blob: c8bf20646870d12c54aa8b9a55c28410d98a5345 [file] [log] [blame]
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package gcprog implements an encoder for packed GC pointer bitmaps,
// known as GC programs.
//
// Program Format
//
// The GC program encodes a sequence of 0 and 1 bits indicating scalar or pointer words in an object.
// The encoding is a simple Lempel-Ziv program, with codes to emit literal bits and to repeat the
// last n bits c times.
//
// The possible codes are:
//
// 00000000: stop
// 0nnnnnnn: emit n bits copied from the next (n+7)/8 bytes, least significant bit first
// 10000000 n c: repeat the previous n bits c times; n, c are varints
// 1nnnnnnn c: repeat the previous n bits c times; c is a varint
//
// The numbers n and c, when they follow a code, are encoded as varints
// using the same encoding as encoding/binary's Uvarint.
//
package gcprog
import (
"fmt"
"io"
)
const progMaxLiteral = 127 // maximum n for literal n bit code
// A Writer is an encoder for GC programs.
//
// The typical use of a Writer is to call Init, maybe call Debug,
// make a sequence of Ptr, Advance, Repeat, and Append calls
// to describe the data type, and then finally call End.
type Writer struct {
writeByte func(byte)
index int64
b [progMaxLiteral]byte
nb int
debug io.Writer
debugBuf []byte
}
// Init initializes w to write a new GC program
// by calling writeByte for each byte in the program.
func (w *Writer) Init(writeByte func(byte)) {
w.writeByte = writeByte
}
// Debug causes the writer to print a debugging trace to out
// during future calls to methods like Ptr, Advance, and End.
// It also enables debugging checks during the encoding.
func (w *Writer) Debug(out io.Writer) {
w.debug = out
}
// BitIndex returns the number of bits written to the bit stream so far.
func (w *Writer) BitIndex() int64 {
return w.index
}
// byte writes the byte x to the output.
func (w *Writer) byte(x byte) {
if w.debug != nil {
w.debugBuf = append(w.debugBuf, x)
}
w.writeByte(x)
}
// End marks the end of the program, writing any remaining bytes.
func (w *Writer) End() {
w.flushlit()
w.byte(0)
if w.debug != nil {
index := progbits(w.debugBuf)
if index != w.index {
println("gcprog: End wrote program for", index, "bits, but current index is", w.index)
panic("gcprog: out of sync")
}
}
}
// Ptr emits a 1 into the bit stream at the given bit index.
// that is, it records that the index'th word in the object memory is a pointer.
// Any bits between the current index and the new index
// are set to zero, meaning the corresponding words are scalars.
func (w *Writer) Ptr(index int64) {
if index < w.index {
println("gcprog: Ptr at index", index, "but current index is", w.index)
panic("gcprog: invalid Ptr index")
}
w.ZeroUntil(index)
if w.debug != nil {
fmt.Fprintf(w.debug, "gcprog: ptr at %d\n", index)
}
w.lit(1)
}
// ShouldRepeat reports whether it would be worthwhile to
// use a Repeat to describe c elements of n bits each,
// compared to just emitting c copies of the n-bit description.
func (w *Writer) ShouldRepeat(n, c int64) bool {
// Should we lay out the bits directly instead of
// encoding them as a repetition? Certainly if count==1,
// since there's nothing to repeat, but also if the total
// size of the plain pointer bits for the type will fit in
// 4 or fewer bytes, since using a repetition will require
// flushing the current bits plus at least one byte for
// the repeat size and one for the repeat count.
return c > 1 && c*n > 4*8
}
// Repeat emits an instruction to repeat the description
// of the last n words c times (including the initial description, c+1 times in total).
func (w *Writer) Repeat(n, c int64) {
if n == 0 || c == 0 {
return
}
w.flushlit()
if w.debug != nil {
fmt.Fprintf(w.debug, "gcprog: repeat %d × %d\n", n, c)
}
if n < 128 {
w.byte(0x80 | byte(n))
} else {
w.byte(0x80)
w.varint(n)
}
w.varint(c)
w.index += n * c
}
// ZeroUntil adds zeros to the bit stream until reaching the given index;
// that is, it records that the words from the most recent pointer until
// the index'th word are scalars.
// ZeroUntil is usually called in preparation for a call to Repeat, Append, or End.
func (w *Writer) ZeroUntil(index int64) {
if index < w.index {
println("gcprog: Advance", index, "but index is", w.index)
panic("gcprog: invalid Advance index")
}
skip := (index - w.index)
if skip == 0 {
return
}
if skip < 4*8 {
if w.debug != nil {
fmt.Fprintf(w.debug, "gcprog: advance to %d by literals\n", index)
}
for i := int64(0); i < skip; i++ {
w.lit(0)
}
return
}
if w.debug != nil {
fmt.Fprintf(w.debug, "gcprog: advance to %d by repeat\n", index)
}
w.lit(0)
w.flushlit()
w.Repeat(1, skip-1)
}
// Append emits the given GC program into the current output.
// The caller asserts that the program emits n bits (describes n words),
// and Append panics if that is not true.
func (w *Writer) Append(prog []byte, n int64) {
w.flushlit()
if w.debug != nil {
fmt.Fprintf(w.debug, "gcprog: append prog for %d ptrs\n", n)
fmt.Fprintf(w.debug, "\t")
}
n1 := progbits(prog)
if n1 != n {
panic("gcprog: wrong bit count in append")
}
// The last byte of the prog terminates the program.
// Don't emit that, or else our own program will end.
for i, x := range prog[:len(prog)-1] {
if w.debug != nil {
if i > 0 {
fmt.Fprintf(w.debug, " ")
}
fmt.Fprintf(w.debug, "%02x", x)
}
w.byte(x)
}
if w.debug != nil {
fmt.Fprintf(w.debug, "\n")
}
w.index += n
}
// progbits returns the length of the bit stream encoded by the program p.
func progbits(p []byte) int64 {
var n int64
for len(p) > 0 {
x := p[0]
p = p[1:]
if x == 0 {
break
}
if x&0x80 == 0 {
count := x &^ 0x80
n += int64(count)
p = p[(count+7)/8:]
continue
}
nbit := int64(x &^ 0x80)
if nbit == 0 {
nbit, p = readvarint(p)
}
var count int64
count, p = readvarint(p)
n += nbit * count
}
if len(p) > 0 {
println("gcprog: found end instruction after", n, "ptrs, with", len(p), "bytes remaining")
panic("gcprog: extra data at end of program")
}
return n
}
// readvarint reads a varint from p, returning the value and the remainder of p.
func readvarint(p []byte) (int64, []byte) {
var v int64
var nb uint
for {
c := p[0]
p = p[1:]
v |= int64(c&^0x80) << nb
nb += 7
if c&0x80 == 0 {
break
}
}
return v, p
}
// lit adds a single literal bit to w.
func (w *Writer) lit(x byte) {
if w.nb == progMaxLiteral {
w.flushlit()
}
w.b[w.nb] = x
w.nb++
w.index++
}
// varint emits the varint encoding of x.
func (w *Writer) varint(x int64) {
if x < 0 {
panic("gcprog: negative varint")
}
for x >= 0x80 {
w.byte(byte(0x80 | x))
x >>= 7
}
w.byte(byte(x))
}
// flushlit flushes any pending literal bits.
func (w *Writer) flushlit() {
if w.nb == 0 {
return
}
if w.debug != nil {
fmt.Fprintf(w.debug, "gcprog: flush %d literals\n", w.nb)
fmt.Fprintf(w.debug, "\t%v\n", w.b[:w.nb])
fmt.Fprintf(w.debug, "\t%02x", byte(w.nb))
}
w.byte(byte(w.nb))
var bits uint8
for i := 0; i < w.nb; i++ {
bits |= w.b[i] << uint(i%8)
if (i+1)%8 == 0 {
if w.debug != nil {
fmt.Fprintf(w.debug, " %02x", bits)
}
w.byte(bits)
bits = 0
}
}
if w.nb%8 != 0 {
if w.debug != nil {
fmt.Fprintf(w.debug, " %02x", bits)
}
w.byte(bits)
}
if w.debug != nil {
fmt.Fprintf(w.debug, "\n")
}
w.nb = 0
}