[dev.cc] cmd/internal/gc, cmd/new6g etc: convert from cmd/gc, cmd/6g etc

First draft of converted Go compiler, using rsc.io/c2go rev 83d795a.

Change-Id: I29f4c7010de07d2ff1947bbca9865879d83c32c3
Reviewed-on: https://go-review.googlesource.com/4851
Reviewed-by: Rob Pike <r@golang.org>
diff --git a/src/cmd/internal/gc/reflect.go b/src/cmd/internal/gc/reflect.go
new file mode 100644
index 0000000..4be0f1d
--- /dev/null
+++ b/src/cmd/internal/gc/reflect.go
@@ -0,0 +1,1746 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package gc
+
+import (
+	"cmd/internal/obj"
+	"fmt"
+)
+
+/*
+ * runtime interface and reflection data structures
+ */
+var signatlist *NodeList
+
+func sigcmp(a *Sig, b *Sig) int {
+	var i int
+
+	i = stringsCompare(a.name, b.name)
+	if i != 0 {
+		return i
+	}
+	if a.pkg == b.pkg {
+		return 0
+	}
+	if a.pkg == nil {
+		return -1
+	}
+	if b.pkg == nil {
+		return +1
+	}
+	return stringsCompare(a.pkg.Path.S, b.pkg.Path.S)
+}
+
+func lsort(l *Sig, f func(*Sig, *Sig) int) *Sig {
+	var l1 *Sig
+	var l2 *Sig
+	var le *Sig
+
+	if l == nil || l.link == nil {
+		return l
+	}
+
+	l1 = l
+	l2 = l
+	for {
+		l2 = l2.link
+		if l2 == nil {
+			break
+		}
+		l2 = l2.link
+		if l2 == nil {
+			break
+		}
+		l1 = l1.link
+	}
+
+	l2 = l1.link
+	l1.link = nil
+	l1 = lsort(l, f)
+	l2 = lsort(l2, f)
+
+	/* set up lead element */
+	if f(l1, l2) < 0 {
+		l = l1
+		l1 = l1.link
+	} else {
+		l = l2
+		l2 = l2.link
+	}
+
+	le = l
+
+	for {
+		if l1 == nil {
+			for l2 != nil {
+				le.link = l2
+				le = l2
+				l2 = l2.link
+			}
+
+			le.link = nil
+			break
+		}
+
+		if l2 == nil {
+			for l1 != nil {
+				le.link = l1
+				le = l1
+				l1 = l1.link
+			}
+
+			break
+		}
+
+		if f(l1, l2) < 0 {
+			le.link = l1
+			le = l1
+			l1 = l1.link
+		} else {
+			le.link = l2
+			le = l2
+			l2 = l2.link
+		}
+	}
+
+	le.link = nil
+	return l
+}
+
+// Builds a type respresenting a Bucket structure for
+// the given map type.  This type is not visible to users -
+// we include only enough information to generate a correct GC
+// program for it.
+// Make sure this stays in sync with ../../runtime/hashmap.c!
+const (
+	BUCKETSIZE = 8
+	MAXKEYSIZE = 128
+	MAXVALSIZE = 128
+)
+
+func makefield(name string, t *Type) *Type {
+	var f *Type
+
+	f = typ(TFIELD)
+	f.Type = t
+	f.Sym = new(Sym)
+	f.Sym.Name = name
+	return f
+}
+
+func mapbucket(t *Type) *Type {
+	var keytype *Type
+	var valtype *Type
+	var bucket *Type
+	var arr *Type
+	var field [4]*Type
+	var n int32
+
+	if t.Bucket != nil {
+		return t.Bucket
+	}
+
+	bucket = typ(TSTRUCT)
+	keytype = t.Down
+	valtype = t.Type
+	dowidth(keytype)
+	dowidth(valtype)
+	if keytype.Width > MAXKEYSIZE {
+		keytype = Ptrto(keytype)
+	}
+	if valtype.Width > MAXVALSIZE {
+		valtype = Ptrto(valtype)
+	}
+
+	// The first field is: uint8 topbits[BUCKETSIZE].
+	arr = typ(TARRAY)
+
+	arr.Type = Types[TUINT8]
+	arr.Bound = BUCKETSIZE
+	field[0] = makefield("topbits", arr)
+	arr = typ(TARRAY)
+	arr.Type = keytype
+	arr.Bound = BUCKETSIZE
+	field[1] = makefield("keys", arr)
+	arr = typ(TARRAY)
+	arr.Type = valtype
+	arr.Bound = BUCKETSIZE
+	field[2] = makefield("values", arr)
+	field[3] = makefield("overflow", Ptrto(bucket))
+
+	// link up fields
+	bucket.Noalg = 1
+
+	bucket.Local = t.Local
+	bucket.Type = field[0]
+	for n = 0; n < int32(len(field)-1); n++ {
+		field[n].Down = field[n+1]
+	}
+	field[len(field)-1].Down = nil
+	dowidth(bucket)
+
+	// Pad to the native integer alignment.
+	// This is usually the same as widthptr; the exception (as usual) is amd64p32.
+	if Widthreg > Widthptr {
+		bucket.Width += int64(Widthreg) - int64(Widthptr)
+	}
+
+	// See comment on hmap.overflow in ../../runtime/hashmap.go.
+	if !haspointers(t.Type) && !haspointers(t.Down) {
+		bucket.Haspointers = 1 // no pointers
+	}
+
+	t.Bucket = bucket
+
+	bucket.Map = t
+	return bucket
+}
+
+// Builds a type representing a Hmap structure for the given map type.
+// Make sure this stays in sync with ../../runtime/hashmap.go!
+func hmap(t *Type) *Type {
+	var h *Type
+	var bucket *Type
+	var field [8]*Type
+	var n int32
+
+	if t.Hmap != nil {
+		return t.Hmap
+	}
+
+	bucket = mapbucket(t)
+	field[0] = makefield("count", Types[TINT])
+	field[1] = makefield("flags", Types[TUINT8])
+	field[2] = makefield("B", Types[TUINT8])
+	field[3] = makefield("hash0", Types[TUINT32])
+	field[4] = makefield("buckets", Ptrto(bucket))
+	field[5] = makefield("oldbuckets", Ptrto(bucket))
+	field[6] = makefield("nevacuate", Types[TUINTPTR])
+	field[7] = makefield("overflow", Types[TUNSAFEPTR])
+
+	h = typ(TSTRUCT)
+	h.Noalg = 1
+	h.Local = t.Local
+	h.Type = field[0]
+	for n = 0; n < int32(len(field)-1); n++ {
+		field[n].Down = field[n+1]
+	}
+	field[len(field)-1].Down = nil
+	dowidth(h)
+	t.Hmap = h
+	h.Map = t
+	return h
+}
+
+func hiter(t *Type) *Type {
+	var n int32
+	var field [12]*Type
+	var i *Type
+
+	if t.Hiter != nil {
+		return t.Hiter
+	}
+
+	// build a struct:
+	// hash_iter {
+	//    key *Key
+	//    val *Value
+	//    t *MapType
+	//    h *Hmap
+	//    buckets *Bucket
+	//    bptr *Bucket
+	//    overflow0 unsafe.Pointer
+	//    overflow1 unsafe.Pointer
+	//    startBucket uintptr
+	//    stuff uintptr
+	//    bucket uintptr
+	//    checkBucket uintptr
+	// }
+	// must match ../../runtime/hashmap.c:hash_iter.
+	field[0] = makefield("key", Ptrto(t.Down))
+
+	field[1] = makefield("val", Ptrto(t.Type))
+	field[2] = makefield("t", Ptrto(Types[TUINT8]))
+	field[3] = makefield("h", Ptrto(hmap(t)))
+	field[4] = makefield("buckets", Ptrto(mapbucket(t)))
+	field[5] = makefield("bptr", Ptrto(mapbucket(t)))
+	field[6] = makefield("overflow0", Types[TUNSAFEPTR])
+	field[7] = makefield("overflow1", Types[TUNSAFEPTR])
+	field[8] = makefield("startBucket", Types[TUINTPTR])
+	field[9] = makefield("stuff", Types[TUINTPTR]) // offset+wrapped+B+I
+	field[10] = makefield("bucket", Types[TUINTPTR])
+	field[11] = makefield("checkBucket", Types[TUINTPTR])
+
+	// build iterator struct holding the above fields
+	i = typ(TSTRUCT)
+
+	i.Noalg = 1
+	i.Type = field[0]
+	for n = 0; n < int32(len(field)-1); n++ {
+		field[n].Down = field[n+1]
+	}
+	field[len(field)-1].Down = nil
+	dowidth(i)
+	if i.Width != int64(12*Widthptr) {
+		Yyerror("hash_iter size not correct %d %d", i.Width, 12*Widthptr)
+	}
+	t.Hiter = i
+	i.Map = t
+	return i
+}
+
+/*
+ * f is method type, with receiver.
+ * return function type, receiver as first argument (or not).
+ */
+func methodfunc(f *Type, receiver *Type) *Type {
+	var in *NodeList
+	var out *NodeList
+	var d *Node
+	var t *Type
+
+	in = nil
+	if receiver != nil {
+		d = Nod(ODCLFIELD, nil, nil)
+		d.Type = receiver
+		in = list(in, d)
+	}
+
+	for t = getinargx(f).Type; t != nil; t = t.Down {
+		d = Nod(ODCLFIELD, nil, nil)
+		d.Type = t.Type
+		d.Isddd = t.Isddd
+		in = list(in, d)
+	}
+
+	out = nil
+	for t = getoutargx(f).Type; t != nil; t = t.Down {
+		d = Nod(ODCLFIELD, nil, nil)
+		d.Type = t.Type
+		out = list(out, d)
+	}
+
+	t = functype(nil, in, out)
+	if f.Nname != nil {
+		// Link to name of original method function.
+		t.Nname = f.Nname
+	}
+
+	return t
+}
+
+/*
+ * return methods of non-interface type t, sorted by name.
+ * generates stub functions as needed.
+ */
+func methods(t *Type) *Sig {
+	var f *Type
+	var mt *Type
+	var it *Type
+	var this *Type
+	var a *Sig
+	var b *Sig
+	var method *Sym
+
+	// method type
+	mt = methtype(t, 0)
+
+	if mt == nil {
+		return nil
+	}
+	expandmeth(mt)
+
+	// type stored in interface word
+	it = t
+
+	if !(isdirectiface(it) != 0) {
+		it = Ptrto(t)
+	}
+
+	// make list of methods for t,
+	// generating code if necessary.
+	a = nil
+
+	for f = mt.Xmethod; f != nil; f = f.Down {
+		if f.Etype != TFIELD {
+			Fatal("methods: not field %v", Tconv(f, 0))
+		}
+		if f.Type.Etype != TFUNC || f.Type.Thistuple == 0 {
+			Fatal("non-method on %v method %v %v\n", Tconv(mt, 0), Sconv(f.Sym, 0), Tconv(f, 0))
+		}
+		if !(getthisx(f.Type).Type != nil) {
+			Fatal("receiver with no type on %v method %v %v\n", Tconv(mt, 0), Sconv(f.Sym, 0), Tconv(f, 0))
+		}
+		if f.Nointerface != 0 {
+			continue
+		}
+
+		method = f.Sym
+		if method == nil {
+			continue
+		}
+
+		// get receiver type for this particular method.
+		// if pointer receiver but non-pointer t and
+		// this is not an embedded pointer inside a struct,
+		// method does not apply.
+		this = getthisx(f.Type).Type.Type
+
+		if Isptr[this.Etype] != 0 && this.Type == t {
+			continue
+		}
+		if Isptr[this.Etype] != 0 && !(Isptr[t.Etype] != 0) && f.Embedded != 2 && !(isifacemethod(f.Type) != 0) {
+			continue
+		}
+
+		b = new(Sig)
+		b.link = a
+		a = b
+
+		a.name = method.Name
+		if !exportname(method.Name) {
+			if method.Pkg == nil {
+				Fatal("methods: missing package")
+			}
+			a.pkg = method.Pkg
+		}
+
+		a.isym = methodsym(method, it, 1)
+		a.tsym = methodsym(method, t, 0)
+		a.type_ = methodfunc(f.Type, t)
+		a.mtype = methodfunc(f.Type, nil)
+
+		if !(a.isym.Flags&SymSiggen != 0) {
+			a.isym.Flags |= SymSiggen
+			if !Eqtype(this, it) || this.Width < Types[Tptr].Width {
+				compiling_wrappers = 1
+				genwrapper(it, f, a.isym, 1)
+				compiling_wrappers = 0
+			}
+		}
+
+		if !(a.tsym.Flags&SymSiggen != 0) {
+			a.tsym.Flags |= SymSiggen
+			if !Eqtype(this, t) {
+				compiling_wrappers = 1
+				genwrapper(t, f, a.tsym, 0)
+				compiling_wrappers = 0
+			}
+		}
+	}
+
+	return lsort(a, sigcmp)
+}
+
+/*
+ * return methods of interface type t, sorted by name.
+ */
+func imethods(t *Type) *Sig {
+	var a *Sig
+	var all *Sig
+	var last *Sig
+	var f *Type
+	var method *Sym
+	var isym *Sym
+
+	all = nil
+	last = nil
+	for f = t.Type; f != nil; f = f.Down {
+		if f.Etype != TFIELD {
+			Fatal("imethods: not field")
+		}
+		if f.Type.Etype != TFUNC || f.Sym == nil {
+			continue
+		}
+		method = f.Sym
+		a = new(Sig)
+		a.name = method.Name
+		if !exportname(method.Name) {
+			if method.Pkg == nil {
+				Fatal("imethods: missing package")
+			}
+			a.pkg = method.Pkg
+		}
+
+		a.mtype = f.Type
+		a.offset = 0
+		a.type_ = methodfunc(f.Type, nil)
+
+		if last != nil && sigcmp(last, a) >= 0 {
+			Fatal("sigcmp vs sortinter %s %s", last.name, a.name)
+		}
+		if last == nil {
+			all = a
+		} else {
+			last.link = a
+		}
+		last = a
+
+		// Compiler can only refer to wrappers for non-blank methods.
+		if isblanksym(method) {
+			continue
+		}
+
+		// NOTE(rsc): Perhaps an oversight that
+		// IfaceType.Method is not in the reflect data.
+		// Generate the method body, so that compiled
+		// code can refer to it.
+		isym = methodsym(method, t, 0)
+
+		if !(isym.Flags&SymSiggen != 0) {
+			isym.Flags |= SymSiggen
+			genwrapper(t, f, isym, 0)
+		}
+	}
+
+	return all
+}
+
+var dimportpath_gopkg *Pkg
+
+func dimportpath(p *Pkg) {
+	var nam string
+	var n *Node
+
+	if p.Pathsym != nil {
+		return
+	}
+
+	if dimportpath_gopkg == nil {
+		dimportpath_gopkg = mkpkg(newstrlit("go"))
+		dimportpath_gopkg.Name = "go"
+	}
+
+	nam = fmt.Sprintf("importpath.%s.", p.Prefix)
+
+	n = Nod(ONAME, nil, nil)
+	n.Sym = Pkglookup(nam, dimportpath_gopkg)
+
+	n.Class = PEXTERN
+	n.Xoffset = 0
+	p.Pathsym = n.Sym
+
+	gdatastring(n, p.Path)
+	ggloblsym(n.Sym, int32(Types[TSTRING].Width), obj.DUPOK|obj.RODATA)
+}
+
+func dgopkgpath(s *Sym, ot int, pkg *Pkg) int {
+	if pkg == nil {
+		return dgostringptr(s, ot, "")
+	}
+
+	// Emit reference to go.importpath.""., which 6l will
+	// rewrite using the correct import path.  Every package
+	// that imports this one directly defines the symbol.
+	if pkg == localpkg {
+		var ns *Sym
+
+		if ns == nil {
+			ns = Pkglookup("importpath.\"\".", mkpkg(newstrlit("go")))
+		}
+		return dsymptr(s, ot, ns, 0)
+	}
+
+	dimportpath(pkg)
+	return dsymptr(s, ot, pkg.Pathsym, 0)
+}
+
+/*
+ * uncommonType
+ * ../../runtime/type.go:/uncommonType
+ */
+func dextratype(sym *Sym, off int, t *Type, ptroff int) int {
+	var ot int
+	var n int
+	var s *Sym
+	var a *Sig
+	var m *Sig
+
+	m = methods(t)
+	if t.Sym == nil && m == nil {
+		return off
+	}
+
+	// fill in *extraType pointer in header
+	off = int(Rnd(int64(off), int64(Widthptr)))
+
+	dsymptr(sym, ptroff, sym, off)
+
+	n = 0
+	for a = m; a != nil; a = a.link {
+		dtypesym(a.type_)
+		n++
+	}
+
+	ot = off
+	s = sym
+	if t.Sym != nil {
+		ot = dgostringptr(s, ot, t.Sym.Name)
+		if t != Types[t.Etype] && t != errortype {
+			ot = dgopkgpath(s, ot, t.Sym.Pkg)
+		} else {
+			ot = dgostringptr(s, ot, "")
+		}
+	} else {
+		ot = dgostringptr(s, ot, "")
+		ot = dgostringptr(s, ot, "")
+	}
+
+	// slice header
+	ot = dsymptr(s, ot, s, ot+Widthptr+2*Widthint)
+
+	ot = duintxx(s, ot, uint64(n), Widthint)
+	ot = duintxx(s, ot, uint64(n), Widthint)
+
+	// methods
+	for a = m; a != nil; a = a.link {
+		// method
+		// ../../runtime/type.go:/method
+		ot = dgostringptr(s, ot, a.name)
+
+		ot = dgopkgpath(s, ot, a.pkg)
+		ot = dsymptr(s, ot, dtypesym(a.mtype), 0)
+		ot = dsymptr(s, ot, dtypesym(a.type_), 0)
+		if a.isym != nil {
+			ot = dsymptr(s, ot, a.isym, 0)
+		} else {
+			ot = duintptr(s, ot, 0)
+		}
+		if a.tsym != nil {
+			ot = dsymptr(s, ot, a.tsym, 0)
+		} else {
+			ot = duintptr(s, ot, 0)
+		}
+	}
+
+	return ot
+}
+
+var kinds = []int{
+	TINT:        obj.KindInt,
+	TUINT:       obj.KindUint,
+	TINT8:       obj.KindInt8,
+	TUINT8:      obj.KindUint8,
+	TINT16:      obj.KindInt16,
+	TUINT16:     obj.KindUint16,
+	TINT32:      obj.KindInt32,
+	TUINT32:     obj.KindUint32,
+	TINT64:      obj.KindInt64,
+	TUINT64:     obj.KindUint64,
+	TUINTPTR:    obj.KindUintptr,
+	TFLOAT32:    obj.KindFloat32,
+	TFLOAT64:    obj.KindFloat64,
+	TBOOL:       obj.KindBool,
+	TSTRING:     obj.KindString,
+	TPTR32:      obj.KindPtr,
+	TPTR64:      obj.KindPtr,
+	TSTRUCT:     obj.KindStruct,
+	TINTER:      obj.KindInterface,
+	TCHAN:       obj.KindChan,
+	TMAP:        obj.KindMap,
+	TARRAY:      obj.KindArray,
+	TFUNC:       obj.KindFunc,
+	TCOMPLEX64:  obj.KindComplex64,
+	TCOMPLEX128: obj.KindComplex128,
+	TUNSAFEPTR:  obj.KindUnsafePointer,
+}
+
+func haspointers(t *Type) bool {
+	var t1 *Type
+	var ret int
+
+	if t.Haspointers != 0 {
+		return t.Haspointers-1 != 0
+	}
+
+	switch t.Etype {
+	case TINT,
+		TUINT,
+		TINT8,
+		TUINT8,
+		TINT16,
+		TUINT16,
+		TINT32,
+		TUINT32,
+		TINT64,
+		TUINT64,
+		TUINTPTR,
+		TFLOAT32,
+		TFLOAT64,
+		TCOMPLEX64,
+		TCOMPLEX128,
+		TBOOL:
+		ret = 0
+
+	case TARRAY:
+		if t.Bound < 0 { // slice
+			ret = 1
+			break
+		}
+
+		if t.Bound == 0 { // empty array
+			ret = 0
+			break
+		}
+
+		ret = bool2int(haspointers(t.Type))
+
+	case TSTRUCT:
+		ret = 0
+		for t1 = t.Type; t1 != nil; t1 = t1.Down {
+			if haspointers(t1.Type) {
+				ret = 1
+				break
+			}
+		}
+
+	case TSTRING,
+		TPTR32,
+		TPTR64,
+		TUNSAFEPTR,
+		TINTER,
+		TCHAN,
+		TMAP,
+		TFUNC:
+		fallthrough
+	default:
+		ret = 1
+	}
+
+	t.Haspointers = uint8(1 + ret)
+	return ret != 0
+}
+
+/*
+ * commonType
+ * ../../runtime/type.go:/commonType
+ */
+
+var dcommontype_algarray *Sym
+
+func dcommontype(s *Sym, ot int, t *Type) int {
+	var i int
+	var alg int
+	var sizeofAlg int
+	var gcprog int
+	var sptr *Sym
+	var algsym *Sym
+	var zero *Sym
+	var gcprog0 *Sym
+	var gcprog1 *Sym
+	var sbits *Sym
+	var gcmask [16]uint8
+	var x1 uint64
+	var x2 uint64
+	var p string
+
+	if ot != 0 {
+		Fatal("dcommontype %d", ot)
+	}
+
+	sizeofAlg = 2 * Widthptr
+	if dcommontype_algarray == nil {
+		dcommontype_algarray = Pkglookup("algarray", Runtimepkg)
+	}
+	dowidth(t)
+	alg = algtype(t)
+	algsym = nil
+	if alg < 0 || alg == AMEM {
+		algsym = dalgsym(t)
+	}
+
+	if t.Sym != nil && !(Isptr[t.Etype] != 0) {
+		sptr = dtypesym(Ptrto(t))
+	} else {
+		sptr = weaktypesym(Ptrto(t))
+	}
+
+	// All (non-reflect-allocated) Types share the same zero object.
+	// Each place in the compiler where a pointer to the zero object
+	// might be returned by a runtime call (map access return value,
+	// 2-arg type cast) declares the size of the zerovalue it needs.
+	// The linker magically takes the max of all the sizes.
+	zero = Pkglookup("zerovalue", Runtimepkg)
+
+	// We use size 0 here so we get the pointer to the zero value,
+	// but don't allocate space for the zero value unless we need it.
+	// TODO: how do we get this symbol into bss?  We really want
+	// a read-only bss, but I don't think such a thing exists.
+
+	// ../../pkg/reflect/type.go:/^type.commonType
+	// actual type structure
+	//	type commonType struct {
+	//		size          uintptr
+	//		hash          uint32
+	//		_             uint8
+	//		align         uint8
+	//		fieldAlign    uint8
+	//		kind          uint8
+	//		alg           unsafe.Pointer
+	//		gc            unsafe.Pointer
+	//		string        *string
+	//		*extraType
+	//		ptrToThis     *Type
+	//		zero          unsafe.Pointer
+	//	}
+	ot = duintptr(s, ot, uint64(t.Width))
+
+	ot = duint32(s, ot, typehash(t))
+	ot = duint8(s, ot, 0) // unused
+
+	// runtime (and common sense) expects alignment to be a power of two.
+	i = int(t.Align)
+
+	if i == 0 {
+		i = 1
+	}
+	if i&(i-1) != 0 {
+		Fatal("invalid alignment %d for %v", t.Align, Tconv(t, 0))
+	}
+	ot = duint8(s, ot, t.Align) // align
+	ot = duint8(s, ot, t.Align) // fieldAlign
+
+	gcprog = usegcprog(t)
+
+	i = kinds[t.Etype]
+	if t.Etype == TARRAY && t.Bound < 0 {
+		i = obj.KindSlice
+	}
+	if !haspointers(t) {
+		i |= obj.KindNoPointers
+	}
+	if isdirectiface(t) != 0 {
+		i |= obj.KindDirectIface
+	}
+	if gcprog != 0 {
+		i |= obj.KindGCProg
+	}
+	ot = duint8(s, ot, uint8(i)) // kind
+	if algsym == nil {
+		ot = dsymptr(s, ot, dcommontype_algarray, alg*sizeofAlg)
+	} else {
+		ot = dsymptr(s, ot, algsym, 0)
+	}
+
+	// gc
+	if gcprog != 0 {
+		gengcprog(t, &gcprog0, &gcprog1)
+		if gcprog0 != nil {
+			ot = dsymptr(s, ot, gcprog0, 0)
+		} else {
+			ot = duintptr(s, ot, 0)
+		}
+		ot = dsymptr(s, ot, gcprog1, 0)
+	} else {
+		gengcmask(t, gcmask[:])
+		x1 = 0
+		for i = 0; i < 8; i++ {
+			x1 = x1<<8 | uint64(gcmask[i])
+		}
+		if Widthptr == 4 {
+			p = fmt.Sprintf("gcbits.0x%016x", x1)
+		} else {
+			x2 = 0
+			for i = 0; i < 8; i++ {
+				x2 = x2<<8 | uint64(gcmask[i+8])
+			}
+			p = fmt.Sprintf("gcbits.0x%016x%016x", x1, x2)
+		}
+
+		sbits = Pkglookup(p, Runtimepkg)
+		if sbits.Flags&SymUniq == 0 {
+			sbits.Flags |= SymUniq
+			for i = 0; i < 2*Widthptr; i++ {
+				duint8(sbits, i, gcmask[i])
+			}
+			ggloblsym(sbits, 2*int32(Widthptr), obj.DUPOK|obj.RODATA)
+		}
+
+		ot = dsymptr(s, ot, sbits, 0)
+		ot = duintptr(s, ot, 0)
+	}
+
+	p = fmt.Sprintf("%v", Tconv(t, obj.FmtLeft|obj.FmtUnsigned))
+
+	//print("dcommontype: %s\n", p);
+	ot = dgostringptr(s, ot, p) // string
+
+	// skip pointer to extraType,
+	// which follows the rest of this type structure.
+	// caller will fill in if needed.
+	// otherwise linker will assume 0.
+	ot += Widthptr
+
+	ot = dsymptr(s, ot, sptr, 0) // ptrto type
+	ot = dsymptr(s, ot, zero, 0) // ptr to zero value
+	return ot
+}
+
+func typesym(t *Type) *Sym {
+	var p string
+	var s *Sym
+
+	p = fmt.Sprintf("%v", Tconv(t, obj.FmtLeft))
+	s = Pkglookup(p, typepkg)
+
+	//print("typesym: %s -> %+S\n", p, s);
+
+	return s
+}
+
+func tracksym(t *Type) *Sym {
+	var p string
+	var s *Sym
+
+	p = fmt.Sprintf("%v.%s", Tconv(t.Outer, obj.FmtLeft), t.Sym.Name)
+	s = Pkglookup(p, trackpkg)
+
+	return s
+}
+
+func typelinksym(t *Type) *Sym {
+	var p string
+	var s *Sym
+
+	// %-uT is what the generated Type's string field says.
+	// It uses (ambiguous) package names instead of import paths.
+	// %-T is the complete, unambiguous type name.
+	// We want the types to end up sorted by string field,
+	// so use that first in the name, and then add :%-T to
+	// disambiguate. The names are a little long but they are
+	// discarded by the linker and do not end up in the symbol
+	// table of the final binary.
+	p = fmt.Sprintf("%v/%v", Tconv(t, obj.FmtLeft|obj.FmtUnsigned), Tconv(t, obj.FmtLeft))
+
+	s = Pkglookup(p, typelinkpkg)
+
+	//print("typelinksym: %s -> %+S\n", p, s);
+
+	return s
+}
+
+func typesymprefix(prefix string, t *Type) *Sym {
+	var p string
+	var s *Sym
+
+	p = fmt.Sprintf("%s.%v", prefix, Tconv(t, obj.FmtLeft))
+	s = Pkglookup(p, typepkg)
+
+	//print("algsym: %s -> %+S\n", p, s);
+
+	return s
+}
+
+func typenamesym(t *Type) *Sym {
+	var s *Sym
+	var n *Node
+
+	if t == nil || (Isptr[t.Etype] != 0 && t.Type == nil) || isideal(t) != 0 {
+		Fatal("typename %v", Tconv(t, 0))
+	}
+	s = typesym(t)
+	if s.Def == nil {
+		n = Nod(ONAME, nil, nil)
+		n.Sym = s
+		n.Type = Types[TUINT8]
+		n.Addable = 1
+		n.Ullman = 1
+		n.Class = PEXTERN
+		n.Xoffset = 0
+		n.Typecheck = 1
+		s.Def = n
+
+		signatlist = list(signatlist, typenod(t))
+	}
+
+	return s.Def.Sym
+}
+
+func typename(t *Type) *Node {
+	var s *Sym
+	var n *Node
+
+	s = typenamesym(t)
+	n = Nod(OADDR, s.Def, nil)
+	n.Type = Ptrto(s.Def.Type)
+	n.Addable = 1
+	n.Ullman = 2
+	n.Typecheck = 1
+	return n
+}
+
+func weaktypesym(t *Type) *Sym {
+	var p string
+	var s *Sym
+
+	p = fmt.Sprintf("%v", Tconv(t, obj.FmtLeft))
+	s = Pkglookup(p, weaktypepkg)
+
+	//print("weaktypesym: %s -> %+S\n", p, s);
+
+	return s
+}
+
+/*
+ * Returns 1 if t has a reflexive equality operator.
+ * That is, if x==x for all x of type t.
+ */
+func isreflexive(t *Type) int {
+	var t1 *Type
+	switch t.Etype {
+	case TBOOL,
+		TINT,
+		TUINT,
+		TINT8,
+		TUINT8,
+		TINT16,
+		TUINT16,
+		TINT32,
+		TUINT32,
+		TINT64,
+		TUINT64,
+		TUINTPTR,
+		TPTR32,
+		TPTR64,
+		TUNSAFEPTR,
+		TSTRING,
+		TCHAN:
+		return 1
+
+	case TFLOAT32,
+		TFLOAT64,
+		TCOMPLEX64,
+		TCOMPLEX128,
+		TINTER:
+		return 0
+
+	case TARRAY:
+		if Isslice(t) != 0 {
+			Fatal("slice can't be a map key: %v", Tconv(t, 0))
+		}
+		return isreflexive(t.Type)
+
+	case TSTRUCT:
+		for t1 = t.Type; t1 != nil; t1 = t1.Down {
+			if !(isreflexive(t1.Type) != 0) {
+				return 0
+			}
+		}
+
+		return 1
+
+	default:
+		Fatal("bad type for map key: %v", Tconv(t, 0))
+		return 0
+	}
+}
+
+func dtypesym(t *Type) *Sym {
+	var ot int
+	var xt int
+	var n int
+	var isddd int
+	var dupok int
+	var s *Sym
+	var s1 *Sym
+	var s2 *Sym
+	var s3 *Sym
+	var s4 *Sym
+	var slink *Sym
+	var a *Sig
+	var m *Sig
+	var t1 *Type
+	var tbase *Type
+	var t2 *Type
+
+	// Replace byte, rune aliases with real type.
+	// They've been separate internally to make error messages
+	// better, but we have to merge them in the reflect tables.
+	if t == bytetype || t == runetype {
+		t = Types[t.Etype]
+	}
+
+	if isideal(t) != 0 {
+		Fatal("dtypesym %v", Tconv(t, 0))
+	}
+
+	s = typesym(t)
+	if s.Flags&SymSiggen != 0 {
+		return s
+	}
+	s.Flags |= SymSiggen
+
+	// special case (look for runtime below):
+	// when compiling package runtime,
+	// emit the type structures for int, float, etc.
+	tbase = t
+
+	if Isptr[t.Etype] != 0 && t.Sym == nil && t.Type.Sym != nil {
+		tbase = t.Type
+	}
+	dupok = 0
+	if tbase.Sym == nil {
+		dupok = obj.DUPOK
+	}
+
+	if compiling_runtime != 0 && (tbase == Types[tbase.Etype] || tbase == bytetype || tbase == runetype || tbase == errortype) { // int, float, etc
+		goto ok
+	}
+
+	// named types from other files are defined only by those files
+	if tbase.Sym != nil && !(tbase.Local != 0) {
+		return s
+	}
+	if isforw[tbase.Etype] != 0 {
+		return s
+	}
+
+ok:
+	ot = 0
+	xt = 0
+	switch t.Etype {
+	default:
+		ot = dcommontype(s, ot, t)
+		xt = ot - 3*Widthptr
+
+	case TARRAY:
+		if t.Bound >= 0 {
+			// ../../runtime/type.go:/ArrayType
+			s1 = dtypesym(t.Type)
+
+			t2 = typ(TARRAY)
+			t2.Type = t.Type
+			t2.Bound = -1 // slice
+			s2 = dtypesym(t2)
+			ot = dcommontype(s, ot, t)
+			xt = ot - 3*Widthptr
+			ot = dsymptr(s, ot, s1, 0)
+			ot = dsymptr(s, ot, s2, 0)
+			ot = duintptr(s, ot, uint64(t.Bound))
+		} else {
+			// ../../runtime/type.go:/SliceType
+			s1 = dtypesym(t.Type)
+
+			ot = dcommontype(s, ot, t)
+			xt = ot - 3*Widthptr
+			ot = dsymptr(s, ot, s1, 0)
+		}
+
+		// ../../runtime/type.go:/ChanType
+	case TCHAN:
+		s1 = dtypesym(t.Type)
+
+		ot = dcommontype(s, ot, t)
+		xt = ot - 3*Widthptr
+		ot = dsymptr(s, ot, s1, 0)
+		ot = duintptr(s, ot, uint64(t.Chan))
+
+	case TFUNC:
+		for t1 = getthisx(t).Type; t1 != nil; t1 = t1.Down {
+			dtypesym(t1.Type)
+		}
+		isddd = 0
+		for t1 = getinargx(t).Type; t1 != nil; t1 = t1.Down {
+			isddd = int(t1.Isddd)
+			dtypesym(t1.Type)
+		}
+
+		for t1 = getoutargx(t).Type; t1 != nil; t1 = t1.Down {
+			dtypesym(t1.Type)
+		}
+
+		ot = dcommontype(s, ot, t)
+		xt = ot - 3*Widthptr
+		ot = duint8(s, ot, uint8(isddd))
+
+		// two slice headers: in and out.
+		ot = int(Rnd(int64(ot), int64(Widthptr)))
+
+		ot = dsymptr(s, ot, s, ot+2*(Widthptr+2*Widthint))
+		n = t.Thistuple + t.Intuple
+		ot = duintxx(s, ot, uint64(n), Widthint)
+		ot = duintxx(s, ot, uint64(n), Widthint)
+		ot = dsymptr(s, ot, s, ot+1*(Widthptr+2*Widthint)+n*Widthptr)
+		ot = duintxx(s, ot, uint64(t.Outtuple), Widthint)
+		ot = duintxx(s, ot, uint64(t.Outtuple), Widthint)
+
+		// slice data
+		for t1 = getthisx(t).Type; t1 != nil; (func() { t1 = t1.Down; n++ })() {
+			ot = dsymptr(s, ot, dtypesym(t1.Type), 0)
+		}
+		for t1 = getinargx(t).Type; t1 != nil; (func() { t1 = t1.Down; n++ })() {
+			ot = dsymptr(s, ot, dtypesym(t1.Type), 0)
+		}
+		for t1 = getoutargx(t).Type; t1 != nil; (func() { t1 = t1.Down; n++ })() {
+			ot = dsymptr(s, ot, dtypesym(t1.Type), 0)
+		}
+
+	case TINTER:
+		m = imethods(t)
+		n = 0
+		for a = m; a != nil; a = a.link {
+			dtypesym(a.type_)
+			n++
+		}
+
+		// ../../runtime/type.go:/InterfaceType
+		ot = dcommontype(s, ot, t)
+
+		xt = ot - 3*Widthptr
+		ot = dsymptr(s, ot, s, ot+Widthptr+2*Widthint)
+		ot = duintxx(s, ot, uint64(n), Widthint)
+		ot = duintxx(s, ot, uint64(n), Widthint)
+		for a = m; a != nil; a = a.link {
+			// ../../runtime/type.go:/imethod
+			ot = dgostringptr(s, ot, a.name)
+
+			ot = dgopkgpath(s, ot, a.pkg)
+			ot = dsymptr(s, ot, dtypesym(a.type_), 0)
+		}
+
+		// ../../runtime/type.go:/MapType
+	case TMAP:
+		s1 = dtypesym(t.Down)
+
+		s2 = dtypesym(t.Type)
+		s3 = dtypesym(mapbucket(t))
+		s4 = dtypesym(hmap(t))
+		ot = dcommontype(s, ot, t)
+		xt = ot - 3*Widthptr
+		ot = dsymptr(s, ot, s1, 0)
+		ot = dsymptr(s, ot, s2, 0)
+		ot = dsymptr(s, ot, s3, 0)
+		ot = dsymptr(s, ot, s4, 0)
+		if t.Down.Width > MAXKEYSIZE {
+			ot = duint8(s, ot, uint8(Widthptr))
+			ot = duint8(s, ot, 1) // indirect
+		} else {
+			ot = duint8(s, ot, uint8(t.Down.Width))
+			ot = duint8(s, ot, 0) // not indirect
+		}
+
+		if t.Type.Width > MAXVALSIZE {
+			ot = duint8(s, ot, uint8(Widthptr))
+			ot = duint8(s, ot, 1) // indirect
+		} else {
+			ot = duint8(s, ot, uint8(t.Type.Width))
+			ot = duint8(s, ot, 0) // not indirect
+		}
+
+		ot = duint16(s, ot, uint16(mapbucket(t).Width))
+		ot = duint8(s, ot, uint8(isreflexive(t.Down)))
+
+	case TPTR32,
+		TPTR64:
+		if t.Type.Etype == TANY {
+			// ../../runtime/type.go:/UnsafePointerType
+			ot = dcommontype(s, ot, t)
+
+			break
+		}
+
+		// ../../runtime/type.go:/PtrType
+		s1 = dtypesym(t.Type)
+
+		ot = dcommontype(s, ot, t)
+		xt = ot - 3*Widthptr
+		ot = dsymptr(s, ot, s1, 0)
+
+		// ../../runtime/type.go:/StructType
+	// for security, only the exported fields.
+	case TSTRUCT:
+		n = 0
+
+		for t1 = t.Type; t1 != nil; t1 = t1.Down {
+			dtypesym(t1.Type)
+			n++
+		}
+
+		ot = dcommontype(s, ot, t)
+		xt = ot - 3*Widthptr
+		ot = dsymptr(s, ot, s, ot+Widthptr+2*Widthint)
+		ot = duintxx(s, ot, uint64(n), Widthint)
+		ot = duintxx(s, ot, uint64(n), Widthint)
+		for t1 = t.Type; t1 != nil; t1 = t1.Down {
+			// ../../runtime/type.go:/structField
+			if t1.Sym != nil && !(t1.Embedded != 0) {
+				ot = dgostringptr(s, ot, t1.Sym.Name)
+				if exportname(t1.Sym.Name) {
+					ot = dgostringptr(s, ot, "")
+				} else {
+					ot = dgopkgpath(s, ot, t1.Sym.Pkg)
+				}
+			} else {
+				ot = dgostringptr(s, ot, "")
+				if t1.Type.Sym != nil && t1.Type.Sym.Pkg == builtinpkg {
+					ot = dgopkgpath(s, ot, localpkg)
+				} else {
+					ot = dgostringptr(s, ot, "")
+				}
+			}
+
+			ot = dsymptr(s, ot, dtypesym(t1.Type), 0)
+			ot = dgostrlitptr(s, ot, t1.Note)
+			ot = duintptr(s, ot, uint64(t1.Width)) // field offset
+		}
+	}
+
+	ot = dextratype(s, ot, t, xt)
+	ggloblsym(s, int32(ot), int8(dupok|obj.RODATA))
+
+	// generate typelink.foo pointing at s = type.foo.
+	// The linker will leave a table of all the typelinks for
+	// types in the binary, so reflect can find them.
+	// We only need the link for unnamed composites that
+	// we want be able to find.
+	if t.Sym == nil {
+		switch t.Etype {
+		case TARRAY,
+			TCHAN,
+			TMAP:
+			slink = typelinksym(t)
+			dsymptr(slink, 0, s, 0)
+			ggloblsym(slink, int32(Widthptr), int8(dupok|obj.RODATA))
+		}
+	}
+
+	return s
+}
+
+func dumptypestructs() {
+	var i int
+	var l *NodeList
+	var n *Node
+	var t *Type
+	var p *Pkg
+
+	// copy types from externdcl list to signatlist
+	for l = externdcl; l != nil; l = l.Next {
+		n = l.N
+		if n.Op != OTYPE {
+			continue
+		}
+		signatlist = list(signatlist, n)
+	}
+
+	// process signatlist
+	for l = signatlist; l != nil; l = l.Next {
+		n = l.N
+		if n.Op != OTYPE {
+			continue
+		}
+		t = n.Type
+		dtypesym(t)
+		if t.Sym != nil {
+			dtypesym(Ptrto(t))
+		}
+	}
+
+	// generate import strings for imported packages
+	for i = 0; i < len(phash); i++ {
+		for p = phash[i]; p != nil; p = p.Link {
+			if p.Direct != 0 {
+				dimportpath(p)
+			}
+		}
+	}
+
+	// do basic types if compiling package runtime.
+	// they have to be in at least one package,
+	// and runtime is always loaded implicitly,
+	// so this is as good as any.
+	// another possible choice would be package main,
+	// but using runtime means fewer copies in .6 files.
+	if compiling_runtime != 0 {
+		for i = 1; i <= TBOOL; i++ {
+			dtypesym(Ptrto(Types[i]))
+		}
+		dtypesym(Ptrto(Types[TSTRING]))
+		dtypesym(Ptrto(Types[TUNSAFEPTR]))
+
+		// emit type structs for error and func(error) string.
+		// The latter is the type of an auto-generated wrapper.
+		dtypesym(Ptrto(errortype))
+
+		dtypesym(functype(nil, list1(Nod(ODCLFIELD, nil, typenod(errortype))), list1(Nod(ODCLFIELD, nil, typenod(Types[TSTRING])))))
+
+		// add paths for runtime and main, which 6l imports implicitly.
+		dimportpath(Runtimepkg)
+
+		if flag_race != 0 {
+			dimportpath(racepkg)
+		}
+		dimportpath(mkpkg(newstrlit("main")))
+	}
+}
+
+func dalgsym(t *Type) *Sym {
+	var ot int
+	var s *Sym
+	var hash *Sym
+	var hashfunc *Sym
+	var eq *Sym
+	var eqfunc *Sym
+	var p string
+
+	// dalgsym is only called for a type that needs an algorithm table,
+	// which implies that the type is comparable (or else it would use ANOEQ).
+
+	if algtype(t) == AMEM {
+		// we use one algorithm table for all AMEM types of a given size
+		p = fmt.Sprintf(".alg%d", t.Width)
+
+		s = Pkglookup(p, typepkg)
+
+		if s.Flags&SymAlgGen != 0 {
+			return s
+		}
+		s.Flags |= SymAlgGen
+
+		// make hash closure
+		p = fmt.Sprintf(".hashfunc%d", t.Width)
+
+		hashfunc = Pkglookup(p, typepkg)
+
+		ot = 0
+		ot = dsymptr(hashfunc, ot, Pkglookup("memhash_varlen", Runtimepkg), 0)
+		ot = duintxx(hashfunc, ot, uint64(t.Width), Widthptr) // size encoded in closure
+		ggloblsym(hashfunc, int32(ot), obj.DUPOK|obj.RODATA)
+
+		// make equality closure
+		p = fmt.Sprintf(".eqfunc%d", t.Width)
+
+		eqfunc = Pkglookup(p, typepkg)
+
+		ot = 0
+		ot = dsymptr(eqfunc, ot, Pkglookup("memequal_varlen", Runtimepkg), 0)
+		ot = duintxx(eqfunc, ot, uint64(t.Width), Widthptr)
+		ggloblsym(eqfunc, int32(ot), obj.DUPOK|obj.RODATA)
+	} else {
+		// generate an alg table specific to this type
+		s = typesymprefix(".alg", t)
+
+		hash = typesymprefix(".hash", t)
+		eq = typesymprefix(".eq", t)
+		hashfunc = typesymprefix(".hashfunc", t)
+		eqfunc = typesymprefix(".eqfunc", t)
+
+		genhash(hash, t)
+		geneq(eq, t)
+
+		// make Go funcs (closures) for calling hash and equal from Go
+		dsymptr(hashfunc, 0, hash, 0)
+
+		ggloblsym(hashfunc, int32(Widthptr), obj.DUPOK|obj.RODATA)
+		dsymptr(eqfunc, 0, eq, 0)
+		ggloblsym(eqfunc, int32(Widthptr), obj.DUPOK|obj.RODATA)
+	}
+
+	// ../../runtime/alg.go:/typeAlg
+	ot = 0
+
+	ot = dsymptr(s, ot, hashfunc, 0)
+	ot = dsymptr(s, ot, eqfunc, 0)
+	ggloblsym(s, int32(ot), obj.DUPOK|obj.RODATA)
+	return s
+}
+
+func usegcprog(t *Type) int {
+	var size int64
+	var nptr int64
+
+	if !haspointers(t) {
+		return 0
+	}
+	if t.Width == BADWIDTH {
+		dowidth(t)
+	}
+
+	// Calculate size of the unrolled GC mask.
+	nptr = (t.Width + int64(Widthptr) - 1) / int64(Widthptr)
+
+	size = nptr
+	if size%2 != 0 {
+		size *= 2 // repeated
+	}
+	size = size * obj.GcBits / 8 // 4 bits per word
+
+	// Decide whether to use unrolled GC mask or GC program.
+	// We could use a more elaborate condition, but this seems to work well in practice.
+	// For small objects GC program can't give significant reduction.
+	// While large objects usually contain arrays; and even if it don't
+	// the program uses 2-bits per word while mask uses 4-bits per word,
+	// so the program is still smaller.
+	return bool2int(size > int64(2*Widthptr))
+}
+
+// Generates sparse GC bitmask (4 bits per word).
+func gengcmask(t *Type, gcmask []byte) {
+	var vec *Bvec
+	var xoffset int64
+	var nptr int64
+	var i int64
+	var j int64
+	var half int
+	var bits uint8
+	var pos []byte
+
+	for i = 0; i < 16; i++ {
+		gcmask[i] = 0
+	}
+	if !haspointers(t) {
+		return
+	}
+
+	// Generate compact mask as stacks use.
+	xoffset = 0
+
+	vec = bvalloc(2 * int32(Widthptr) * 8)
+	twobitwalktype1(t, &xoffset, vec)
+
+	// Unfold the mask for the GC bitmap format:
+	// 4 bits per word, 2 high bits encode pointer info.
+	pos = gcmask
+
+	nptr = (t.Width + int64(Widthptr) - 1) / int64(Widthptr)
+	half = 0
+
+	// If number of words is odd, repeat the mask.
+	// This makes simpler handling of arrays in runtime.
+	for j = 0; j <= (nptr % 2); j++ {
+		for i = 0; i < nptr; i++ {
+			bits = uint8(bvget(vec, int32(i*obj.BitsPerPointer)) | bvget(vec, int32(i*obj.BitsPerPointer+1))<<1)
+
+			// Some fake types (e.g. Hmap) has missing fileds.
+			// twobitwalktype1 generates BitsDead for that holes,
+			// replace BitsDead with BitsScalar.
+			if bits == obj.BitsDead {
+				bits = obj.BitsScalar
+			}
+			bits <<= 2
+			if half != 0 {
+				bits <<= 4
+			}
+			pos[0] |= byte(bits)
+			half = bool2int(!(half != 0))
+			if !(half != 0) {
+				pos = pos[1:]
+			}
+		}
+	}
+}
+
+// Helper object for generation of GC programs.
+type ProgGen struct {
+	s        *Sym
+	datasize int32
+	data     [256 / obj.PointersPerByte]uint8
+	ot       int64
+}
+
+func proggeninit(g *ProgGen, s *Sym) {
+	g.s = s
+	g.datasize = 0
+	g.ot = 0
+	g.data = [256 / obj.PointersPerByte]uint8{}
+}
+
+func proggenemit(g *ProgGen, v uint8) {
+	g.ot = int64(duint8(g.s, int(g.ot), v))
+}
+
+// Emits insData block from g->data.
+func proggendataflush(g *ProgGen) {
+	var i int32
+	var s int32
+
+	if g.datasize == 0 {
+		return
+	}
+	proggenemit(g, obj.InsData)
+	proggenemit(g, uint8(g.datasize))
+	s = (g.datasize + obj.PointersPerByte - 1) / obj.PointersPerByte
+	for i = 0; i < s; i++ {
+		proggenemit(g, g.data[i])
+	}
+	g.datasize = 0
+	g.data = [256 / obj.PointersPerByte]uint8{}
+}
+
+func proggendata(g *ProgGen, d uint8) {
+	g.data[g.datasize/obj.PointersPerByte] |= d << uint((g.datasize%obj.PointersPerByte)*obj.BitsPerPointer)
+	g.datasize++
+	if g.datasize == 255 {
+		proggendataflush(g)
+	}
+}
+
+// Skip v bytes due to alignment, etc.
+func proggenskip(g *ProgGen, off int64, v int64) {
+	var i int64
+
+	for i = off; i < off+v; i++ {
+		if (i % int64(Widthptr)) == 0 {
+			proggendata(g, obj.BitsScalar)
+		}
+	}
+}
+
+// Emit insArray instruction.
+func proggenarray(g *ProgGen, len int64) {
+	var i int32
+
+	proggendataflush(g)
+	proggenemit(g, obj.InsArray)
+	for i = 0; i < int32(Widthptr); (func() { i++; len >>= 8 })() {
+		proggenemit(g, uint8(len))
+	}
+}
+
+func proggenarrayend(g *ProgGen) {
+	proggendataflush(g)
+	proggenemit(g, obj.InsArrayEnd)
+}
+
+func proggenfini(g *ProgGen) int64 {
+	proggendataflush(g)
+	proggenemit(g, obj.InsEnd)
+	return g.ot
+}
+
+// Generates GC program for large types.
+func gengcprog(t *Type, pgc0 **Sym, pgc1 **Sym) {
+	var gc0 *Sym
+	var gc1 *Sym
+	var nptr int64
+	var size int64
+	var ot int64
+	var xoffset int64
+	var g ProgGen
+
+	nptr = (t.Width + int64(Widthptr) - 1) / int64(Widthptr)
+	size = nptr
+	if size%2 != 0 {
+		size *= 2 // repeated twice
+	}
+	size = size * obj.PointersPerByte / 8 // 4 bits per word
+	size++                                // unroll flag in the beginning, used by runtime (see runtime.markallocated)
+
+	// emity space in BSS for unrolled program
+	*pgc0 = nil
+
+	// Don't generate it if it's too large, runtime will unroll directly into GC bitmap.
+	if size <= obj.MaxGCMask {
+		gc0 = typesymprefix(".gc", t)
+		ggloblsym(gc0, int32(size), obj.DUPOK|obj.NOPTR)
+		*pgc0 = gc0
+	}
+
+	// program in RODATA
+	gc1 = typesymprefix(".gcprog", t)
+
+	proggeninit(&g, gc1)
+	xoffset = 0
+	gengcprog1(&g, t, &xoffset)
+	ot = proggenfini(&g)
+	ggloblsym(gc1, int32(ot), obj.DUPOK|obj.RODATA)
+	*pgc1 = gc1
+}
+
+// Recursively walks type t and writes GC program into g.
+func gengcprog1(g *ProgGen, t *Type, xoffset *int64) {
+	var fieldoffset int64
+	var i int64
+	var o int64
+	var n int64
+	var t1 *Type
+
+	switch t.Etype {
+	case TINT8,
+		TUINT8,
+		TINT16,
+		TUINT16,
+		TINT32,
+		TUINT32,
+		TINT64,
+		TUINT64,
+		TINT,
+		TUINT,
+		TUINTPTR,
+		TBOOL,
+		TFLOAT32,
+		TFLOAT64,
+		TCOMPLEX64,
+		TCOMPLEX128:
+		proggenskip(g, *xoffset, t.Width)
+		*xoffset += t.Width
+
+	case TPTR32,
+		TPTR64,
+		TUNSAFEPTR,
+		TFUNC,
+		TCHAN,
+		TMAP:
+		proggendata(g, obj.BitsPointer)
+		*xoffset += t.Width
+
+	case TSTRING:
+		proggendata(g, obj.BitsPointer)
+		proggendata(g, obj.BitsScalar)
+		*xoffset += t.Width
+
+		// Assuming IfacePointerOnly=1.
+	case TINTER:
+		proggendata(g, obj.BitsPointer)
+
+		proggendata(g, obj.BitsPointer)
+		*xoffset += t.Width
+
+	case TARRAY:
+		if Isslice(t) != 0 {
+			proggendata(g, obj.BitsPointer)
+			proggendata(g, obj.BitsScalar)
+			proggendata(g, obj.BitsScalar)
+		} else {
+			t1 = t.Type
+			if t1.Width == 0 {
+			}
+			// ignore
+			if t.Bound <= 1 || t.Bound*t1.Width < int64(32*Widthptr) {
+				for i = 0; i < t.Bound; i++ {
+					gengcprog1(g, t1, xoffset)
+				}
+			} else if !haspointers(t1) {
+				n = t.Width
+				n -= -*xoffset & (int64(Widthptr) - 1) // skip to next ptr boundary
+				proggenarray(g, (n+int64(Widthptr)-1)/int64(Widthptr))
+				proggendata(g, obj.BitsScalar)
+				proggenarrayend(g)
+				*xoffset -= (n+int64(Widthptr)-1)/int64(Widthptr)*int64(Widthptr) - t.Width
+			} else {
+				proggenarray(g, t.Bound)
+				gengcprog1(g, t1, xoffset)
+				*xoffset += (t.Bound - 1) * t1.Width
+				proggenarrayend(g)
+			}
+		}
+
+	case TSTRUCT:
+		o = 0
+		for t1 = t.Type; t1 != nil; t1 = t1.Down {
+			fieldoffset = t1.Width
+			proggenskip(g, *xoffset, fieldoffset-o)
+			*xoffset += fieldoffset - o
+			gengcprog1(g, t1.Type, xoffset)
+			o = fieldoffset + t1.Type.Width
+		}
+
+		proggenskip(g, *xoffset, t.Width-o)
+		*xoffset += t.Width - o
+
+	default:
+		Fatal("gengcprog1: unexpected type, %v", Tconv(t, 0))
+	}
+}