[dev.cc] cmd/internal/gc, cmd/new6g etc: convert from cmd/gc, cmd/6g etc
First draft of converted Go compiler, using rsc.io/c2go rev 83d795a.
Change-Id: I29f4c7010de07d2ff1947bbca9865879d83c32c3
Reviewed-on: https://go-review.googlesource.com/4851
Reviewed-by: Rob Pike <r@golang.org>
diff --git a/src/cmd/internal/gc/popt.go b/src/cmd/internal/gc/popt.go
new file mode 100644
index 0000000..6d69120
--- /dev/null
+++ b/src/cmd/internal/gc/popt.go
@@ -0,0 +1,1283 @@
+// Derived from Inferno utils/6c/reg.c
+// http://code.google.com/p/inferno-os/source/browse/utils/6c/reg.c
+//
+// Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved.
+// Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
+// Portions Copyright © 1997-1999 Vita Nuova Limited
+// Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
+// Portions Copyright © 2004,2006 Bruce Ellis
+// Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
+// Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
+// Portions Copyright © 2009 The Go Authors. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+package gc
+
+import (
+ "cmd/internal/obj"
+ "fmt"
+ "sort"
+ "strings"
+)
+
+// "Portable" optimizations.
+// Compiled separately for 5g, 6g, and 8g, so allowed to use gg.h, opt.h.
+// Must code to the intersection of the three back ends.
+
+// Derived from Inferno utils/6c/gc.h
+// http://code.google.com/p/inferno-os/source/browse/utils/6c/gc.h
+//
+// Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved.
+// Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
+// Portions Copyright © 1997-1999 Vita Nuova Limited
+// Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
+// Portions Copyright © 2004,2006 Bruce Ellis
+// Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
+// Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
+// Portions Copyright © 2009 The Go Authors. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+const (
+ CLOAD = 5
+ CREF = 5
+ CINF = 1000
+ LOOP = 3
+)
+
+type Reg struct {
+ set Bits
+ use1 Bits
+ use2 Bits
+ refbehind Bits
+ refahead Bits
+ calbehind Bits
+ calahead Bits
+ regdiff Bits
+ act Bits
+ regu uint64
+}
+
+type Rgn struct {
+ enter *Flow
+ cost int16
+ varno int16
+ regno int16
+}
+
+var Z *Node
+
+// A Reg is a wrapper around a single Prog (one instruction) that holds
+// register optimization information while the optimizer runs.
+// r->prog is the instruction.
+
+var R *Reg
+
+const (
+ NRGN = 600
+)
+
+// A Rgn represents a single regopt variable over a region of code
+// where a register could potentially be dedicated to that variable.
+// The code encompassed by a Rgn is defined by the flow graph,
+// starting at enter, flood-filling forward while varno is refahead
+// and backward while varno is refbehind, and following branches. A
+// single variable may be represented by multiple disjoint Rgns and
+// each Rgn may choose a different register for that variable.
+// Registers are allocated to regions greedily in order of descending
+// cost.
+
+var zreg Reg
+
+var region [NRGN]Rgn
+
+var rgp *Rgn
+
+var nregion int
+
+var nvar int
+
+var regbits uint64
+
+var externs Bits
+
+var params Bits
+
+var consts Bits
+
+var addrs Bits
+
+var ivar Bits
+
+var ovar Bits
+
+var change int
+
+var maxnr int32
+
+type OptStats struct {
+ Ncvtreg int32
+ Nspill int32
+ Nreload int32
+ Ndelmov int32
+ Nvar int32
+ Naddr int32
+}
+
+var Ostats OptStats
+
+/*
+ * reg.c
+ */
+
+/*
+ * peep.c
+void peep(Prog*);
+void excise(Flow*);
+int copyu(Prog*, Adr*, Adr*);
+*/
+
+/*
+ * prog.c
+
+void proginfo(ProgInfo*, Prog*);
+*/
+// p is a call instruction. Does the call fail to return?
+
+var noreturn_symlist [10]*Sym
+
+func Noreturn(p *obj.Prog) int {
+ var s *Sym
+ var i int
+
+ if noreturn_symlist[0] == nil {
+ noreturn_symlist[0] = Pkglookup("panicindex", Runtimepkg)
+ noreturn_symlist[1] = Pkglookup("panicslice", Runtimepkg)
+ noreturn_symlist[2] = Pkglookup("throwinit", Runtimepkg)
+ noreturn_symlist[3] = Pkglookup("gopanic", Runtimepkg)
+ noreturn_symlist[4] = Pkglookup("panicwrap", Runtimepkg)
+ noreturn_symlist[5] = Pkglookup("throwreturn", Runtimepkg)
+ noreturn_symlist[6] = Pkglookup("selectgo", Runtimepkg)
+ noreturn_symlist[7] = Pkglookup("block", Runtimepkg)
+ }
+
+ if p.To.Node == nil {
+ return 0
+ }
+ s = ((p.To.Node).(*Node)).Sym
+ if s == nil {
+ return 0
+ }
+ for i = 0; noreturn_symlist[i] != nil; i++ {
+ if s == noreturn_symlist[i] {
+ return 1
+ }
+ }
+ return 0
+}
+
+// JMP chasing and removal.
+//
+// The code generator depends on being able to write out jump
+// instructions that it can jump to now but fill in later.
+// the linker will resolve them nicely, but they make the code
+// longer and more difficult to follow during debugging.
+// Remove them.
+
+/* what instruction does a JMP to p eventually land on? */
+func chasejmp(p *obj.Prog, jmploop *int) *obj.Prog {
+ var n int
+
+ n = 0
+ for p != nil && p.As == obj.AJMP && p.To.Type == obj.TYPE_BRANCH {
+ n++
+ if n > 10 {
+ *jmploop = 1
+ break
+ }
+
+ p = p.To.U.Branch
+ }
+
+ return p
+}
+
+/*
+ * reuse reg pointer for mark/sweep state.
+ * leave reg==nil at end because alive==nil.
+ */
+var alive interface{} = nil
+var dead interface{} = 1
+
+/* mark all code reachable from firstp as alive */
+func mark(firstp *obj.Prog) {
+ var p *obj.Prog
+
+ for p = firstp; p != nil; p = p.Link {
+ if p.Opt != dead {
+ break
+ }
+ p.Opt = alive
+ if p.As != obj.ACALL && p.To.Type == obj.TYPE_BRANCH && p.To.U.Branch != nil {
+ mark(p.To.U.Branch)
+ }
+ if p.As == obj.AJMP || p.As == obj.ARET || p.As == obj.AUNDEF {
+ break
+ }
+ }
+}
+
+func fixjmp(firstp *obj.Prog) {
+ var jmploop int
+ var p *obj.Prog
+ var last *obj.Prog
+
+ if Debug['R'] != 0 && Debug['v'] != 0 {
+ fmt.Printf("\nfixjmp\n")
+ }
+
+ // pass 1: resolve jump to jump, mark all code as dead.
+ jmploop = 0
+
+ for p = firstp; p != nil; p = p.Link {
+ if Debug['R'] != 0 && Debug['v'] != 0 {
+ fmt.Printf("%v\n", p)
+ }
+ if p.As != obj.ACALL && p.To.Type == obj.TYPE_BRANCH && p.To.U.Branch != nil && p.To.U.Branch.As == obj.AJMP {
+ p.To.U.Branch = chasejmp(p.To.U.Branch, &jmploop)
+ if Debug['R'] != 0 && Debug['v'] != 0 {
+ fmt.Printf("->%v\n", p)
+ }
+ }
+
+ p.Opt = dead
+ }
+
+ if Debug['R'] != 0 && Debug['v'] != 0 {
+ fmt.Printf("\n")
+ }
+
+ // pass 2: mark all reachable code alive
+ mark(firstp)
+
+ // pass 3: delete dead code (mostly JMPs).
+ last = nil
+
+ for p = firstp; p != nil; p = p.Link {
+ if p.Opt == dead {
+ if p.Link == nil && p.As == obj.ARET && last != nil && last.As != obj.ARET {
+ // This is the final ARET, and the code so far doesn't have one.
+ // Let it stay. The register allocator assumes that all live code in
+ // the function can be traversed by starting at all the RET instructions
+ // and following predecessor links. If we remove the final RET,
+ // this assumption will not hold in the case of an infinite loop
+ // at the end of a function.
+ // Keep the RET but mark it dead for the liveness analysis.
+ p.Mode = 1
+ } else {
+ if Debug['R'] != 0 && Debug['v'] != 0 {
+ fmt.Printf("del %v\n", p)
+ }
+ continue
+ }
+ }
+
+ if last != nil {
+ last.Link = p
+ }
+ last = p
+ }
+
+ last.Link = nil
+
+ // pass 4: elide JMP to next instruction.
+ // only safe if there are no jumps to JMPs anymore.
+ if !(jmploop != 0) {
+ last = nil
+ for p = firstp; p != nil; p = p.Link {
+ if p.As == obj.AJMP && p.To.Type == obj.TYPE_BRANCH && p.To.U.Branch == p.Link {
+ if Debug['R'] != 0 && Debug['v'] != 0 {
+ fmt.Printf("del %v\n", p)
+ }
+ continue
+ }
+
+ if last != nil {
+ last.Link = p
+ }
+ last = p
+ }
+
+ last.Link = nil
+ }
+
+ if Debug['R'] != 0 && Debug['v'] != 0 {
+ fmt.Printf("\n")
+ for p = firstp; p != nil; p = p.Link {
+ fmt.Printf("%v\n", p)
+ }
+ fmt.Printf("\n")
+ }
+}
+
+// Control flow analysis. The Flow structures hold predecessor and successor
+// information as well as basic loop analysis.
+//
+// graph = flowstart(firstp, 0);
+// ... use flow graph ...
+// flowend(graph); // free graph
+//
+// Typical uses of the flow graph are to iterate over all the flow-relevant instructions:
+//
+// for(f = graph->start; f != nil; f = f->link)
+//
+// or, given an instruction f, to iterate over all the predecessors, which is
+// f->p1 and this list:
+//
+// for(f2 = f->p2; f2 != nil; f2 = f2->p2link)
+//
+// The size argument to flowstart specifies an amount of zeroed memory
+// to allocate in every f->data field, for use by the client.
+// If size == 0, f->data will be nil.
+
+func Flowstart(firstp *obj.Prog, newData func() interface{}) *Graph {
+ var id int
+ var nf int
+ var f *Flow
+ var f1 *Flow
+ var start *Flow
+ var last *Flow
+ var graph *Graph
+ var p *obj.Prog
+ var info ProgInfo
+
+ // Count and mark instructions to annotate.
+ nf = 0
+
+ for p = firstp; p != nil; p = p.Link {
+ p.Opt = nil // should be already, but just in case
+ Thearch.Proginfo(&info, p)
+ if info.Flags&Skip != 0 {
+ continue
+ }
+ p.Opt = interface{}(1)
+ nf++
+ }
+
+ if nf == 0 {
+ return nil
+ }
+
+ if nf >= 20000 {
+ // fatal("%S is too big (%d instructions)", curfn->nname->sym, nf);
+ return nil
+ }
+
+ // Allocate annotations and assign to instructions.
+ graph = new(Graph)
+ ff := make([]Flow, nf)
+ start = &ff[0]
+ id = 0
+ for p = firstp; p != nil; p = p.Link {
+ if p.Opt == nil {
+ continue
+ }
+ f := &ff[0]
+ ff = ff[1:]
+ p.Opt = f
+ f.Prog = p
+ if last != nil {
+ last.Link = f
+ }
+ last = f
+ if newData != nil {
+ f.Data = newData()
+ }
+ f.Id = int32(id)
+ id++
+ }
+
+ // Fill in pred/succ information.
+ for f = start; f != nil; f = f.Link {
+ p = f.Prog
+ Thearch.Proginfo(&info, p)
+ if !(info.Flags&Break != 0) {
+ f1 = f.Link
+ f.S1 = f1
+ f1.P1 = f
+ }
+
+ if p.To.Type == obj.TYPE_BRANCH {
+ if p.To.U.Branch == nil {
+ Fatal("pnil %v", p)
+ }
+ f1 = p.To.U.Branch.Opt.(*Flow)
+ if f1 == nil {
+ Fatal("fnil %v / %v", p, p.To.U.Branch)
+ }
+ if f1 == f {
+ //fatal("self loop %P", p);
+ continue
+ }
+
+ f.S2 = f1
+ f.P2link = f1.P2
+ f1.P2 = f
+ }
+ }
+
+ graph.Start = start
+ graph.Num = nf
+ return graph
+}
+
+func Flowend(graph *Graph) {
+ var f *Flow
+
+ for f = graph.Start; f != nil; f = f.Link {
+ f.Prog.Opt = nil
+ }
+}
+
+/*
+ * find looping structure
+ *
+ * 1) find reverse postordering
+ * 2) find approximate dominators,
+ * the actual dominators if the flow graph is reducible
+ * otherwise, dominators plus some other non-dominators.
+ * See Matthew S. Hecht and Jeffrey D. Ullman,
+ * "Analysis of a Simple Algorithm for Global Data Flow Problems",
+ * Conf. Record of ACM Symp. on Principles of Prog. Langs, Boston, Massachusetts,
+ * Oct. 1-3, 1973, pp. 207-217.
+ * 3) find all nodes with a predecessor dominated by the current node.
+ * such a node is a loop head.
+ * recursively, all preds with a greater rpo number are in the loop
+ */
+func postorder(r *Flow, rpo2r []*Flow, n int32) int32 {
+ var r1 *Flow
+
+ r.Rpo = 1
+ r1 = r.S1
+ if r1 != nil && !(r1.Rpo != 0) {
+ n = postorder(r1, rpo2r, n)
+ }
+ r1 = r.S2
+ if r1 != nil && !(r1.Rpo != 0) {
+ n = postorder(r1, rpo2r, n)
+ }
+ rpo2r[n] = r
+ n++
+ return n
+}
+
+func rpolca(idom []int32, rpo1 int32, rpo2 int32) int32 {
+ var t int32
+
+ if rpo1 == -1 {
+ return rpo2
+ }
+ for rpo1 != rpo2 {
+ if rpo1 > rpo2 {
+ t = rpo2
+ rpo2 = rpo1
+ rpo1 = t
+ }
+
+ for rpo1 < rpo2 {
+ t = idom[rpo2]
+ if t >= rpo2 {
+ Fatal("bad idom")
+ }
+ rpo2 = t
+ }
+ }
+
+ return rpo1
+}
+
+func doms(idom []int32, r int32, s int32) int {
+ for s > r {
+ s = idom[s]
+ }
+ return bool2int(s == r)
+}
+
+func loophead(idom []int32, r *Flow) int {
+ var src int32
+
+ src = r.Rpo
+ if r.P1 != nil && doms(idom, src, r.P1.Rpo) != 0 {
+ return 1
+ }
+ for r = r.P2; r != nil; r = r.P2link {
+ if doms(idom, src, r.Rpo) != 0 {
+ return 1
+ }
+ }
+ return 0
+}
+
+func loopmark(rpo2r **Flow, head int32, r *Flow) {
+ if r.Rpo < head || r.Active == head {
+ return
+ }
+ r.Active = head
+ r.Loop += LOOP
+ if r.P1 != nil {
+ loopmark(rpo2r, head, r.P1)
+ }
+ for r = r.P2; r != nil; r = r.P2link {
+ loopmark(rpo2r, head, r)
+ }
+}
+
+func flowrpo(g *Graph) {
+ var r1 *Flow
+ var i int32
+ var d int32
+ var me int32
+ var nr int32
+ var idom []int32
+ var rpo2r []*Flow
+
+ g.Rpo = make([]*Flow, g.Num)
+ idom = make([]int32, g.Num)
+
+ for r1 = g.Start; r1 != nil; r1 = r1.Link {
+ r1.Active = 0
+ }
+
+ rpo2r = g.Rpo
+ d = postorder(g.Start, rpo2r, 0)
+ nr = int32(g.Num)
+ if d > nr {
+ Fatal("too many reg nodes %d %d", d, nr)
+ }
+ nr = d
+ for i = 0; i < nr/2; i++ {
+ r1 = rpo2r[i]
+ rpo2r[i] = rpo2r[nr-1-i]
+ rpo2r[nr-1-i] = r1
+ }
+
+ for i = 0; i < nr; i++ {
+ rpo2r[i].Rpo = i
+ }
+
+ idom[0] = 0
+ for i = 0; i < nr; i++ {
+ r1 = rpo2r[i]
+ me = r1.Rpo
+ d = -1
+
+ // rpo2r[r->rpo] == r protects against considering dead code,
+ // which has r->rpo == 0.
+ if r1.P1 != nil && rpo2r[r1.P1.Rpo] == r1.P1 && r1.P1.Rpo < me {
+ d = r1.P1.Rpo
+ }
+ for r1 = r1.P2; r1 != nil; r1 = r1.P2link {
+ if rpo2r[r1.Rpo] == r1 && r1.Rpo < me {
+ d = rpolca(idom, d, r1.Rpo)
+ }
+ }
+ idom[i] = d
+ }
+
+ for i = 0; i < nr; i++ {
+ r1 = rpo2r[i]
+ r1.Loop++
+ if r1.P2 != nil && loophead(idom, r1) != 0 {
+ loopmark(&rpo2r[0], i, r1)
+ }
+ }
+
+ for r1 = g.Start; r1 != nil; r1 = r1.Link {
+ r1.Active = 0
+ }
+}
+
+func Uniqp(r *Flow) *Flow {
+ var r1 *Flow
+
+ r1 = r.P1
+ if r1 == nil {
+ r1 = r.P2
+ if r1 == nil || r1.P2link != nil {
+ return nil
+ }
+ } else if r.P2 != nil {
+ return nil
+ }
+ return r1
+}
+
+func Uniqs(r *Flow) *Flow {
+ var r1 *Flow
+
+ r1 = r.S1
+ if r1 == nil {
+ r1 = r.S2
+ if r1 == nil {
+ return nil
+ }
+ } else if r.S2 != nil {
+ return nil
+ }
+ return r1
+}
+
+// The compilers assume they can generate temporary variables
+// as needed to preserve the right semantics or simplify code
+// generation and the back end will still generate good code.
+// This results in a large number of ephemeral temporary variables.
+// Merge temps with non-overlapping lifetimes and equal types using the
+// greedy algorithm in Poletto and Sarkar, "Linear Scan Register Allocation",
+// ACM TOPLAS 1999.
+
+type TempVar struct {
+ node *Node
+ def *Flow
+ use *Flow
+ freelink *TempVar
+ merge *TempVar
+ start int64
+ end int64
+ addr uint8
+ removed uint8
+}
+
+type startcmp []*TempVar
+
+func (x startcmp) Len() int {
+ return len(x)
+}
+
+func (x startcmp) Swap(i, j int) {
+ x[i], x[j] = x[j], x[i]
+}
+
+func (x startcmp) Less(i, j int) bool {
+ var a *TempVar
+ var b *TempVar
+
+ a = x[i]
+ b = x[j]
+
+ if a.start < b.start {
+ return true
+ }
+ if a.start > b.start {
+ return false
+ }
+
+ // Order what's left by id or symbol name,
+ // just so that sort is forced into a specific ordering,
+ // so that the result of the sort does not depend on
+ // the sort implementation.
+ if a.def != b.def {
+ return int(a.def.Id-b.def.Id) < 0
+ }
+ if a.node != b.node {
+ return stringsCompare(a.node.Sym.Name, b.node.Sym.Name) < 0
+ }
+ return false
+}
+
+// Is n available for merging?
+func canmerge(n *Node) int {
+ return bool2int(n.Class == PAUTO && strings.HasPrefix(n.Sym.Name, "autotmp"))
+}
+
+func mergetemp(firstp *obj.Prog) {
+ var i int
+ var j int
+ var nvar int
+ var ninuse int
+ var nfree int
+ var nkill int
+ var var_ []TempVar
+ var v *TempVar
+ var v1 *TempVar
+ var bystart []*TempVar
+ var inuse []*TempVar
+ var f *Flow
+ var l *NodeList
+ var lp **NodeList
+ var n *Node
+ var p *obj.Prog
+ var p1 *obj.Prog
+ var t *Type
+ var info ProgInfo
+ var info1 ProgInfo
+ var gen int32
+ var g *Graph
+ const (
+ debugmerge = 1
+ )
+
+ g = Flowstart(firstp, nil)
+ if g == nil {
+ return
+ }
+
+ // Build list of all mergeable variables.
+ nvar = 0
+ for l = Curfn.Dcl; l != nil; l = l.Next {
+ if canmerge(l.N) != 0 {
+ nvar++
+ }
+ }
+
+ var_ = make([]TempVar, nvar)
+ nvar = 0
+ for l = Curfn.Dcl; l != nil; l = l.Next {
+ n = l.N
+ if canmerge(n) != 0 {
+ v = &var_[nvar]
+ nvar++
+ n.Opt = v
+ v.node = n
+ }
+ }
+
+ // Build list of uses.
+ // We assume that the earliest reference to a temporary is its definition.
+ // This is not true of variables in general but our temporaries are all
+ // single-use (that's why we have so many!).
+ for f = g.Start; f != nil; f = f.Link {
+ p = f.Prog
+ Thearch.Proginfo(&info, p)
+
+ if p.From.Node != nil && ((p.From.Node).(*Node)).Opt != nil && p.To.Node != nil && ((p.To.Node).(*Node)).Opt != nil {
+ Fatal("double node %v", p)
+ }
+ v = nil
+ n, _ = p.From.Node.(*Node)
+ if n != nil {
+ v, _ = n.Opt.(*TempVar)
+ }
+ if v == nil {
+ n, _ = p.To.Node.(*Node)
+ if n != nil {
+ v, _ = n.Opt.(*TempVar)
+ }
+ }
+ if v != nil {
+ if v.def == nil {
+ v.def = f
+ }
+ f.Data = v.use
+ v.use = f
+ if n == p.From.Node && (info.Flags&LeftAddr != 0) {
+ v.addr = 1
+ }
+ }
+ }
+
+ if debugmerge > 1 && Debug['v'] != 0 {
+ Dumpit("before", g.Start, 0)
+ }
+
+ nkill = 0
+
+ // Special case.
+ for i = 0; i < len(var_); i++ {
+ v = &var_[i]
+ if v.addr != 0 {
+ continue
+ }
+
+ // Used in only one instruction, which had better be a write.
+ f = v.use
+ if f != nil && f.Data.(*Flow) == nil {
+ p = f.Prog
+ Thearch.Proginfo(&info, p)
+ if p.To.Node == v.node && (info.Flags&RightWrite != 0) && !(info.Flags&RightRead != 0) {
+ p.As = obj.ANOP
+ p.To = obj.Zprog.To
+ v.removed = 1
+ if debugmerge > 0 && Debug['v'] != 0 {
+ fmt.Printf("drop write-only %v\n", Sconv(v.node.Sym, 0))
+ }
+ } else {
+ Fatal("temp used and not set: %v", p)
+ }
+ nkill++
+ continue
+ }
+
+ // Written in one instruction, read in the next, otherwise unused,
+ // no jumps to the next instruction. Happens mainly in 386 compiler.
+ f = v.use
+ if f != nil && f.Link == f.Data.(*Flow) && (f.Data.(*Flow)).Data.(*Flow) == nil && Uniqp(f.Link) == f {
+ p = f.Prog
+ Thearch.Proginfo(&info, p)
+ p1 = f.Link.Prog
+ Thearch.Proginfo(&info1, p1)
+ const (
+ SizeAny = SizeB | SizeW | SizeL | SizeQ | SizeF | SizeD
+ )
+ if p.From.Node == v.node && p1.To.Node == v.node && (info.Flags&Move != 0) && !((info.Flags|info1.Flags)&(LeftAddr|RightAddr) != 0) && info.Flags&SizeAny == info1.Flags&SizeAny {
+ p1.From = p.From
+ Thearch.Excise(f)
+ v.removed = 1
+ if debugmerge > 0 && Debug['v'] != 0 {
+ fmt.Printf("drop immediate-use %v\n", Sconv(v.node.Sym, 0))
+ }
+ }
+
+ nkill++
+ continue
+ }
+ }
+
+ // Traverse live range of each variable to set start, end.
+ // Each flood uses a new value of gen so that we don't have
+ // to clear all the r->active words after each variable.
+ gen = 0
+
+ for i = 0; i < len(var_); i++ {
+ v = &var_[i]
+ gen++
+ for f = v.use; f != nil; f = f.Data.(*Flow) {
+ mergewalk(v, f, uint32(gen))
+ }
+ if v.addr != 0 {
+ gen++
+ for f = v.use; f != nil; f = f.Data.(*Flow) {
+ varkillwalk(v, f, uint32(gen))
+ }
+ }
+ }
+
+ // Sort variables by start.
+ bystart = make([]*TempVar, len(var_))
+
+ for i = 0; i < len(var_); i++ {
+ bystart[i] = &var_[i]
+ }
+ sort.Sort(startcmp(bystart[:len(var_)]))
+
+ // List of in-use variables, sorted by end, so that the ones that
+ // will last the longest are the earliest ones in the array.
+ // The tail inuse[nfree:] holds no-longer-used variables.
+ // In theory we should use a sorted tree so that insertions are
+ // guaranteed O(log n) and then the loop is guaranteed O(n log n).
+ // In practice, it doesn't really matter.
+ inuse = make([]*TempVar, len(var_))
+
+ ninuse = 0
+ nfree = len(var_)
+ for i = 0; i < len(var_); i++ {
+ v = bystart[i]
+ if debugmerge > 0 && Debug['v'] != 0 {
+ fmt.Printf("consider %v: removed=%d\n", Nconv(v.node, obj.FmtSharp), v.removed)
+ }
+
+ if v.removed != 0 {
+ continue
+ }
+
+ // Expire no longer in use.
+ for ninuse > 0 && inuse[ninuse-1].end < v.start {
+ ninuse--
+ v1 = inuse[ninuse]
+ nfree--
+ inuse[nfree] = v1
+ }
+
+ if debugmerge > 0 && Debug['v'] != 0 {
+ fmt.Printf("consider %v: removed=%d nfree=%d nvar=%d\n", Nconv(v.node, obj.FmtSharp), v.removed, nfree, len(var_))
+ }
+
+ // Find old temp to reuse if possible.
+ t = v.node.Type
+
+ for j = nfree; j < len(var_); j++ {
+ v1 = inuse[j]
+ if debugmerge > 0 && Debug['v'] != 0 {
+ fmt.Printf("consider %v: maybe %v: type=%v,%v addrtaken=%d,%d\n", Nconv(v.node, obj.FmtSharp), Nconv(v1.node, obj.FmtSharp), Tconv(t, 0), Tconv(v1.node.Type, 0), v.node.Addrtaken, v1.node.Addrtaken)
+ }
+
+ // Require the types to match but also require the addrtaken bits to match.
+ // If a variable's address is taken, that disables registerization for the individual
+ // words of the variable (for example, the base,len,cap of a slice).
+ // We don't want to merge a non-addressed var with an addressed one and
+ // inhibit registerization of the former.
+ if Eqtype(t, v1.node.Type) && v.node.Addrtaken == v1.node.Addrtaken {
+ inuse[j] = inuse[nfree]
+ nfree++
+ if v1.merge != nil {
+ v.merge = v1.merge
+ } else {
+ v.merge = v1
+ }
+ nkill++
+ break
+ }
+ }
+
+ // Sort v into inuse.
+ j = ninuse
+ ninuse++
+
+ for j > 0 && inuse[j-1].end < v.end {
+ inuse[j] = inuse[j-1]
+ j--
+ }
+
+ inuse[j] = v
+ }
+
+ if debugmerge > 0 && Debug['v'] != 0 {
+ fmt.Printf("%v [%d - %d]\n", Sconv(Curfn.Nname.Sym, 0), len(var_), nkill)
+ for i = 0; i < len(var_); i++ {
+ v = &var_[i]
+ fmt.Printf("var %v %v %d-%d", Nconv(v.node, obj.FmtSharp), Tconv(v.node.Type, 0), v.start, v.end)
+ if v.addr != 0 {
+ fmt.Printf(" addr=1")
+ }
+ if v.removed != 0 {
+ fmt.Printf(" dead=1")
+ }
+ if v.merge != nil {
+ fmt.Printf(" merge %v", Nconv(v.merge.node, obj.FmtSharp))
+ }
+ if v.start == v.end && v.def != nil {
+ fmt.Printf(" %v", v.def.Prog)
+ }
+ fmt.Printf("\n")
+ }
+
+ if debugmerge > 1 && Debug['v'] != 0 {
+ Dumpit("after", g.Start, 0)
+ }
+ }
+
+ // Update node references to use merged temporaries.
+ for f = g.Start; f != nil; f = f.Link {
+ p = f.Prog
+ n, _ = p.From.Node.(*Node)
+ if n != nil {
+ v, _ = n.Opt.(*TempVar)
+ if v != nil && v.merge != nil {
+ p.From.Node = v.merge.node
+ }
+ }
+ n, _ = p.To.Node.(*Node)
+ if n != nil {
+ v, _ = n.Opt.(*TempVar)
+ if v != nil && v.merge != nil {
+ p.To.Node = v.merge.node
+ }
+ }
+ }
+
+ // Delete merged nodes from declaration list.
+ for lp = &Curfn.Dcl; ; {
+ l = *lp
+ if !(l != nil) {
+ break
+ }
+
+ Curfn.Dcl.End = l
+ n = l.N
+ v, _ = n.Opt.(*TempVar)
+ if v != nil && (v.merge != nil || v.removed != 0) {
+ *lp = l.Next
+ continue
+ }
+
+ lp = &l.Next
+ }
+
+ // Clear aux structures.
+ for i = 0; i < len(var_); i++ {
+ var_[i].node.Opt = nil
+ }
+
+ Flowend(g)
+}
+
+func mergewalk(v *TempVar, f0 *Flow, gen uint32) {
+ var p *obj.Prog
+ var f1 *Flow
+ var f *Flow
+ var f2 *Flow
+
+ for f1 = f0; f1 != nil; f1 = f1.P1 {
+ if uint32(f1.Active) == gen {
+ break
+ }
+ f1.Active = int32(gen)
+ p = f1.Prog
+ if v.end < p.Pc {
+ v.end = p.Pc
+ }
+ if f1 == v.def {
+ v.start = p.Pc
+ break
+ }
+ }
+
+ for f = f0; f != f1; f = f.P1 {
+ for f2 = f.P2; f2 != nil; f2 = f2.P2link {
+ mergewalk(v, f2, gen)
+ }
+ }
+}
+
+func varkillwalk(v *TempVar, f0 *Flow, gen uint32) {
+ var p *obj.Prog
+ var f1 *Flow
+ var f *Flow
+
+ for f1 = f0; f1 != nil; f1 = f1.S1 {
+ if uint32(f1.Active) == gen {
+ break
+ }
+ f1.Active = int32(gen)
+ p = f1.Prog
+ if v.end < p.Pc {
+ v.end = p.Pc
+ }
+ if v.start > p.Pc {
+ v.start = p.Pc
+ }
+ if p.As == obj.ARET || (p.As == obj.AVARKILL && p.To.Node == v.node) {
+ break
+ }
+ }
+
+ for f = f0; f != f1; f = f.S1 {
+ varkillwalk(v, f.S2, gen)
+ }
+}
+
+// Eliminate redundant nil pointer checks.
+//
+// The code generation pass emits a CHECKNIL for every possibly nil pointer.
+// This pass removes a CHECKNIL if every predecessor path has already
+// checked this value for nil.
+//
+// Simple backwards flood from check to definition.
+// Run prog loop backward from end of program to beginning to avoid quadratic
+// behavior removing a run of checks.
+//
+// Assume that stack variables with address not taken can be loaded multiple times
+// from memory without being rechecked. Other variables need to be checked on
+// each load.
+type NilVar struct {
+}
+
+var killed int // f->data is either nil or &killed
+
+func nilopt(firstp *obj.Prog) {
+ var f *Flow
+ var p *obj.Prog
+ var g *Graph
+ var ncheck int
+ var nkill int
+
+ g = Flowstart(firstp, nil)
+ if g == nil {
+ return
+ }
+
+ if Debug_checknil > 1 { /* || strcmp(curfn->nname->sym->name, "f1") == 0 */
+ Dumpit("nilopt", g.Start, 0)
+ }
+
+ ncheck = 0
+ nkill = 0
+ for f = g.Start; f != nil; f = f.Link {
+ p = f.Prog
+ if p.As != obj.ACHECKNIL || !(Thearch.Regtyp(&p.From) != 0) {
+ continue
+ }
+ ncheck++
+ if Thearch.Stackaddr(&p.From) != 0 {
+ if Debug_checknil != 0 && p.Lineno > 1 {
+ Warnl(int(p.Lineno), "removed nil check of SP address")
+ }
+ f.Data = &killed
+ continue
+ }
+
+ nilwalkfwd(f)
+ if f.Data != nil {
+ if Debug_checknil != 0 && p.Lineno > 1 {
+ Warnl(int(p.Lineno), "removed nil check before indirect")
+ }
+ continue
+ }
+
+ nilwalkback(f)
+ if f.Data != nil {
+ if Debug_checknil != 0 && p.Lineno > 1 {
+ Warnl(int(p.Lineno), "removed repeated nil check")
+ }
+ continue
+ }
+ }
+
+ for f = g.Start; f != nil; f = f.Link {
+ if f.Data != nil {
+ nkill++
+ Thearch.Excise(f)
+ }
+ }
+
+ Flowend(g)
+
+ if Debug_checknil > 1 {
+ fmt.Printf("%v: removed %d of %d nil checks\n", Sconv(Curfn.Nname.Sym, 0), nkill, ncheck)
+ }
+}
+
+func nilwalkback(fcheck *Flow) {
+ var p *obj.Prog
+ var info ProgInfo
+ var f *Flow
+
+ for f = fcheck; f != nil; f = Uniqp(f) {
+ p = f.Prog
+ Thearch.Proginfo(&info, p)
+ if (info.Flags&RightWrite != 0) && Thearch.Sameaddr(&p.To, &fcheck.Prog.From) != 0 {
+ // Found initialization of value we're checking for nil.
+ // without first finding the check, so this one is unchecked.
+ return
+ }
+
+ if f != fcheck && p.As == obj.ACHECKNIL && Thearch.Sameaddr(&p.From, &fcheck.Prog.From) != 0 {
+ fcheck.Data = &killed
+ return
+ }
+ }
+}
+
+// Here is a more complex version that scans backward across branches.
+// It assumes fcheck->kill = 1 has been set on entry, and its job is to find a reason
+// to keep the check (setting fcheck->kill = 0).
+// It doesn't handle copying of aggregates as well as I would like,
+// nor variables with their address taken,
+// and it's too subtle to turn on this late in Go 1.2. Perhaps for Go 1.3.
+/*
+for(f1 = f0; f1 != nil; f1 = f1->p1) {
+ if(f1->active == gen)
+ break;
+ f1->active = gen;
+ p = f1->prog;
+
+ // If same check, stop this loop but still check
+ // alternate predecessors up to this point.
+ if(f1 != fcheck && p->as == ACHECKNIL && thearch.sameaddr(&p->from, &fcheck->prog->from))
+ break;
+
+ thearch.proginfo(&info, p);
+ if((info.flags & RightWrite) && thearch.sameaddr(&p->to, &fcheck->prog->from)) {
+ // Found initialization of value we're checking for nil.
+ // without first finding the check, so this one is unchecked.
+ fcheck->kill = 0;
+ return;
+ }
+
+ if(f1->p1 == nil && f1->p2 == nil) {
+ print("lost pred for %P\n", fcheck->prog);
+ for(f1=f0; f1!=nil; f1=f1->p1) {
+ thearch.proginfo(&info, f1->prog);
+ print("\t%P %d %d %D %D\n", r1->prog, info.flags&RightWrite, thearch.sameaddr(&f1->prog->to, &fcheck->prog->from), &f1->prog->to, &fcheck->prog->from);
+ }
+ fatal("lost pred trail");
+ }
+}
+
+for(f = f0; f != f1; f = f->p1)
+ for(f2 = f->p2; f2 != nil; f2 = f2->p2link)
+ nilwalkback(fcheck, f2, gen);
+*/
+func nilwalkfwd(fcheck *Flow) {
+ var f *Flow
+ var last *Flow
+ var p *obj.Prog
+ var info ProgInfo
+
+ // If the path down from rcheck dereferences the address
+ // (possibly with a small offset) before writing to memory
+ // and before any subsequent checks, it's okay to wait for
+ // that implicit check. Only consider this basic block to
+ // avoid problems like:
+ // _ = *x // should panic
+ // for {} // no writes but infinite loop may be considered visible
+ last = nil
+
+ for f = Uniqs(fcheck); f != nil; f = Uniqs(f) {
+ p = f.Prog
+ Thearch.Proginfo(&info, p)
+
+ if (info.Flags&LeftRead != 0) && Thearch.Smallindir(&p.From, &fcheck.Prog.From) != 0 {
+ fcheck.Data = &killed
+ return
+ }
+
+ if (info.Flags&(RightRead|RightWrite) != 0) && Thearch.Smallindir(&p.To, &fcheck.Prog.From) != 0 {
+ fcheck.Data = &killed
+ return
+ }
+
+ // Stop if another nil check happens.
+ if p.As == obj.ACHECKNIL {
+ return
+ }
+
+ // Stop if value is lost.
+ if (info.Flags&RightWrite != 0) && Thearch.Sameaddr(&p.To, &fcheck.Prog.From) != 0 {
+ return
+ }
+
+ // Stop if memory write.
+ if (info.Flags&RightWrite != 0) && !(Thearch.Regtyp(&p.To) != 0) {
+ return
+ }
+
+ // Stop if we jump backward.
+ if last != nil && f.Id <= last.Id {
+ return
+ }
+ last = f
+ }
+}