[dev.cc] cmd/internal/gc, cmd/new6g etc: convert from cmd/gc, cmd/6g etc
First draft of converted Go compiler, using rsc.io/c2go rev 83d795a.
Change-Id: I29f4c7010de07d2ff1947bbca9865879d83c32c3
Reviewed-on: https://go-review.googlesource.com/4851
Reviewed-by: Rob Pike <r@golang.org>
diff --git a/src/cmd/internal/gc/reflect.go b/src/cmd/internal/gc/reflect.go
new file mode 100644
index 0000000..4be0f1d
--- /dev/null
+++ b/src/cmd/internal/gc/reflect.go
@@ -0,0 +1,1746 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package gc
+
+import (
+ "cmd/internal/obj"
+ "fmt"
+)
+
+/*
+ * runtime interface and reflection data structures
+ */
+var signatlist *NodeList
+
+func sigcmp(a *Sig, b *Sig) int {
+ var i int
+
+ i = stringsCompare(a.name, b.name)
+ if i != 0 {
+ return i
+ }
+ if a.pkg == b.pkg {
+ return 0
+ }
+ if a.pkg == nil {
+ return -1
+ }
+ if b.pkg == nil {
+ return +1
+ }
+ return stringsCompare(a.pkg.Path.S, b.pkg.Path.S)
+}
+
+func lsort(l *Sig, f func(*Sig, *Sig) int) *Sig {
+ var l1 *Sig
+ var l2 *Sig
+ var le *Sig
+
+ if l == nil || l.link == nil {
+ return l
+ }
+
+ l1 = l
+ l2 = l
+ for {
+ l2 = l2.link
+ if l2 == nil {
+ break
+ }
+ l2 = l2.link
+ if l2 == nil {
+ break
+ }
+ l1 = l1.link
+ }
+
+ l2 = l1.link
+ l1.link = nil
+ l1 = lsort(l, f)
+ l2 = lsort(l2, f)
+
+ /* set up lead element */
+ if f(l1, l2) < 0 {
+ l = l1
+ l1 = l1.link
+ } else {
+ l = l2
+ l2 = l2.link
+ }
+
+ le = l
+
+ for {
+ if l1 == nil {
+ for l2 != nil {
+ le.link = l2
+ le = l2
+ l2 = l2.link
+ }
+
+ le.link = nil
+ break
+ }
+
+ if l2 == nil {
+ for l1 != nil {
+ le.link = l1
+ le = l1
+ l1 = l1.link
+ }
+
+ break
+ }
+
+ if f(l1, l2) < 0 {
+ le.link = l1
+ le = l1
+ l1 = l1.link
+ } else {
+ le.link = l2
+ le = l2
+ l2 = l2.link
+ }
+ }
+
+ le.link = nil
+ return l
+}
+
+// Builds a type respresenting a Bucket structure for
+// the given map type. This type is not visible to users -
+// we include only enough information to generate a correct GC
+// program for it.
+// Make sure this stays in sync with ../../runtime/hashmap.c!
+const (
+ BUCKETSIZE = 8
+ MAXKEYSIZE = 128
+ MAXVALSIZE = 128
+)
+
+func makefield(name string, t *Type) *Type {
+ var f *Type
+
+ f = typ(TFIELD)
+ f.Type = t
+ f.Sym = new(Sym)
+ f.Sym.Name = name
+ return f
+}
+
+func mapbucket(t *Type) *Type {
+ var keytype *Type
+ var valtype *Type
+ var bucket *Type
+ var arr *Type
+ var field [4]*Type
+ var n int32
+
+ if t.Bucket != nil {
+ return t.Bucket
+ }
+
+ bucket = typ(TSTRUCT)
+ keytype = t.Down
+ valtype = t.Type
+ dowidth(keytype)
+ dowidth(valtype)
+ if keytype.Width > MAXKEYSIZE {
+ keytype = Ptrto(keytype)
+ }
+ if valtype.Width > MAXVALSIZE {
+ valtype = Ptrto(valtype)
+ }
+
+ // The first field is: uint8 topbits[BUCKETSIZE].
+ arr = typ(TARRAY)
+
+ arr.Type = Types[TUINT8]
+ arr.Bound = BUCKETSIZE
+ field[0] = makefield("topbits", arr)
+ arr = typ(TARRAY)
+ arr.Type = keytype
+ arr.Bound = BUCKETSIZE
+ field[1] = makefield("keys", arr)
+ arr = typ(TARRAY)
+ arr.Type = valtype
+ arr.Bound = BUCKETSIZE
+ field[2] = makefield("values", arr)
+ field[3] = makefield("overflow", Ptrto(bucket))
+
+ // link up fields
+ bucket.Noalg = 1
+
+ bucket.Local = t.Local
+ bucket.Type = field[0]
+ for n = 0; n < int32(len(field)-1); n++ {
+ field[n].Down = field[n+1]
+ }
+ field[len(field)-1].Down = nil
+ dowidth(bucket)
+
+ // Pad to the native integer alignment.
+ // This is usually the same as widthptr; the exception (as usual) is amd64p32.
+ if Widthreg > Widthptr {
+ bucket.Width += int64(Widthreg) - int64(Widthptr)
+ }
+
+ // See comment on hmap.overflow in ../../runtime/hashmap.go.
+ if !haspointers(t.Type) && !haspointers(t.Down) {
+ bucket.Haspointers = 1 // no pointers
+ }
+
+ t.Bucket = bucket
+
+ bucket.Map = t
+ return bucket
+}
+
+// Builds a type representing a Hmap structure for the given map type.
+// Make sure this stays in sync with ../../runtime/hashmap.go!
+func hmap(t *Type) *Type {
+ var h *Type
+ var bucket *Type
+ var field [8]*Type
+ var n int32
+
+ if t.Hmap != nil {
+ return t.Hmap
+ }
+
+ bucket = mapbucket(t)
+ field[0] = makefield("count", Types[TINT])
+ field[1] = makefield("flags", Types[TUINT8])
+ field[2] = makefield("B", Types[TUINT8])
+ field[3] = makefield("hash0", Types[TUINT32])
+ field[4] = makefield("buckets", Ptrto(bucket))
+ field[5] = makefield("oldbuckets", Ptrto(bucket))
+ field[6] = makefield("nevacuate", Types[TUINTPTR])
+ field[7] = makefield("overflow", Types[TUNSAFEPTR])
+
+ h = typ(TSTRUCT)
+ h.Noalg = 1
+ h.Local = t.Local
+ h.Type = field[0]
+ for n = 0; n < int32(len(field)-1); n++ {
+ field[n].Down = field[n+1]
+ }
+ field[len(field)-1].Down = nil
+ dowidth(h)
+ t.Hmap = h
+ h.Map = t
+ return h
+}
+
+func hiter(t *Type) *Type {
+ var n int32
+ var field [12]*Type
+ var i *Type
+
+ if t.Hiter != nil {
+ return t.Hiter
+ }
+
+ // build a struct:
+ // hash_iter {
+ // key *Key
+ // val *Value
+ // t *MapType
+ // h *Hmap
+ // buckets *Bucket
+ // bptr *Bucket
+ // overflow0 unsafe.Pointer
+ // overflow1 unsafe.Pointer
+ // startBucket uintptr
+ // stuff uintptr
+ // bucket uintptr
+ // checkBucket uintptr
+ // }
+ // must match ../../runtime/hashmap.c:hash_iter.
+ field[0] = makefield("key", Ptrto(t.Down))
+
+ field[1] = makefield("val", Ptrto(t.Type))
+ field[2] = makefield("t", Ptrto(Types[TUINT8]))
+ field[3] = makefield("h", Ptrto(hmap(t)))
+ field[4] = makefield("buckets", Ptrto(mapbucket(t)))
+ field[5] = makefield("bptr", Ptrto(mapbucket(t)))
+ field[6] = makefield("overflow0", Types[TUNSAFEPTR])
+ field[7] = makefield("overflow1", Types[TUNSAFEPTR])
+ field[8] = makefield("startBucket", Types[TUINTPTR])
+ field[9] = makefield("stuff", Types[TUINTPTR]) // offset+wrapped+B+I
+ field[10] = makefield("bucket", Types[TUINTPTR])
+ field[11] = makefield("checkBucket", Types[TUINTPTR])
+
+ // build iterator struct holding the above fields
+ i = typ(TSTRUCT)
+
+ i.Noalg = 1
+ i.Type = field[0]
+ for n = 0; n < int32(len(field)-1); n++ {
+ field[n].Down = field[n+1]
+ }
+ field[len(field)-1].Down = nil
+ dowidth(i)
+ if i.Width != int64(12*Widthptr) {
+ Yyerror("hash_iter size not correct %d %d", i.Width, 12*Widthptr)
+ }
+ t.Hiter = i
+ i.Map = t
+ return i
+}
+
+/*
+ * f is method type, with receiver.
+ * return function type, receiver as first argument (or not).
+ */
+func methodfunc(f *Type, receiver *Type) *Type {
+ var in *NodeList
+ var out *NodeList
+ var d *Node
+ var t *Type
+
+ in = nil
+ if receiver != nil {
+ d = Nod(ODCLFIELD, nil, nil)
+ d.Type = receiver
+ in = list(in, d)
+ }
+
+ for t = getinargx(f).Type; t != nil; t = t.Down {
+ d = Nod(ODCLFIELD, nil, nil)
+ d.Type = t.Type
+ d.Isddd = t.Isddd
+ in = list(in, d)
+ }
+
+ out = nil
+ for t = getoutargx(f).Type; t != nil; t = t.Down {
+ d = Nod(ODCLFIELD, nil, nil)
+ d.Type = t.Type
+ out = list(out, d)
+ }
+
+ t = functype(nil, in, out)
+ if f.Nname != nil {
+ // Link to name of original method function.
+ t.Nname = f.Nname
+ }
+
+ return t
+}
+
+/*
+ * return methods of non-interface type t, sorted by name.
+ * generates stub functions as needed.
+ */
+func methods(t *Type) *Sig {
+ var f *Type
+ var mt *Type
+ var it *Type
+ var this *Type
+ var a *Sig
+ var b *Sig
+ var method *Sym
+
+ // method type
+ mt = methtype(t, 0)
+
+ if mt == nil {
+ return nil
+ }
+ expandmeth(mt)
+
+ // type stored in interface word
+ it = t
+
+ if !(isdirectiface(it) != 0) {
+ it = Ptrto(t)
+ }
+
+ // make list of methods for t,
+ // generating code if necessary.
+ a = nil
+
+ for f = mt.Xmethod; f != nil; f = f.Down {
+ if f.Etype != TFIELD {
+ Fatal("methods: not field %v", Tconv(f, 0))
+ }
+ if f.Type.Etype != TFUNC || f.Type.Thistuple == 0 {
+ Fatal("non-method on %v method %v %v\n", Tconv(mt, 0), Sconv(f.Sym, 0), Tconv(f, 0))
+ }
+ if !(getthisx(f.Type).Type != nil) {
+ Fatal("receiver with no type on %v method %v %v\n", Tconv(mt, 0), Sconv(f.Sym, 0), Tconv(f, 0))
+ }
+ if f.Nointerface != 0 {
+ continue
+ }
+
+ method = f.Sym
+ if method == nil {
+ continue
+ }
+
+ // get receiver type for this particular method.
+ // if pointer receiver but non-pointer t and
+ // this is not an embedded pointer inside a struct,
+ // method does not apply.
+ this = getthisx(f.Type).Type.Type
+
+ if Isptr[this.Etype] != 0 && this.Type == t {
+ continue
+ }
+ if Isptr[this.Etype] != 0 && !(Isptr[t.Etype] != 0) && f.Embedded != 2 && !(isifacemethod(f.Type) != 0) {
+ continue
+ }
+
+ b = new(Sig)
+ b.link = a
+ a = b
+
+ a.name = method.Name
+ if !exportname(method.Name) {
+ if method.Pkg == nil {
+ Fatal("methods: missing package")
+ }
+ a.pkg = method.Pkg
+ }
+
+ a.isym = methodsym(method, it, 1)
+ a.tsym = methodsym(method, t, 0)
+ a.type_ = methodfunc(f.Type, t)
+ a.mtype = methodfunc(f.Type, nil)
+
+ if !(a.isym.Flags&SymSiggen != 0) {
+ a.isym.Flags |= SymSiggen
+ if !Eqtype(this, it) || this.Width < Types[Tptr].Width {
+ compiling_wrappers = 1
+ genwrapper(it, f, a.isym, 1)
+ compiling_wrappers = 0
+ }
+ }
+
+ if !(a.tsym.Flags&SymSiggen != 0) {
+ a.tsym.Flags |= SymSiggen
+ if !Eqtype(this, t) {
+ compiling_wrappers = 1
+ genwrapper(t, f, a.tsym, 0)
+ compiling_wrappers = 0
+ }
+ }
+ }
+
+ return lsort(a, sigcmp)
+}
+
+/*
+ * return methods of interface type t, sorted by name.
+ */
+func imethods(t *Type) *Sig {
+ var a *Sig
+ var all *Sig
+ var last *Sig
+ var f *Type
+ var method *Sym
+ var isym *Sym
+
+ all = nil
+ last = nil
+ for f = t.Type; f != nil; f = f.Down {
+ if f.Etype != TFIELD {
+ Fatal("imethods: not field")
+ }
+ if f.Type.Etype != TFUNC || f.Sym == nil {
+ continue
+ }
+ method = f.Sym
+ a = new(Sig)
+ a.name = method.Name
+ if !exportname(method.Name) {
+ if method.Pkg == nil {
+ Fatal("imethods: missing package")
+ }
+ a.pkg = method.Pkg
+ }
+
+ a.mtype = f.Type
+ a.offset = 0
+ a.type_ = methodfunc(f.Type, nil)
+
+ if last != nil && sigcmp(last, a) >= 0 {
+ Fatal("sigcmp vs sortinter %s %s", last.name, a.name)
+ }
+ if last == nil {
+ all = a
+ } else {
+ last.link = a
+ }
+ last = a
+
+ // Compiler can only refer to wrappers for non-blank methods.
+ if isblanksym(method) {
+ continue
+ }
+
+ // NOTE(rsc): Perhaps an oversight that
+ // IfaceType.Method is not in the reflect data.
+ // Generate the method body, so that compiled
+ // code can refer to it.
+ isym = methodsym(method, t, 0)
+
+ if !(isym.Flags&SymSiggen != 0) {
+ isym.Flags |= SymSiggen
+ genwrapper(t, f, isym, 0)
+ }
+ }
+
+ return all
+}
+
+var dimportpath_gopkg *Pkg
+
+func dimportpath(p *Pkg) {
+ var nam string
+ var n *Node
+
+ if p.Pathsym != nil {
+ return
+ }
+
+ if dimportpath_gopkg == nil {
+ dimportpath_gopkg = mkpkg(newstrlit("go"))
+ dimportpath_gopkg.Name = "go"
+ }
+
+ nam = fmt.Sprintf("importpath.%s.", p.Prefix)
+
+ n = Nod(ONAME, nil, nil)
+ n.Sym = Pkglookup(nam, dimportpath_gopkg)
+
+ n.Class = PEXTERN
+ n.Xoffset = 0
+ p.Pathsym = n.Sym
+
+ gdatastring(n, p.Path)
+ ggloblsym(n.Sym, int32(Types[TSTRING].Width), obj.DUPOK|obj.RODATA)
+}
+
+func dgopkgpath(s *Sym, ot int, pkg *Pkg) int {
+ if pkg == nil {
+ return dgostringptr(s, ot, "")
+ }
+
+ // Emit reference to go.importpath.""., which 6l will
+ // rewrite using the correct import path. Every package
+ // that imports this one directly defines the symbol.
+ if pkg == localpkg {
+ var ns *Sym
+
+ if ns == nil {
+ ns = Pkglookup("importpath.\"\".", mkpkg(newstrlit("go")))
+ }
+ return dsymptr(s, ot, ns, 0)
+ }
+
+ dimportpath(pkg)
+ return dsymptr(s, ot, pkg.Pathsym, 0)
+}
+
+/*
+ * uncommonType
+ * ../../runtime/type.go:/uncommonType
+ */
+func dextratype(sym *Sym, off int, t *Type, ptroff int) int {
+ var ot int
+ var n int
+ var s *Sym
+ var a *Sig
+ var m *Sig
+
+ m = methods(t)
+ if t.Sym == nil && m == nil {
+ return off
+ }
+
+ // fill in *extraType pointer in header
+ off = int(Rnd(int64(off), int64(Widthptr)))
+
+ dsymptr(sym, ptroff, sym, off)
+
+ n = 0
+ for a = m; a != nil; a = a.link {
+ dtypesym(a.type_)
+ n++
+ }
+
+ ot = off
+ s = sym
+ if t.Sym != nil {
+ ot = dgostringptr(s, ot, t.Sym.Name)
+ if t != Types[t.Etype] && t != errortype {
+ ot = dgopkgpath(s, ot, t.Sym.Pkg)
+ } else {
+ ot = dgostringptr(s, ot, "")
+ }
+ } else {
+ ot = dgostringptr(s, ot, "")
+ ot = dgostringptr(s, ot, "")
+ }
+
+ // slice header
+ ot = dsymptr(s, ot, s, ot+Widthptr+2*Widthint)
+
+ ot = duintxx(s, ot, uint64(n), Widthint)
+ ot = duintxx(s, ot, uint64(n), Widthint)
+
+ // methods
+ for a = m; a != nil; a = a.link {
+ // method
+ // ../../runtime/type.go:/method
+ ot = dgostringptr(s, ot, a.name)
+
+ ot = dgopkgpath(s, ot, a.pkg)
+ ot = dsymptr(s, ot, dtypesym(a.mtype), 0)
+ ot = dsymptr(s, ot, dtypesym(a.type_), 0)
+ if a.isym != nil {
+ ot = dsymptr(s, ot, a.isym, 0)
+ } else {
+ ot = duintptr(s, ot, 0)
+ }
+ if a.tsym != nil {
+ ot = dsymptr(s, ot, a.tsym, 0)
+ } else {
+ ot = duintptr(s, ot, 0)
+ }
+ }
+
+ return ot
+}
+
+var kinds = []int{
+ TINT: obj.KindInt,
+ TUINT: obj.KindUint,
+ TINT8: obj.KindInt8,
+ TUINT8: obj.KindUint8,
+ TINT16: obj.KindInt16,
+ TUINT16: obj.KindUint16,
+ TINT32: obj.KindInt32,
+ TUINT32: obj.KindUint32,
+ TINT64: obj.KindInt64,
+ TUINT64: obj.KindUint64,
+ TUINTPTR: obj.KindUintptr,
+ TFLOAT32: obj.KindFloat32,
+ TFLOAT64: obj.KindFloat64,
+ TBOOL: obj.KindBool,
+ TSTRING: obj.KindString,
+ TPTR32: obj.KindPtr,
+ TPTR64: obj.KindPtr,
+ TSTRUCT: obj.KindStruct,
+ TINTER: obj.KindInterface,
+ TCHAN: obj.KindChan,
+ TMAP: obj.KindMap,
+ TARRAY: obj.KindArray,
+ TFUNC: obj.KindFunc,
+ TCOMPLEX64: obj.KindComplex64,
+ TCOMPLEX128: obj.KindComplex128,
+ TUNSAFEPTR: obj.KindUnsafePointer,
+}
+
+func haspointers(t *Type) bool {
+ var t1 *Type
+ var ret int
+
+ if t.Haspointers != 0 {
+ return t.Haspointers-1 != 0
+ }
+
+ switch t.Etype {
+ case TINT,
+ TUINT,
+ TINT8,
+ TUINT8,
+ TINT16,
+ TUINT16,
+ TINT32,
+ TUINT32,
+ TINT64,
+ TUINT64,
+ TUINTPTR,
+ TFLOAT32,
+ TFLOAT64,
+ TCOMPLEX64,
+ TCOMPLEX128,
+ TBOOL:
+ ret = 0
+
+ case TARRAY:
+ if t.Bound < 0 { // slice
+ ret = 1
+ break
+ }
+
+ if t.Bound == 0 { // empty array
+ ret = 0
+ break
+ }
+
+ ret = bool2int(haspointers(t.Type))
+
+ case TSTRUCT:
+ ret = 0
+ for t1 = t.Type; t1 != nil; t1 = t1.Down {
+ if haspointers(t1.Type) {
+ ret = 1
+ break
+ }
+ }
+
+ case TSTRING,
+ TPTR32,
+ TPTR64,
+ TUNSAFEPTR,
+ TINTER,
+ TCHAN,
+ TMAP,
+ TFUNC:
+ fallthrough
+ default:
+ ret = 1
+ }
+
+ t.Haspointers = uint8(1 + ret)
+ return ret != 0
+}
+
+/*
+ * commonType
+ * ../../runtime/type.go:/commonType
+ */
+
+var dcommontype_algarray *Sym
+
+func dcommontype(s *Sym, ot int, t *Type) int {
+ var i int
+ var alg int
+ var sizeofAlg int
+ var gcprog int
+ var sptr *Sym
+ var algsym *Sym
+ var zero *Sym
+ var gcprog0 *Sym
+ var gcprog1 *Sym
+ var sbits *Sym
+ var gcmask [16]uint8
+ var x1 uint64
+ var x2 uint64
+ var p string
+
+ if ot != 0 {
+ Fatal("dcommontype %d", ot)
+ }
+
+ sizeofAlg = 2 * Widthptr
+ if dcommontype_algarray == nil {
+ dcommontype_algarray = Pkglookup("algarray", Runtimepkg)
+ }
+ dowidth(t)
+ alg = algtype(t)
+ algsym = nil
+ if alg < 0 || alg == AMEM {
+ algsym = dalgsym(t)
+ }
+
+ if t.Sym != nil && !(Isptr[t.Etype] != 0) {
+ sptr = dtypesym(Ptrto(t))
+ } else {
+ sptr = weaktypesym(Ptrto(t))
+ }
+
+ // All (non-reflect-allocated) Types share the same zero object.
+ // Each place in the compiler where a pointer to the zero object
+ // might be returned by a runtime call (map access return value,
+ // 2-arg type cast) declares the size of the zerovalue it needs.
+ // The linker magically takes the max of all the sizes.
+ zero = Pkglookup("zerovalue", Runtimepkg)
+
+ // We use size 0 here so we get the pointer to the zero value,
+ // but don't allocate space for the zero value unless we need it.
+ // TODO: how do we get this symbol into bss? We really want
+ // a read-only bss, but I don't think such a thing exists.
+
+ // ../../pkg/reflect/type.go:/^type.commonType
+ // actual type structure
+ // type commonType struct {
+ // size uintptr
+ // hash uint32
+ // _ uint8
+ // align uint8
+ // fieldAlign uint8
+ // kind uint8
+ // alg unsafe.Pointer
+ // gc unsafe.Pointer
+ // string *string
+ // *extraType
+ // ptrToThis *Type
+ // zero unsafe.Pointer
+ // }
+ ot = duintptr(s, ot, uint64(t.Width))
+
+ ot = duint32(s, ot, typehash(t))
+ ot = duint8(s, ot, 0) // unused
+
+ // runtime (and common sense) expects alignment to be a power of two.
+ i = int(t.Align)
+
+ if i == 0 {
+ i = 1
+ }
+ if i&(i-1) != 0 {
+ Fatal("invalid alignment %d for %v", t.Align, Tconv(t, 0))
+ }
+ ot = duint8(s, ot, t.Align) // align
+ ot = duint8(s, ot, t.Align) // fieldAlign
+
+ gcprog = usegcprog(t)
+
+ i = kinds[t.Etype]
+ if t.Etype == TARRAY && t.Bound < 0 {
+ i = obj.KindSlice
+ }
+ if !haspointers(t) {
+ i |= obj.KindNoPointers
+ }
+ if isdirectiface(t) != 0 {
+ i |= obj.KindDirectIface
+ }
+ if gcprog != 0 {
+ i |= obj.KindGCProg
+ }
+ ot = duint8(s, ot, uint8(i)) // kind
+ if algsym == nil {
+ ot = dsymptr(s, ot, dcommontype_algarray, alg*sizeofAlg)
+ } else {
+ ot = dsymptr(s, ot, algsym, 0)
+ }
+
+ // gc
+ if gcprog != 0 {
+ gengcprog(t, &gcprog0, &gcprog1)
+ if gcprog0 != nil {
+ ot = dsymptr(s, ot, gcprog0, 0)
+ } else {
+ ot = duintptr(s, ot, 0)
+ }
+ ot = dsymptr(s, ot, gcprog1, 0)
+ } else {
+ gengcmask(t, gcmask[:])
+ x1 = 0
+ for i = 0; i < 8; i++ {
+ x1 = x1<<8 | uint64(gcmask[i])
+ }
+ if Widthptr == 4 {
+ p = fmt.Sprintf("gcbits.0x%016x", x1)
+ } else {
+ x2 = 0
+ for i = 0; i < 8; i++ {
+ x2 = x2<<8 | uint64(gcmask[i+8])
+ }
+ p = fmt.Sprintf("gcbits.0x%016x%016x", x1, x2)
+ }
+
+ sbits = Pkglookup(p, Runtimepkg)
+ if sbits.Flags&SymUniq == 0 {
+ sbits.Flags |= SymUniq
+ for i = 0; i < 2*Widthptr; i++ {
+ duint8(sbits, i, gcmask[i])
+ }
+ ggloblsym(sbits, 2*int32(Widthptr), obj.DUPOK|obj.RODATA)
+ }
+
+ ot = dsymptr(s, ot, sbits, 0)
+ ot = duintptr(s, ot, 0)
+ }
+
+ p = fmt.Sprintf("%v", Tconv(t, obj.FmtLeft|obj.FmtUnsigned))
+
+ //print("dcommontype: %s\n", p);
+ ot = dgostringptr(s, ot, p) // string
+
+ // skip pointer to extraType,
+ // which follows the rest of this type structure.
+ // caller will fill in if needed.
+ // otherwise linker will assume 0.
+ ot += Widthptr
+
+ ot = dsymptr(s, ot, sptr, 0) // ptrto type
+ ot = dsymptr(s, ot, zero, 0) // ptr to zero value
+ return ot
+}
+
+func typesym(t *Type) *Sym {
+ var p string
+ var s *Sym
+
+ p = fmt.Sprintf("%v", Tconv(t, obj.FmtLeft))
+ s = Pkglookup(p, typepkg)
+
+ //print("typesym: %s -> %+S\n", p, s);
+
+ return s
+}
+
+func tracksym(t *Type) *Sym {
+ var p string
+ var s *Sym
+
+ p = fmt.Sprintf("%v.%s", Tconv(t.Outer, obj.FmtLeft), t.Sym.Name)
+ s = Pkglookup(p, trackpkg)
+
+ return s
+}
+
+func typelinksym(t *Type) *Sym {
+ var p string
+ var s *Sym
+
+ // %-uT is what the generated Type's string field says.
+ // It uses (ambiguous) package names instead of import paths.
+ // %-T is the complete, unambiguous type name.
+ // We want the types to end up sorted by string field,
+ // so use that first in the name, and then add :%-T to
+ // disambiguate. The names are a little long but they are
+ // discarded by the linker and do not end up in the symbol
+ // table of the final binary.
+ p = fmt.Sprintf("%v/%v", Tconv(t, obj.FmtLeft|obj.FmtUnsigned), Tconv(t, obj.FmtLeft))
+
+ s = Pkglookup(p, typelinkpkg)
+
+ //print("typelinksym: %s -> %+S\n", p, s);
+
+ return s
+}
+
+func typesymprefix(prefix string, t *Type) *Sym {
+ var p string
+ var s *Sym
+
+ p = fmt.Sprintf("%s.%v", prefix, Tconv(t, obj.FmtLeft))
+ s = Pkglookup(p, typepkg)
+
+ //print("algsym: %s -> %+S\n", p, s);
+
+ return s
+}
+
+func typenamesym(t *Type) *Sym {
+ var s *Sym
+ var n *Node
+
+ if t == nil || (Isptr[t.Etype] != 0 && t.Type == nil) || isideal(t) != 0 {
+ Fatal("typename %v", Tconv(t, 0))
+ }
+ s = typesym(t)
+ if s.Def == nil {
+ n = Nod(ONAME, nil, nil)
+ n.Sym = s
+ n.Type = Types[TUINT8]
+ n.Addable = 1
+ n.Ullman = 1
+ n.Class = PEXTERN
+ n.Xoffset = 0
+ n.Typecheck = 1
+ s.Def = n
+
+ signatlist = list(signatlist, typenod(t))
+ }
+
+ return s.Def.Sym
+}
+
+func typename(t *Type) *Node {
+ var s *Sym
+ var n *Node
+
+ s = typenamesym(t)
+ n = Nod(OADDR, s.Def, nil)
+ n.Type = Ptrto(s.Def.Type)
+ n.Addable = 1
+ n.Ullman = 2
+ n.Typecheck = 1
+ return n
+}
+
+func weaktypesym(t *Type) *Sym {
+ var p string
+ var s *Sym
+
+ p = fmt.Sprintf("%v", Tconv(t, obj.FmtLeft))
+ s = Pkglookup(p, weaktypepkg)
+
+ //print("weaktypesym: %s -> %+S\n", p, s);
+
+ return s
+}
+
+/*
+ * Returns 1 if t has a reflexive equality operator.
+ * That is, if x==x for all x of type t.
+ */
+func isreflexive(t *Type) int {
+ var t1 *Type
+ switch t.Etype {
+ case TBOOL,
+ TINT,
+ TUINT,
+ TINT8,
+ TUINT8,
+ TINT16,
+ TUINT16,
+ TINT32,
+ TUINT32,
+ TINT64,
+ TUINT64,
+ TUINTPTR,
+ TPTR32,
+ TPTR64,
+ TUNSAFEPTR,
+ TSTRING,
+ TCHAN:
+ return 1
+
+ case TFLOAT32,
+ TFLOAT64,
+ TCOMPLEX64,
+ TCOMPLEX128,
+ TINTER:
+ return 0
+
+ case TARRAY:
+ if Isslice(t) != 0 {
+ Fatal("slice can't be a map key: %v", Tconv(t, 0))
+ }
+ return isreflexive(t.Type)
+
+ case TSTRUCT:
+ for t1 = t.Type; t1 != nil; t1 = t1.Down {
+ if !(isreflexive(t1.Type) != 0) {
+ return 0
+ }
+ }
+
+ return 1
+
+ default:
+ Fatal("bad type for map key: %v", Tconv(t, 0))
+ return 0
+ }
+}
+
+func dtypesym(t *Type) *Sym {
+ var ot int
+ var xt int
+ var n int
+ var isddd int
+ var dupok int
+ var s *Sym
+ var s1 *Sym
+ var s2 *Sym
+ var s3 *Sym
+ var s4 *Sym
+ var slink *Sym
+ var a *Sig
+ var m *Sig
+ var t1 *Type
+ var tbase *Type
+ var t2 *Type
+
+ // Replace byte, rune aliases with real type.
+ // They've been separate internally to make error messages
+ // better, but we have to merge them in the reflect tables.
+ if t == bytetype || t == runetype {
+ t = Types[t.Etype]
+ }
+
+ if isideal(t) != 0 {
+ Fatal("dtypesym %v", Tconv(t, 0))
+ }
+
+ s = typesym(t)
+ if s.Flags&SymSiggen != 0 {
+ return s
+ }
+ s.Flags |= SymSiggen
+
+ // special case (look for runtime below):
+ // when compiling package runtime,
+ // emit the type structures for int, float, etc.
+ tbase = t
+
+ if Isptr[t.Etype] != 0 && t.Sym == nil && t.Type.Sym != nil {
+ tbase = t.Type
+ }
+ dupok = 0
+ if tbase.Sym == nil {
+ dupok = obj.DUPOK
+ }
+
+ if compiling_runtime != 0 && (tbase == Types[tbase.Etype] || tbase == bytetype || tbase == runetype || tbase == errortype) { // int, float, etc
+ goto ok
+ }
+
+ // named types from other files are defined only by those files
+ if tbase.Sym != nil && !(tbase.Local != 0) {
+ return s
+ }
+ if isforw[tbase.Etype] != 0 {
+ return s
+ }
+
+ok:
+ ot = 0
+ xt = 0
+ switch t.Etype {
+ default:
+ ot = dcommontype(s, ot, t)
+ xt = ot - 3*Widthptr
+
+ case TARRAY:
+ if t.Bound >= 0 {
+ // ../../runtime/type.go:/ArrayType
+ s1 = dtypesym(t.Type)
+
+ t2 = typ(TARRAY)
+ t2.Type = t.Type
+ t2.Bound = -1 // slice
+ s2 = dtypesym(t2)
+ ot = dcommontype(s, ot, t)
+ xt = ot - 3*Widthptr
+ ot = dsymptr(s, ot, s1, 0)
+ ot = dsymptr(s, ot, s2, 0)
+ ot = duintptr(s, ot, uint64(t.Bound))
+ } else {
+ // ../../runtime/type.go:/SliceType
+ s1 = dtypesym(t.Type)
+
+ ot = dcommontype(s, ot, t)
+ xt = ot - 3*Widthptr
+ ot = dsymptr(s, ot, s1, 0)
+ }
+
+ // ../../runtime/type.go:/ChanType
+ case TCHAN:
+ s1 = dtypesym(t.Type)
+
+ ot = dcommontype(s, ot, t)
+ xt = ot - 3*Widthptr
+ ot = dsymptr(s, ot, s1, 0)
+ ot = duintptr(s, ot, uint64(t.Chan))
+
+ case TFUNC:
+ for t1 = getthisx(t).Type; t1 != nil; t1 = t1.Down {
+ dtypesym(t1.Type)
+ }
+ isddd = 0
+ for t1 = getinargx(t).Type; t1 != nil; t1 = t1.Down {
+ isddd = int(t1.Isddd)
+ dtypesym(t1.Type)
+ }
+
+ for t1 = getoutargx(t).Type; t1 != nil; t1 = t1.Down {
+ dtypesym(t1.Type)
+ }
+
+ ot = dcommontype(s, ot, t)
+ xt = ot - 3*Widthptr
+ ot = duint8(s, ot, uint8(isddd))
+
+ // two slice headers: in and out.
+ ot = int(Rnd(int64(ot), int64(Widthptr)))
+
+ ot = dsymptr(s, ot, s, ot+2*(Widthptr+2*Widthint))
+ n = t.Thistuple + t.Intuple
+ ot = duintxx(s, ot, uint64(n), Widthint)
+ ot = duintxx(s, ot, uint64(n), Widthint)
+ ot = dsymptr(s, ot, s, ot+1*(Widthptr+2*Widthint)+n*Widthptr)
+ ot = duintxx(s, ot, uint64(t.Outtuple), Widthint)
+ ot = duintxx(s, ot, uint64(t.Outtuple), Widthint)
+
+ // slice data
+ for t1 = getthisx(t).Type; t1 != nil; (func() { t1 = t1.Down; n++ })() {
+ ot = dsymptr(s, ot, dtypesym(t1.Type), 0)
+ }
+ for t1 = getinargx(t).Type; t1 != nil; (func() { t1 = t1.Down; n++ })() {
+ ot = dsymptr(s, ot, dtypesym(t1.Type), 0)
+ }
+ for t1 = getoutargx(t).Type; t1 != nil; (func() { t1 = t1.Down; n++ })() {
+ ot = dsymptr(s, ot, dtypesym(t1.Type), 0)
+ }
+
+ case TINTER:
+ m = imethods(t)
+ n = 0
+ for a = m; a != nil; a = a.link {
+ dtypesym(a.type_)
+ n++
+ }
+
+ // ../../runtime/type.go:/InterfaceType
+ ot = dcommontype(s, ot, t)
+
+ xt = ot - 3*Widthptr
+ ot = dsymptr(s, ot, s, ot+Widthptr+2*Widthint)
+ ot = duintxx(s, ot, uint64(n), Widthint)
+ ot = duintxx(s, ot, uint64(n), Widthint)
+ for a = m; a != nil; a = a.link {
+ // ../../runtime/type.go:/imethod
+ ot = dgostringptr(s, ot, a.name)
+
+ ot = dgopkgpath(s, ot, a.pkg)
+ ot = dsymptr(s, ot, dtypesym(a.type_), 0)
+ }
+
+ // ../../runtime/type.go:/MapType
+ case TMAP:
+ s1 = dtypesym(t.Down)
+
+ s2 = dtypesym(t.Type)
+ s3 = dtypesym(mapbucket(t))
+ s4 = dtypesym(hmap(t))
+ ot = dcommontype(s, ot, t)
+ xt = ot - 3*Widthptr
+ ot = dsymptr(s, ot, s1, 0)
+ ot = dsymptr(s, ot, s2, 0)
+ ot = dsymptr(s, ot, s3, 0)
+ ot = dsymptr(s, ot, s4, 0)
+ if t.Down.Width > MAXKEYSIZE {
+ ot = duint8(s, ot, uint8(Widthptr))
+ ot = duint8(s, ot, 1) // indirect
+ } else {
+ ot = duint8(s, ot, uint8(t.Down.Width))
+ ot = duint8(s, ot, 0) // not indirect
+ }
+
+ if t.Type.Width > MAXVALSIZE {
+ ot = duint8(s, ot, uint8(Widthptr))
+ ot = duint8(s, ot, 1) // indirect
+ } else {
+ ot = duint8(s, ot, uint8(t.Type.Width))
+ ot = duint8(s, ot, 0) // not indirect
+ }
+
+ ot = duint16(s, ot, uint16(mapbucket(t).Width))
+ ot = duint8(s, ot, uint8(isreflexive(t.Down)))
+
+ case TPTR32,
+ TPTR64:
+ if t.Type.Etype == TANY {
+ // ../../runtime/type.go:/UnsafePointerType
+ ot = dcommontype(s, ot, t)
+
+ break
+ }
+
+ // ../../runtime/type.go:/PtrType
+ s1 = dtypesym(t.Type)
+
+ ot = dcommontype(s, ot, t)
+ xt = ot - 3*Widthptr
+ ot = dsymptr(s, ot, s1, 0)
+
+ // ../../runtime/type.go:/StructType
+ // for security, only the exported fields.
+ case TSTRUCT:
+ n = 0
+
+ for t1 = t.Type; t1 != nil; t1 = t1.Down {
+ dtypesym(t1.Type)
+ n++
+ }
+
+ ot = dcommontype(s, ot, t)
+ xt = ot - 3*Widthptr
+ ot = dsymptr(s, ot, s, ot+Widthptr+2*Widthint)
+ ot = duintxx(s, ot, uint64(n), Widthint)
+ ot = duintxx(s, ot, uint64(n), Widthint)
+ for t1 = t.Type; t1 != nil; t1 = t1.Down {
+ // ../../runtime/type.go:/structField
+ if t1.Sym != nil && !(t1.Embedded != 0) {
+ ot = dgostringptr(s, ot, t1.Sym.Name)
+ if exportname(t1.Sym.Name) {
+ ot = dgostringptr(s, ot, "")
+ } else {
+ ot = dgopkgpath(s, ot, t1.Sym.Pkg)
+ }
+ } else {
+ ot = dgostringptr(s, ot, "")
+ if t1.Type.Sym != nil && t1.Type.Sym.Pkg == builtinpkg {
+ ot = dgopkgpath(s, ot, localpkg)
+ } else {
+ ot = dgostringptr(s, ot, "")
+ }
+ }
+
+ ot = dsymptr(s, ot, dtypesym(t1.Type), 0)
+ ot = dgostrlitptr(s, ot, t1.Note)
+ ot = duintptr(s, ot, uint64(t1.Width)) // field offset
+ }
+ }
+
+ ot = dextratype(s, ot, t, xt)
+ ggloblsym(s, int32(ot), int8(dupok|obj.RODATA))
+
+ // generate typelink.foo pointing at s = type.foo.
+ // The linker will leave a table of all the typelinks for
+ // types in the binary, so reflect can find them.
+ // We only need the link for unnamed composites that
+ // we want be able to find.
+ if t.Sym == nil {
+ switch t.Etype {
+ case TARRAY,
+ TCHAN,
+ TMAP:
+ slink = typelinksym(t)
+ dsymptr(slink, 0, s, 0)
+ ggloblsym(slink, int32(Widthptr), int8(dupok|obj.RODATA))
+ }
+ }
+
+ return s
+}
+
+func dumptypestructs() {
+ var i int
+ var l *NodeList
+ var n *Node
+ var t *Type
+ var p *Pkg
+
+ // copy types from externdcl list to signatlist
+ for l = externdcl; l != nil; l = l.Next {
+ n = l.N
+ if n.Op != OTYPE {
+ continue
+ }
+ signatlist = list(signatlist, n)
+ }
+
+ // process signatlist
+ for l = signatlist; l != nil; l = l.Next {
+ n = l.N
+ if n.Op != OTYPE {
+ continue
+ }
+ t = n.Type
+ dtypesym(t)
+ if t.Sym != nil {
+ dtypesym(Ptrto(t))
+ }
+ }
+
+ // generate import strings for imported packages
+ for i = 0; i < len(phash); i++ {
+ for p = phash[i]; p != nil; p = p.Link {
+ if p.Direct != 0 {
+ dimportpath(p)
+ }
+ }
+ }
+
+ // do basic types if compiling package runtime.
+ // they have to be in at least one package,
+ // and runtime is always loaded implicitly,
+ // so this is as good as any.
+ // another possible choice would be package main,
+ // but using runtime means fewer copies in .6 files.
+ if compiling_runtime != 0 {
+ for i = 1; i <= TBOOL; i++ {
+ dtypesym(Ptrto(Types[i]))
+ }
+ dtypesym(Ptrto(Types[TSTRING]))
+ dtypesym(Ptrto(Types[TUNSAFEPTR]))
+
+ // emit type structs for error and func(error) string.
+ // The latter is the type of an auto-generated wrapper.
+ dtypesym(Ptrto(errortype))
+
+ dtypesym(functype(nil, list1(Nod(ODCLFIELD, nil, typenod(errortype))), list1(Nod(ODCLFIELD, nil, typenod(Types[TSTRING])))))
+
+ // add paths for runtime and main, which 6l imports implicitly.
+ dimportpath(Runtimepkg)
+
+ if flag_race != 0 {
+ dimportpath(racepkg)
+ }
+ dimportpath(mkpkg(newstrlit("main")))
+ }
+}
+
+func dalgsym(t *Type) *Sym {
+ var ot int
+ var s *Sym
+ var hash *Sym
+ var hashfunc *Sym
+ var eq *Sym
+ var eqfunc *Sym
+ var p string
+
+ // dalgsym is only called for a type that needs an algorithm table,
+ // which implies that the type is comparable (or else it would use ANOEQ).
+
+ if algtype(t) == AMEM {
+ // we use one algorithm table for all AMEM types of a given size
+ p = fmt.Sprintf(".alg%d", t.Width)
+
+ s = Pkglookup(p, typepkg)
+
+ if s.Flags&SymAlgGen != 0 {
+ return s
+ }
+ s.Flags |= SymAlgGen
+
+ // make hash closure
+ p = fmt.Sprintf(".hashfunc%d", t.Width)
+
+ hashfunc = Pkglookup(p, typepkg)
+
+ ot = 0
+ ot = dsymptr(hashfunc, ot, Pkglookup("memhash_varlen", Runtimepkg), 0)
+ ot = duintxx(hashfunc, ot, uint64(t.Width), Widthptr) // size encoded in closure
+ ggloblsym(hashfunc, int32(ot), obj.DUPOK|obj.RODATA)
+
+ // make equality closure
+ p = fmt.Sprintf(".eqfunc%d", t.Width)
+
+ eqfunc = Pkglookup(p, typepkg)
+
+ ot = 0
+ ot = dsymptr(eqfunc, ot, Pkglookup("memequal_varlen", Runtimepkg), 0)
+ ot = duintxx(eqfunc, ot, uint64(t.Width), Widthptr)
+ ggloblsym(eqfunc, int32(ot), obj.DUPOK|obj.RODATA)
+ } else {
+ // generate an alg table specific to this type
+ s = typesymprefix(".alg", t)
+
+ hash = typesymprefix(".hash", t)
+ eq = typesymprefix(".eq", t)
+ hashfunc = typesymprefix(".hashfunc", t)
+ eqfunc = typesymprefix(".eqfunc", t)
+
+ genhash(hash, t)
+ geneq(eq, t)
+
+ // make Go funcs (closures) for calling hash and equal from Go
+ dsymptr(hashfunc, 0, hash, 0)
+
+ ggloblsym(hashfunc, int32(Widthptr), obj.DUPOK|obj.RODATA)
+ dsymptr(eqfunc, 0, eq, 0)
+ ggloblsym(eqfunc, int32(Widthptr), obj.DUPOK|obj.RODATA)
+ }
+
+ // ../../runtime/alg.go:/typeAlg
+ ot = 0
+
+ ot = dsymptr(s, ot, hashfunc, 0)
+ ot = dsymptr(s, ot, eqfunc, 0)
+ ggloblsym(s, int32(ot), obj.DUPOK|obj.RODATA)
+ return s
+}
+
+func usegcprog(t *Type) int {
+ var size int64
+ var nptr int64
+
+ if !haspointers(t) {
+ return 0
+ }
+ if t.Width == BADWIDTH {
+ dowidth(t)
+ }
+
+ // Calculate size of the unrolled GC mask.
+ nptr = (t.Width + int64(Widthptr) - 1) / int64(Widthptr)
+
+ size = nptr
+ if size%2 != 0 {
+ size *= 2 // repeated
+ }
+ size = size * obj.GcBits / 8 // 4 bits per word
+
+ // Decide whether to use unrolled GC mask or GC program.
+ // We could use a more elaborate condition, but this seems to work well in practice.
+ // For small objects GC program can't give significant reduction.
+ // While large objects usually contain arrays; and even if it don't
+ // the program uses 2-bits per word while mask uses 4-bits per word,
+ // so the program is still smaller.
+ return bool2int(size > int64(2*Widthptr))
+}
+
+// Generates sparse GC bitmask (4 bits per word).
+func gengcmask(t *Type, gcmask []byte) {
+ var vec *Bvec
+ var xoffset int64
+ var nptr int64
+ var i int64
+ var j int64
+ var half int
+ var bits uint8
+ var pos []byte
+
+ for i = 0; i < 16; i++ {
+ gcmask[i] = 0
+ }
+ if !haspointers(t) {
+ return
+ }
+
+ // Generate compact mask as stacks use.
+ xoffset = 0
+
+ vec = bvalloc(2 * int32(Widthptr) * 8)
+ twobitwalktype1(t, &xoffset, vec)
+
+ // Unfold the mask for the GC bitmap format:
+ // 4 bits per word, 2 high bits encode pointer info.
+ pos = gcmask
+
+ nptr = (t.Width + int64(Widthptr) - 1) / int64(Widthptr)
+ half = 0
+
+ // If number of words is odd, repeat the mask.
+ // This makes simpler handling of arrays in runtime.
+ for j = 0; j <= (nptr % 2); j++ {
+ for i = 0; i < nptr; i++ {
+ bits = uint8(bvget(vec, int32(i*obj.BitsPerPointer)) | bvget(vec, int32(i*obj.BitsPerPointer+1))<<1)
+
+ // Some fake types (e.g. Hmap) has missing fileds.
+ // twobitwalktype1 generates BitsDead for that holes,
+ // replace BitsDead with BitsScalar.
+ if bits == obj.BitsDead {
+ bits = obj.BitsScalar
+ }
+ bits <<= 2
+ if half != 0 {
+ bits <<= 4
+ }
+ pos[0] |= byte(bits)
+ half = bool2int(!(half != 0))
+ if !(half != 0) {
+ pos = pos[1:]
+ }
+ }
+ }
+}
+
+// Helper object for generation of GC programs.
+type ProgGen struct {
+ s *Sym
+ datasize int32
+ data [256 / obj.PointersPerByte]uint8
+ ot int64
+}
+
+func proggeninit(g *ProgGen, s *Sym) {
+ g.s = s
+ g.datasize = 0
+ g.ot = 0
+ g.data = [256 / obj.PointersPerByte]uint8{}
+}
+
+func proggenemit(g *ProgGen, v uint8) {
+ g.ot = int64(duint8(g.s, int(g.ot), v))
+}
+
+// Emits insData block from g->data.
+func proggendataflush(g *ProgGen) {
+ var i int32
+ var s int32
+
+ if g.datasize == 0 {
+ return
+ }
+ proggenemit(g, obj.InsData)
+ proggenemit(g, uint8(g.datasize))
+ s = (g.datasize + obj.PointersPerByte - 1) / obj.PointersPerByte
+ for i = 0; i < s; i++ {
+ proggenemit(g, g.data[i])
+ }
+ g.datasize = 0
+ g.data = [256 / obj.PointersPerByte]uint8{}
+}
+
+func proggendata(g *ProgGen, d uint8) {
+ g.data[g.datasize/obj.PointersPerByte] |= d << uint((g.datasize%obj.PointersPerByte)*obj.BitsPerPointer)
+ g.datasize++
+ if g.datasize == 255 {
+ proggendataflush(g)
+ }
+}
+
+// Skip v bytes due to alignment, etc.
+func proggenskip(g *ProgGen, off int64, v int64) {
+ var i int64
+
+ for i = off; i < off+v; i++ {
+ if (i % int64(Widthptr)) == 0 {
+ proggendata(g, obj.BitsScalar)
+ }
+ }
+}
+
+// Emit insArray instruction.
+func proggenarray(g *ProgGen, len int64) {
+ var i int32
+
+ proggendataflush(g)
+ proggenemit(g, obj.InsArray)
+ for i = 0; i < int32(Widthptr); (func() { i++; len >>= 8 })() {
+ proggenemit(g, uint8(len))
+ }
+}
+
+func proggenarrayend(g *ProgGen) {
+ proggendataflush(g)
+ proggenemit(g, obj.InsArrayEnd)
+}
+
+func proggenfini(g *ProgGen) int64 {
+ proggendataflush(g)
+ proggenemit(g, obj.InsEnd)
+ return g.ot
+}
+
+// Generates GC program for large types.
+func gengcprog(t *Type, pgc0 **Sym, pgc1 **Sym) {
+ var gc0 *Sym
+ var gc1 *Sym
+ var nptr int64
+ var size int64
+ var ot int64
+ var xoffset int64
+ var g ProgGen
+
+ nptr = (t.Width + int64(Widthptr) - 1) / int64(Widthptr)
+ size = nptr
+ if size%2 != 0 {
+ size *= 2 // repeated twice
+ }
+ size = size * obj.PointersPerByte / 8 // 4 bits per word
+ size++ // unroll flag in the beginning, used by runtime (see runtime.markallocated)
+
+ // emity space in BSS for unrolled program
+ *pgc0 = nil
+
+ // Don't generate it if it's too large, runtime will unroll directly into GC bitmap.
+ if size <= obj.MaxGCMask {
+ gc0 = typesymprefix(".gc", t)
+ ggloblsym(gc0, int32(size), obj.DUPOK|obj.NOPTR)
+ *pgc0 = gc0
+ }
+
+ // program in RODATA
+ gc1 = typesymprefix(".gcprog", t)
+
+ proggeninit(&g, gc1)
+ xoffset = 0
+ gengcprog1(&g, t, &xoffset)
+ ot = proggenfini(&g)
+ ggloblsym(gc1, int32(ot), obj.DUPOK|obj.RODATA)
+ *pgc1 = gc1
+}
+
+// Recursively walks type t and writes GC program into g.
+func gengcprog1(g *ProgGen, t *Type, xoffset *int64) {
+ var fieldoffset int64
+ var i int64
+ var o int64
+ var n int64
+ var t1 *Type
+
+ switch t.Etype {
+ case TINT8,
+ TUINT8,
+ TINT16,
+ TUINT16,
+ TINT32,
+ TUINT32,
+ TINT64,
+ TUINT64,
+ TINT,
+ TUINT,
+ TUINTPTR,
+ TBOOL,
+ TFLOAT32,
+ TFLOAT64,
+ TCOMPLEX64,
+ TCOMPLEX128:
+ proggenskip(g, *xoffset, t.Width)
+ *xoffset += t.Width
+
+ case TPTR32,
+ TPTR64,
+ TUNSAFEPTR,
+ TFUNC,
+ TCHAN,
+ TMAP:
+ proggendata(g, obj.BitsPointer)
+ *xoffset += t.Width
+
+ case TSTRING:
+ proggendata(g, obj.BitsPointer)
+ proggendata(g, obj.BitsScalar)
+ *xoffset += t.Width
+
+ // Assuming IfacePointerOnly=1.
+ case TINTER:
+ proggendata(g, obj.BitsPointer)
+
+ proggendata(g, obj.BitsPointer)
+ *xoffset += t.Width
+
+ case TARRAY:
+ if Isslice(t) != 0 {
+ proggendata(g, obj.BitsPointer)
+ proggendata(g, obj.BitsScalar)
+ proggendata(g, obj.BitsScalar)
+ } else {
+ t1 = t.Type
+ if t1.Width == 0 {
+ }
+ // ignore
+ if t.Bound <= 1 || t.Bound*t1.Width < int64(32*Widthptr) {
+ for i = 0; i < t.Bound; i++ {
+ gengcprog1(g, t1, xoffset)
+ }
+ } else if !haspointers(t1) {
+ n = t.Width
+ n -= -*xoffset & (int64(Widthptr) - 1) // skip to next ptr boundary
+ proggenarray(g, (n+int64(Widthptr)-1)/int64(Widthptr))
+ proggendata(g, obj.BitsScalar)
+ proggenarrayend(g)
+ *xoffset -= (n+int64(Widthptr)-1)/int64(Widthptr)*int64(Widthptr) - t.Width
+ } else {
+ proggenarray(g, t.Bound)
+ gengcprog1(g, t1, xoffset)
+ *xoffset += (t.Bound - 1) * t1.Width
+ proggenarrayend(g)
+ }
+ }
+
+ case TSTRUCT:
+ o = 0
+ for t1 = t.Type; t1 != nil; t1 = t1.Down {
+ fieldoffset = t1.Width
+ proggenskip(g, *xoffset, fieldoffset-o)
+ *xoffset += fieldoffset - o
+ gengcprog1(g, t1.Type, xoffset)
+ o = fieldoffset + t1.Type.Width
+ }
+
+ proggenskip(g, *xoffset, t.Width-o)
+ *xoffset += t.Width - o
+
+ default:
+ Fatal("gengcprog1: unexpected type, %v", Tconv(t, 0))
+ }
+}