = int64(len(constant.StringVal(x.val))) |
| } |
| // an indexed string always yields a byte value |
| // (not a constant) even if the string and the |
| // index are constant |
| x.mode = value |
| x.typ = universeByte // use 'byte' name |
| } |
| |
| case *Array: |
| valid = true |
| length = typ.len |
| if x.mode != variable { |
| x.mode = value |
| } |
| x.typ = typ.elem |
| |
| case *Pointer: |
| if typ := asArray(typ.base); typ != nil { |
| valid = true |
| length = typ.len |
| x.mode = variable |
| x.typ = typ.elem |
| } |
| |
| case *Slice: |
| valid = true |
| x.mode = variable |
| x.typ = typ.elem |
| |
| case *Map: |
| index := check.singleIndex(e) |
| if index == nil { |
| x.mode = invalid |
| return |
| } |
| var key operand |
| check.expr(&key, index) |
| check.assignment(&key, typ.key, "map index") |
| // ok to continue even if indexing failed - map element type is known |
| x.mode = mapindex |
| x.typ = typ.elem |
| x.expr = e |
| return |
| |
| case *_Sum: |
| // A sum type can be indexed if all of the sum's types |
| // support indexing and have the same index and element |
| // type. Special rules apply for maps in the sum type. |
| var tkey, telem Type // key is for map types only |
| nmaps := 0 // number of map types in sum type |
| if typ.is(func(t Type) bool { |
| var e Type |
| switch t := under(t).(type) { |
| case *Basic: |
| if isString(t) { |
| e = universeByte |
| } |
| case *Array: |
| e = t.elem |
| case *Pointer: |
| if t := asArray(t.base); t != nil { |
| e = t.elem |
| } |
| case *Slice: |
| e = t.elem |
| case *Map: |
| // If there are multiple maps in the sum type, |
| // they must have identical key types. |
| // TODO(gri) We may be able to relax this rule |
| // but it becomes complicated very quickly. |
| if tkey != nil && !Identical(t.key, tkey) { |
| return false |
| } |
| tkey = t.key |
| e = t.elem |
| nmaps++ |
| case *_TypeParam: |
| check.errorf(x, 0, "type of %s contains a type parameter - cannot index (implementation restriction)", x) |
| case *instance: |
| panic("unimplemented") |
| } |
| if e == nil || telem != nil && !Identical(e, telem) { |
| return false |
| } |
| telem = e |
| return true |
| }) { |
| // If there are maps, the index expression must be assignable |
| // to the map key type (as for simple map index expressions). |
| if nmaps > 0 { |
| index := check.singleIndex(e) |
| if index == nil { |
| x.mode = invalid |
| return |
| } |
| var key operand |
| check.expr(&key, index) |
| check.assignment(&key, tkey, "map index") |
| // ok to continue even if indexing failed - map element type is known |
| |
| // If there are only maps, we are done. |
| if nmaps == len(typ.types) { |
| x.mode = mapindex |
| x.typ = telem |
| x.expr = e |
| return |
| } |
| |
| // Otherwise we have mix of maps and other types. For |
| // now we require that the map key be an integer type. |
| // TODO(gri) This is probably not good enough. |
| valid = isInteger(tkey) |
| // avoid 2nd indexing error if indexing failed above |
| if !valid && key.mode == invalid { |
| x.mode = invalid |
| return |
| } |
| x.mode = value // map index expressions are not addressable |
| } else { |
| // no maps |
| valid = true |
| x.mode = variable |
| } |
| x.typ = telem |
| } |
| } |
| |
| if !valid { |
| check.invalidOp(x, _NonIndexableOperand, "cannot index %s", x) |
| x.mode = invalid |
| return |
| } |
| |
| index := check.singleIndex(e) |
| if index == nil { |
| x.mode = invalid |
| return |
| } |
| |
| // In pathological (invalid) cases (e.g.: type T1 [][[]T1{}[0][0]]T0) |
| // the element type may be accessed before it's set. Make sure we have |
| // a valid type. |
| if x.typ == nil { |
| x.typ = Typ[Invalid] |
| } |
| |
| check.index(index, length) |
| return false |
| } |
| |
| func (check *Checker) sliceExpr(x *operand, e *ast.SliceExpr) { |
| check.expr(x, e.X) |
| if x.mode == invalid { |
| check.use(e.Low, e.High, e.Max) |
| return |
| } |
| |
| valid := false |
| length := int64(-1) // valid if >= 0 |
| switch typ := optype(x.typ).(type) { |
| case *Basic: |
| if isString(typ) { |
| if e.Slice3 { |
| check.invalidOp(x, _InvalidSliceExpr, "3-index slice of string") |
| x.mode = invalid |
| return |
| } |
| valid = true |
| if x.mode == constant_ { |
| length = int64(len(constant.StringVal(x.val))) |
| } |
| // spec: "For untyped string operands the result |
| // is a non-constant value of type string." |
| if typ.kind == UntypedString { |
| x.typ = Typ[String] |
| } |
| } |
| |
| case *Array: |
| valid = true |
| length = typ.len |
| if x.mode != variable { |
| check.invalidOp(x, _NonSliceableOperand, "cannot slice %s (value not addressable)", x) |
| x.mode = invalid |
| return |
| } |
| x.typ = &Slice{elem: typ.elem} |
| |
| case *Pointer: |
| if typ := asArray(typ.base); typ != nil { |
| valid = true |
| length = typ.len |
| x.typ = &Slice{elem: typ.elem} |
| } |
| |
| case *Slice: |
| valid = true |
| // x.typ doesn't change |
| |
| case *_Sum, *_TypeParam: |
| check.errorf(x, 0, "generic slice expressions not yet implemented") |
| x.mode = invalid |
| return |
| } |
| |
| if !valid { |
| check.invalidOp(x, _NonSliceableOperand, "cannot slice %s", x) |
| x.mode = invalid |
| return |
| } |
| |
| x.mode = value |
| |
| // spec: "Only the first index may be omitted; it defaults to 0." |
| if e.Slice3 && (e.High == nil || e.Max == nil) { |
| check.invalidAST(inNode(e, e.Rbrack), "2nd and 3rd index required in 3-index slice") |
| x.mode = invalid |
| return |
| } |
| |
| // check indices |
| var ind [3]int64 |
| for i, expr := range []ast.Expr{e.Low, e.High, e.Max} { |
| x := int64(-1) |
| switch { |
| case expr != nil: |
| // The "capacity" is only known statically for strings, arrays, |
| // and pointers to arrays, and it is the same as the length for |
| // those types. |
| max := int64(-1) |
| if length >= 0 { |
| max = length + 1 |
| } |
| if _, v := check.index(expr, max); v >= 0 { |
| x = v |
| } |
| case i == 0: |
| // default is 0 for the first index |
| x = 0 |
| case length >= 0: |
| // default is length (== capacity) otherwise |
| x = length |
| } |
| ind[i] = x |
| } |
| |
| // constant indices must be in range |
| // (check.index already checks that existing indices >= 0) |
| L: |
| for i, x := range ind[:len(ind)-1] { |
| if x > 0 { |
| for _, y := range ind[i+1:] { |
| if y >= 0 && x > y { |
| check.errorf(inNode(e, e.Rbrack), _SwappedSliceIndices, "swapped slice indices: %d > %d", x, y) |
| break L // only report one error, ok to continue |
| } |
| } |
| } |
| } |
| } |
| |
| // singleIndex returns the (single) index from the index expression e. |
| // If the index is missing, or if there are multiple indices, an error |
| // is reported and the result is nil. |
| func (check *Checker) singleIndex(e *ast.IndexExpr) ast.Expr { |
| index := e.Index |
| if index == nil { |
| check.invalidAST(e, "missing index for %s", e) |
| return nil |
| } |
| |
| indexes := typeparams.UnpackExpr(index) |
| if len(indexes) == 0 { |
| check.invalidAST(index, "index expression %v with 0 indices", index) |
| return nil |
| } |
| if len(indexes) > 1 { |
| // TODO(rFindley) should this get a distinct error code? |
| check.invalidOp(indexes[1], _InvalidIndex, "more than one index") |
| } |
| return indexes[0] |
| } |
| |
| // index checks an index expression for validity. |
| // If max >= 0, it is the upper bound for index. |
| // If the result typ is != Typ[Invalid], index is valid and typ is its (possibly named) integer type. |
| // If the result val >= 0, index is valid and val is its constant int value. |
| func (check *Checker) index(index ast.Expr, max int64) (typ Type, val int64) { |
| typ = Typ[Invalid] |
| val = -1 |
| |
| var x operand |
| check.expr(&x, index) |
| if !check.isValidIndex(&x, _InvalidIndex, "index", false) { |
| return |
| } |
| |
| if x.mode != constant_ { |
| return x.typ, -1 |
| } |
| |
| if x.val.Kind() == constant.Unknown { |
| return |
| } |
| |
| v, ok := constant.Int64Val(x.val) |
| assert(ok) |
| if max >= 0 && v >= max { |
| check.invalidArg(&x, _InvalidIndex, "index %s is out of bounds", &x) |
| return |
| } |
| |
| // 0 <= v [ && v < max ] |
| return x.typ, v |
| } |
| |
| func (check *Checker) isValidIndex(x *operand, code errorCode, what string, allowNegative bool) bool { |
| if x.mode == invalid { |
| return false |
| } |
| |
| // spec: "a constant index that is untyped is given type int" |
| check.convertUntyped(x, Typ[Int]) |
| if x.mode == invalid { |
| return false |
| } |
| |
| // spec: "the index x must be of integer type or an untyped constant" |
| if !isInteger(x.typ) { |
| check.invalidArg(x, code, "%s %s must be integer", what, x) |
| return false |
| } |
| |
| if x.mode == constant_ { |
| // spec: "a constant index must be non-negative ..." |
| if !allowNegative && constant.Sign(x.val) < 0 { |
| check.invalidArg(x, code, "%s %s must not be negative", what, x) |
| return false |
| } |
| |
| // spec: "... and representable by a value of type int" |
| if !representableConst(x.val, check, Typ[Int], &x.val) { |
| check.invalidArg(x, code, "%s %s overflows int", what, x) |
| return false |
| } |
| } |
| |
| return true |
| } |
| |
| // indexElts checks the elements (elts) of an array or slice composite literal |
| // against the literal's element type (typ), and the element indices against |
| // the literal length if known (length >= 0). It returns the length of the |
| // literal (maximum index value + 1). |
| // |
| func (check *Checker) indexedElts(elts []ast.Expr, typ Type, length int64) int64 { |
| visited := make(map[int64]bool, len(elts)) |
| var index, max int64 |
| for _, e := range elts { |
| // determine and check index |
| validIndex := false |
| eval := e |
| if kv, _ := e.(*ast.KeyValueExpr); kv != nil { |
| if typ, i := check.index(kv.Key, length); typ != Typ[Invalid] { |
| if i >= 0 { |
| index = i |
| validIndex = true |
| } else { |
| check.errorf(e, _InvalidLitIndex, "index %s must be integer constant", kv.Key) |
| } |
| } |
| eval = kv.Value |
| } else if length >= 0 && index >= length { |
| check.errorf(e, _OversizeArrayLit, "index %d is out of bounds (>= %d)", index, length) |
| } else { |
| validIndex = true |
| } |
| |
| // if we have a valid index, check for duplicate entries |
| if validIndex { |
| if visited[index] { |
| check.errorf(e, _DuplicateLitKey, "duplicate index %d in array or slice literal", index) |
| } |
| visited[index] = true |
| } |
| index++ |
| if index > max { |
| max = index |
| } |
| |
| // check element against composite literal element type |
| var x operand |
| check.exprWithHint(&x, eval, typ) |
| check.assignment(&x, typ, "array or slice literal") |
| } |
| return max |
| } |