blob: b8a5a90a0368a1c0d693b91ac1a54d6e37c396ec [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"cmd/compile/internal/types"
"cmd/internal/src"
"fmt"
"strings"
)
// Declaration stack & operations
var externdcl []*Node
func testdclstack() {
if !types.IsDclstackValid() {
if nerrors != 0 {
errorexit()
}
Fatalf("mark left on the dclstack")
}
}
// redeclare emits a diagnostic about symbol s being redeclared somewhere.
func redeclare(s *types.Sym, where string) {
if !s.Lastlineno.IsKnown() {
var tmp string
if s.Origpkg != nil {
tmp = s.Origpkg.Path
} else {
tmp = s.Pkg.Path
}
pkgstr := tmp
yyerror("%v redeclared %s\n"+
"\tprevious declaration during import %q", s, where, pkgstr)
} else {
line1 := lineno
line2 := s.Lastlineno
// When an import and a declaration collide in separate files,
// present the import as the "redeclared", because the declaration
// is visible where the import is, but not vice versa.
// See issue 4510.
if s.Def == nil {
line2 = line1
line1 = s.Lastlineno
}
yyerrorl(line1, "%v redeclared %s\n"+
"\tprevious declaration at %v", s, where, linestr(line2))
}
}
var vargen int
// declare individual names - var, typ, const
var declare_typegen int
// declare records that Node n declares symbol n.Sym in the specified
// declaration context.
func declare(n *Node, ctxt Class) {
if ctxt == PDISCARD {
return
}
if isblank(n) {
return
}
if n.Name == nil {
// named OLITERAL needs Name; most OLITERALs don't.
n.Name = new(Name)
}
n.Pos = lineno
s := n.Sym
// kludgy: typecheckok means we're past parsing. Eg genwrapper may declare out of package names later.
if !inimport && !typecheckok && s.Pkg != localpkg {
yyerror("cannot declare name %v", s)
}
if ctxt == PEXTERN && s.Name == "init" {
yyerror("cannot declare init - must be func")
}
gen := 0
if ctxt == PEXTERN {
externdcl = append(externdcl, n)
} else {
if Curfn == nil && ctxt == PAUTO {
Fatalf("automatic outside function")
}
if Curfn != nil {
Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)
}
if n.Op == OTYPE {
declare_typegen++
gen = declare_typegen
} else if n.Op == ONAME && ctxt == PAUTO && !strings.Contains(s.Name, "·") {
vargen++
gen = vargen
}
types.Pushdcl(s)
n.Name.Curfn = Curfn
}
if ctxt == PAUTO {
n.Xoffset = 0
}
if s.Block == types.Block {
// functype will print errors about duplicate function arguments.
// Don't repeat the error here.
if ctxt != PPARAM && ctxt != PPARAMOUT {
redeclare(s, "in this block")
}
}
s.Block = types.Block
s.Lastlineno = lineno
s.Def = asTypesNode(n)
n.Name.Vargen = int32(gen)
n.Name.Funcdepth = funcdepth
n.SetClass(ctxt)
autoexport(n, ctxt)
}
func addvar(n *Node, t *types.Type, ctxt Class) {
if n == nil || n.Sym == nil || (n.Op != ONAME && n.Op != ONONAME) || t == nil {
Fatalf("addvar: n=%v t=%v nil", n, t)
}
n.Op = ONAME
declare(n, ctxt)
n.Type = t
}
// declare variables from grammar
// new_name_list (type | [type] = expr_list)
func variter(vl []*Node, t *Node, el []*Node) []*Node {
var init []*Node
doexpr := len(el) > 0
if len(el) == 1 && len(vl) > 1 {
e := el[0]
as2 := nod(OAS2, nil, nil)
as2.List.Set(vl)
as2.Rlist.Set1(e)
for _, v := range vl {
v.Op = ONAME
declare(v, dclcontext)
v.Name.Param.Ntype = t
v.Name.Defn = as2
if funcdepth > 0 {
init = append(init, nod(ODCL, v, nil))
}
}
return append(init, as2)
}
for _, v := range vl {
var e *Node
if doexpr {
if len(el) == 0 {
yyerror("missing expression in var declaration")
break
}
e = el[0]
el = el[1:]
}
v.Op = ONAME
declare(v, dclcontext)
v.Name.Param.Ntype = t
if e != nil || funcdepth > 0 || isblank(v) {
if funcdepth > 0 {
init = append(init, nod(ODCL, v, nil))
}
e = nod(OAS, v, e)
init = append(init, e)
if e.Right != nil {
v.Name.Defn = e
}
}
}
if len(el) != 0 {
yyerror("extra expression in var declaration")
}
return init
}
// newnoname returns a new ONONAME Node associated with symbol s.
func newnoname(s *types.Sym) *Node {
if s == nil {
Fatalf("newnoname nil")
}
n := nod(ONONAME, nil, nil)
n.Sym = s
n.SetAddable(true)
n.Xoffset = 0
return n
}
// newfuncname generates a new name node for a function or method.
// TODO(rsc): Use an ODCLFUNC node instead. See comment in CL 7360.
func newfuncname(s *types.Sym) *Node {
n := newname(s)
n.Func = new(Func)
n.Func.SetIsHiddenClosure(Curfn != nil)
return n
}
// this generates a new name node for a name
// being declared.
func dclname(s *types.Sym) *Node {
n := newname(s)
n.Op = ONONAME // caller will correct it
return n
}
func typenod(t *types.Type) *Node {
// if we copied another type with *t = *u
// then t->nod might be out of date, so
// check t->nod->type too
if asNode(t.Nod) == nil || asNode(t.Nod).Type != t {
t.Nod = asTypesNode(nod(OTYPE, nil, nil))
asNode(t.Nod).Type = t
asNode(t.Nod).Sym = t.Sym
}
return asNode(t.Nod)
}
func anonfield(typ *types.Type) *Node {
return nod(ODCLFIELD, nil, typenod(typ))
}
func namedfield(s string, typ *types.Type) *Node {
return nod(ODCLFIELD, newname(lookup(s)), typenod(typ))
}
// oldname returns the Node that declares symbol s in the current scope.
// If no such Node currently exists, an ONONAME Node is returned instead.
func oldname(s *types.Sym) *Node {
n := asNode(s.Def)
if n == nil {
// Maybe a top-level declaration will come along later to
// define s. resolve will check s.Def again once all input
// source has been processed.
return newnoname(s)
}
if Curfn != nil && n.Op == ONAME && n.Name.Funcdepth > 0 && n.Name.Funcdepth != funcdepth {
// Inner func is referring to var in outer func.
//
// TODO(rsc): If there is an outer variable x and we
// are parsing x := 5 inside the closure, until we get to
// the := it looks like a reference to the outer x so we'll
// make x a closure variable unnecessarily.
c := n.Name.Param.Innermost
if c == nil || c.Name.Funcdepth != funcdepth {
// Do not have a closure var for the active closure yet; make one.
c = newname(s)
c.SetClass(PAUTOHEAP)
c.SetIsClosureVar(true)
c.SetIsddd(n.Isddd())
c.Name.Defn = n
c.SetAddable(false)
c.Name.Funcdepth = funcdepth
// Link into list of active closure variables.
// Popped from list in func closurebody.
c.Name.Param.Outer = n.Name.Param.Innermost
n.Name.Param.Innermost = c
Curfn.Func.Cvars.Append(c)
}
// return ref to closure var, not original
return c
}
return n
}
// := declarations
func colasname(n *Node) bool {
switch n.Op {
case ONAME,
ONONAME,
OPACK,
OTYPE,
OLITERAL:
return n.Sym != nil
}
return false
}
func colasdefn(left []*Node, defn *Node) {
for _, n := range left {
if n.Sym != nil {
n.Sym.SetUniq(true)
}
}
var nnew, nerr int
for i, n := range left {
if isblank(n) {
continue
}
if !colasname(n) {
yyerrorl(defn.Pos, "non-name %v on left side of :=", n)
nerr++
continue
}
if !n.Sym.Uniq() {
yyerrorl(defn.Pos, "%v repeated on left side of :=", n.Sym)
n.SetDiag(true)
nerr++
continue
}
n.Sym.SetUniq(false)
if n.Sym.Block == types.Block {
continue
}
nnew++
n = newname(n.Sym)
declare(n, dclcontext)
n.Name.Defn = defn
defn.Ninit.Append(nod(ODCL, n, nil))
left[i] = n
}
if nnew == 0 && nerr == 0 {
yyerrorl(defn.Pos, "no new variables on left side of :=")
}
}
// declare the arguments in an
// interface field declaration.
func ifacedcl(n *Node) {
if n.Op != ODCLFIELD || n.Right == nil {
Fatalf("ifacedcl")
}
if isblank(n.Left) {
yyerror("methods must have a unique non-blank name")
}
}
// declare the function proper
// and declare the arguments.
// called in extern-declaration context
// returns in auto-declaration context.
func funchdr(n *Node) {
// change the declaration context from extern to auto
if funcdepth == 0 && dclcontext != PEXTERN {
Fatalf("funchdr: dclcontext = %d", dclcontext)
}
dclcontext = PAUTO
funcstart(n)
if n.Func.Nname != nil {
funcargs(n.Func.Nname.Name.Param.Ntype)
} else if n.Func.Ntype != nil {
funcargs(n.Func.Ntype)
} else {
funcargs2(n.Type)
}
}
func funcargs(nt *Node) {
if nt.Op != OTFUNC {
Fatalf("funcargs %v", nt.Op)
}
// re-start the variable generation number
// we want to use small numbers for the return variables,
// so let them have the chunk starting at 1.
vargen = nt.Rlist.Len()
// declare the receiver and in arguments.
// no n->defn because type checking of func header
// will not fill in the types until later
if nt.Left != nil {
n := nt.Left
if n.Op != ODCLFIELD {
Fatalf("funcargs receiver %v", n.Op)
}
if n.Left != nil {
n.Left.Op = ONAME
n.Left.Name.Param.Ntype = n.Right
declare(n.Left, PPARAM)
if dclcontext == PAUTO {
vargen++
n.Left.Name.Vargen = int32(vargen)
}
}
}
for _, n := range nt.List.Slice() {
if n.Op != ODCLFIELD {
Fatalf("funcargs in %v", n.Op)
}
if n.Left != nil {
n.Left.Op = ONAME
n.Left.Name.Param.Ntype = n.Right
declare(n.Left, PPARAM)
if dclcontext == PAUTO {
vargen++
n.Left.Name.Vargen = int32(vargen)
}
}
}
// declare the out arguments.
gen := nt.List.Len()
var i int = 0
for _, n := range nt.Rlist.Slice() {
if n.Op != ODCLFIELD {
Fatalf("funcargs out %v", n.Op)
}
if n.Left == nil {
// Name so that escape analysis can track it. ~r stands for 'result'.
n.Left = newname(lookupN("~r", gen))
gen++
}
// TODO: n->left->missing = 1;
n.Left.Op = ONAME
if isblank(n.Left) {
// Give it a name so we can assign to it during return. ~b stands for 'blank'.
// The name must be different from ~r above because if you have
// func f() (_ int)
// func g() int
// f is allowed to use a plain 'return' with no arguments, while g is not.
// So the two cases must be distinguished.
// We do not record a pointer to the original node (n->orig).
// Having multiple names causes too much confusion in later passes.
nn := *n.Left
nn.Orig = &nn
nn.Sym = lookupN("~b", gen)
gen++
n.Left = &nn
}
n.Left.Name.Param.Ntype = n.Right
declare(n.Left, PPARAMOUT)
if dclcontext == PAUTO {
i++
n.Left.Name.Vargen = int32(i)
}
}
}
// Same as funcargs, except run over an already constructed TFUNC.
// This happens during import, where the hidden_fndcl rule has
// used functype directly to parse the function's type.
func funcargs2(t *types.Type) {
if t.Etype != TFUNC {
Fatalf("funcargs2 %v", t)
}
for _, ft := range t.Recvs().Fields().Slice() {
if asNode(ft.Nname) == nil || asNode(ft.Nname).Sym == nil {
continue
}
n := asNode(ft.Nname) // no need for newname(ft->nname->sym)
n.Type = ft.Type
declare(n, PPARAM)
}
for _, ft := range t.Params().Fields().Slice() {
if asNode(ft.Nname) == nil || asNode(ft.Nname).Sym == nil {
continue
}
n := asNode(ft.Nname)
n.Type = ft.Type
declare(n, PPARAM)
}
for _, ft := range t.Results().Fields().Slice() {
if asNode(ft.Nname) == nil || asNode(ft.Nname).Sym == nil {
continue
}
n := asNode(ft.Nname)
n.Type = ft.Type
declare(n, PPARAMOUT)
}
}
var funcstack []*Node // stack of previous values of Curfn
var funcdepth int32 // len(funcstack) during parsing, but then forced to be the same later during compilation
// start the function.
// called before funcargs; undone at end of funcbody.
func funcstart(n *Node) {
types.Markdcl()
funcstack = append(funcstack, Curfn)
funcdepth++
Curfn = n
}
// finish the body.
// called in auto-declaration context.
// returns in extern-declaration context.
func funcbody(n *Node) {
// change the declaration context from auto to extern
if dclcontext != PAUTO {
Fatalf("funcbody: unexpected dclcontext %d", dclcontext)
}
types.Popdcl()
funcstack, Curfn = funcstack[:len(funcstack)-1], funcstack[len(funcstack)-1]
funcdepth--
if funcdepth == 0 {
dclcontext = PEXTERN
}
}
// structs, functions, and methods.
// they don't belong here, but where do they belong?
func checkembeddedtype(t *types.Type) {
if t == nil {
return
}
if t.Sym == nil && t.IsPtr() {
t = t.Elem()
if t.IsInterface() {
yyerror("embedded type cannot be a pointer to interface")
}
}
if t.IsPtr() || t.IsUnsafePtr() {
yyerror("embedded type cannot be a pointer")
} else if t.Etype == TFORW && !t.ForwardType().Embedlineno.IsKnown() {
t.ForwardType().Embedlineno = lineno
}
}
func structfield(n *Node) *types.Field {
lno := lineno
lineno = n.Pos
if n.Op != ODCLFIELD {
Fatalf("structfield: oops %v\n", n)
}
f := types.NewField()
f.SetIsddd(n.Isddd())
if n.Right != nil {
n.Right = typecheck(n.Right, Etype)
n.Type = n.Right.Type
if n.Left != nil {
n.Left.Type = n.Type
}
if n.Embedded() {
checkembeddedtype(n.Type)
}
}
n.Right = nil
f.Type = n.Type
if f.Type == nil {
f.SetBroke(true)
}
switch u := n.Val().U.(type) {
case string:
f.Note = u
default:
yyerror("field tag must be a string")
case nil:
// no-op
}
if n.Left != nil && n.Left.Op == ONAME {
f.Nname = asTypesNode(n.Left)
if n.Embedded() {
f.Embedded = 1
} else {
f.Embedded = 0
}
f.Sym = asNode(f.Nname).Sym
}
lineno = lno
return f
}
// checkdupfields emits errors for duplicately named fields or methods in
// a list of struct or interface types.
func checkdupfields(what string, ts ...*types.Type) {
seen := make(map[*types.Sym]bool)
for _, t := range ts {
for _, f := range t.Fields().Slice() {
if f.Sym == nil || f.Sym.IsBlank() || asNode(f.Nname) == nil {
continue
}
if seen[f.Sym] {
yyerrorl(asNode(f.Nname).Pos, "duplicate %s %s", what, f.Sym.Name)
continue
}
seen[f.Sym] = true
}
}
}
// convert a parsed id/type list into
// a type for struct/interface/arglist
func tostruct(l []*Node) *types.Type {
t := types.New(TSTRUCT)
tostruct0(t, l)
return t
}
func tostruct0(t *types.Type, l []*Node) {
if t == nil || !t.IsStruct() {
Fatalf("struct expected")
}
fields := make([]*types.Field, len(l))
for i, n := range l {
f := structfield(n)
if f.Broke() {
t.SetBroke(true)
}
fields[i] = f
}
t.SetFields(fields)
checkdupfields("field", t)
if !t.Broke() {
checkwidth(t)
}
}
func tofunargs(l []*Node, funarg types.Funarg) *types.Type {
t := types.New(TSTRUCT)
t.StructType().Funarg = funarg
fields := make([]*types.Field, len(l))
for i, n := range l {
f := structfield(n)
f.Funarg = funarg
// esc.go needs to find f given a PPARAM to add the tag.
if n.Left != nil && n.Left.Class() == PPARAM {
n.Left.Name.Param.Field = f
}
if f.Broke() {
t.SetBroke(true)
}
fields[i] = f
}
t.SetFields(fields)
return t
}
func tofunargsfield(fields []*types.Field, funarg types.Funarg) *types.Type {
t := types.New(TSTRUCT)
t.StructType().Funarg = funarg
for _, f := range fields {
f.Funarg = funarg
// esc.go needs to find f given a PPARAM to add the tag.
if asNode(f.Nname) != nil && asNode(f.Nname).Class() == PPARAM {
asNode(f.Nname).Name.Param.Field = f
}
}
t.SetFields(fields)
return t
}
func interfacefield(n *Node) *types.Field {
lno := lineno
lineno = n.Pos
if n.Op != ODCLFIELD {
Fatalf("interfacefield: oops %v\n", n)
}
if n.Val().Ctype() != CTxxx {
yyerror("interface method cannot have annotation")
}
// MethodSpec = MethodName Signature | InterfaceTypeName .
//
// If Left != nil, then Left is MethodName and Right is Signature.
// Otherwise, Right is InterfaceTypeName.
if n.Right != nil {
n.Right = typecheck(n.Right, Etype)
n.Type = n.Right.Type
n.Right = nil
}
f := types.NewField()
if n.Left != nil {
f.Nname = asTypesNode(n.Left)
f.Sym = asNode(f.Nname).Sym
} else {
// Placeholder ONAME just to hold Pos.
// TODO(mdempsky): Add Pos directly to Field instead.
f.Nname = asTypesNode(newname(nblank.Sym))
}
f.Type = n.Type
if f.Type == nil {
f.SetBroke(true)
}
lineno = lno
return f
}
func tointerface(l []*Node) *types.Type {
if len(l) == 0 {
return types.Types[TINTER]
}
t := types.New(TINTER)
tointerface0(t, l)
return t
}
func tointerface0(t *types.Type, l []*Node) *types.Type {
if t == nil || !t.IsInterface() {
Fatalf("interface expected")
}
var fields []*types.Field
for _, n := range l {
f := interfacefield(n)
if f.Broke() {
t.SetBroke(true)
}
fields = append(fields, f)
}
t.SetInterface(fields)
return t
}
func embedded(s *types.Sym, pkg *types.Pkg) *Node {
const (
CenterDot = 0xB7
)
// Names sometimes have disambiguation junk
// appended after a center dot. Discard it when
// making the name for the embedded struct field.
name := s.Name
if i := strings.Index(s.Name, string(CenterDot)); i >= 0 {
name = s.Name[:i]
}
var n *Node
if exportname(name) {
n = newname(lookup(name))
} else if s.Pkg == builtinpkg {
// The name of embedded builtins belongs to pkg.
n = newname(pkg.Lookup(name))
} else {
n = newname(s.Pkg.Lookup(name))
}
n = nod(ODCLFIELD, n, oldname(s))
n.SetEmbedded(true)
return n
}
func fakeRecv() *Node {
return anonfield(types.FakeRecvType())
}
func fakeRecvField() *types.Field {
f := types.NewField()
f.Type = types.FakeRecvType()
return f
}
// isifacemethod reports whether (field) m is
// an interface method. Such methods have the
// special receiver type types.FakeRecvType().
func isifacemethod(f *types.Type) bool {
return f.Recv().Type == types.FakeRecvType()
}
// turn a parsed function declaration into a type
func functype(this *Node, in, out []*Node) *types.Type {
t := types.New(TFUNC)
functype0(t, this, in, out)
return t
}
func functype0(t *types.Type, this *Node, in, out []*Node) {
if t == nil || t.Etype != TFUNC {
Fatalf("function type expected")
}
var rcvr []*Node
if this != nil {
rcvr = []*Node{this}
}
t.FuncType().Receiver = tofunargs(rcvr, types.FunargRcvr)
t.FuncType().Results = tofunargs(out, types.FunargResults)
t.FuncType().Params = tofunargs(in, types.FunargParams)
checkdupfields("argument", t.Recvs(), t.Results(), t.Params())
if t.Recvs().Broke() || t.Results().Broke() || t.Params().Broke() {
t.SetBroke(true)
}
t.FuncType().Outnamed = false
if len(out) > 0 && out[0].Left != nil && out[0].Left.Orig != nil {
s := out[0].Left.Orig.Sym
if s != nil && (s.Name[0] != '~' || s.Name[1] != 'r') { // ~r%d is the name invented for an unnamed result
t.FuncType().Outnamed = true
}
}
}
func functypefield(this *types.Field, in, out []*types.Field) *types.Type {
t := types.New(TFUNC)
functypefield0(t, this, in, out)
return t
}
func functypefield0(t *types.Type, this *types.Field, in, out []*types.Field) {
var rcvr []*types.Field
if this != nil {
rcvr = []*types.Field{this}
}
t.FuncType().Receiver = tofunargsfield(rcvr, types.FunargRcvr)
t.FuncType().Results = tofunargsfield(out, types.FunargRcvr)
t.FuncType().Params = tofunargsfield(in, types.FunargRcvr)
t.FuncType().Outnamed = false
if len(out) > 0 && asNode(out[0].Nname) != nil && asNode(out[0].Nname).Orig != nil {
s := asNode(out[0].Nname).Orig.Sym
if s != nil && (s.Name[0] != '~' || s.Name[1] != 'r') { // ~r%d is the name invented for an unnamed result
t.FuncType().Outnamed = true
}
}
}
var methodsym_toppkg *types.Pkg
func methodsym(nsym *types.Sym, t0 *types.Type, iface bool) *types.Sym {
if t0 == nil {
Fatalf("methodsym: nil receiver type")
}
t := t0
s := t.Sym
if s == nil && t.IsPtr() {
t = t.Elem()
if t == nil {
Fatalf("methodsym: ptrto nil")
}
s = t.Sym
}
// if t0 == *t and t0 has a sym,
// we want to see *t, not t0, in the method name.
if t != t0 && t0.Sym != nil {
t0 = types.NewPtr(t)
}
suffix := ""
if iface {
dowidth(t0)
if t0.Width < int64(Widthptr) {
suffix = "·i"
}
}
var spkg *types.Pkg
if s != nil {
spkg = s.Pkg
}
pkgprefix := ""
if (spkg == nil || nsym.Pkg != spkg) && !exportname(nsym.Name) && nsym.Pkg.Prefix != `""` {
pkgprefix = "." + nsym.Pkg.Prefix
}
var p string
if t0.Sym == nil && t0.IsPtr() {
p = fmt.Sprintf("(%-S)%s.%s%s", t0, pkgprefix, nsym.Name, suffix)
} else {
p = fmt.Sprintf("%-S%s.%s%s", t0, pkgprefix, nsym.Name, suffix)
}
if spkg == nil {
if methodsym_toppkg == nil {
methodsym_toppkg = types.NewPkg("go", "")
}
spkg = methodsym_toppkg
}
return spkg.Lookup(p)
}
// methodname is a misnomer because this now returns a Sym, rather
// than an ONAME.
// TODO(mdempsky): Reconcile with methodsym.
func methodname(s *types.Sym, recv *types.Type) *types.Sym {
star := false
if recv.IsPtr() {
star = true
recv = recv.Elem()
}
tsym := recv.Sym
if tsym == nil || s.IsBlank() {
return s
}
var p string
if star {
p = fmt.Sprintf("(*%v).%v", tsym.Name, s)
} else {
p = fmt.Sprintf("%v.%v", tsym, s)
}
s = tsym.Pkg.Lookup(p)
return s
}
// Add a method, declared as a function.
// - msym is the method symbol
// - t is function type (with receiver)
func addmethod(msym *types.Sym, t *types.Type, local, nointerface bool) {
if msym == nil {
Fatalf("no method symbol")
}
// get parent type sym
rf := t.Recv() // ptr to this structure
if rf == nil {
yyerror("missing receiver")
return
}
mt := methtype(rf.Type)
if mt == nil || mt.Sym == nil {
pa := rf.Type
t := pa
if t != nil && t.IsPtr() {
if t.Sym != nil {
yyerror("invalid receiver type %v (%v is a pointer type)", pa, t)
return
}
t = t.Elem()
}
switch {
case t == nil || t.Broke():
// rely on typecheck having complained before
case t.Sym == nil:
yyerror("invalid receiver type %v (%v is an unnamed type)", pa, t)
case t.IsPtr():
yyerror("invalid receiver type %v (%v is a pointer type)", pa, t)
case t.IsInterface():
yyerror("invalid receiver type %v (%v is an interface type)", pa, t)
default:
// Should have picked off all the reasons above,
// but just in case, fall back to generic error.
yyerror("invalid receiver type %v (%L / %L)", pa, pa, t)
}
return
}
if local && !mt.Local() {
yyerror("cannot define new methods on non-local type %v", mt)
return
}
if msym.IsBlank() {
return
}
if mt.IsStruct() {
for _, f := range mt.Fields().Slice() {
if f.Sym == msym {
yyerror("type %v has both field and method named %v", mt, msym)
return
}
}
}
for _, f := range mt.Methods().Slice() {
if msym.Name != f.Sym.Name {
continue
}
// eqtype only checks that incoming and result parameters match,
// so explicitly check that the receiver parameters match too.
if !eqtype(t, f.Type) || !eqtype(t.Recv().Type, f.Type.Recv().Type) {
yyerror("method redeclared: %v.%v\n\t%v\n\t%v", mt, msym, f.Type, t)
}
return
}
f := types.NewField()
f.Sym = msym
f.Nname = asTypesNode(newname(msym))
f.Type = t
f.SetNointerface(nointerface)
mt.Methods().Append(f)
}
func funccompile(n *Node) {
if n.Type == nil {
if nerrors == 0 {
Fatalf("funccompile missing type")
}
return
}
// assign parameter offsets
checkwidth(n.Type)
if Curfn != nil {
Fatalf("funccompile %v inside %v", n.Func.Nname.Sym, Curfn.Func.Nname.Sym)
}
dclcontext = PAUTO
funcdepth = n.Func.Depth + 1
compile(n)
Curfn = nil
funcdepth = 0
dclcontext = PEXTERN
}
func funcsymname(s *types.Sym) string {
return s.Name + "·f"
}
// funcsym returns s·f.
func funcsym(s *types.Sym) *types.Sym {
// funcsymsmu here serves to protect not just mutations of funcsyms (below),
// but also the package lookup of the func sym name,
// since this function gets called concurrently from the backend.
// There are no other concurrent package lookups in the backend,
// except for the types package, which is protected separately.
// Reusing funcsymsmu to also cover this package lookup
// avoids a general, broader, expensive package lookup mutex.
// Note makefuncsym also does package look-up of func sym names,
// but that it is only called serially, from the front end.
funcsymsmu.Lock()
sf, existed := s.Pkg.LookupOK(funcsymname(s))
// Don't export s·f when compiling for dynamic linking.
// When dynamically linking, the necessary function
// symbols will be created explicitly with makefuncsym.
// See the makefuncsym comment for details.
if !Ctxt.Flag_dynlink && !existed {
funcsyms = append(funcsyms, s)
}
funcsymsmu.Unlock()
return sf
}
// makefuncsym ensures that s·f is exported.
// It is only used with -dynlink.
// When not compiling for dynamic linking,
// the funcsyms are created as needed by
// the packages that use them.
// Normally we emit the s·f stubs as DUPOK syms,
// but DUPOK doesn't work across shared library boundaries.
// So instead, when dynamic linking, we only create
// the s·f stubs in s's package.
func makefuncsym(s *types.Sym) {
if !Ctxt.Flag_dynlink {
Fatalf("makefuncsym dynlink")
}
if s.IsBlank() {
return
}
if compiling_runtime && s.Name == "getg" {
// runtime.getg() is not a real function and so does
// not get a funcsym.
return
}
if _, existed := s.Pkg.LookupOK(funcsymname(s)); !existed {
funcsyms = append(funcsyms, s)
}
}
func dclfunc(sym *types.Sym, tfn *Node) *Node {
if tfn.Op != OTFUNC {
Fatalf("expected OTFUNC node, got %v", tfn)
}
fn := nod(ODCLFUNC, nil, nil)
fn.Func.Nname = newname(sym)
fn.Func.Nname.Name.Defn = fn
fn.Func.Nname.Name.Param.Ntype = tfn
declare(fn.Func.Nname, PFUNC)
funchdr(fn)
fn.Func.Nname.Name.Param.Ntype = typecheck(fn.Func.Nname.Name.Param.Ntype, Etype)
return fn
}
type nowritebarrierrecChecker struct {
curfn *Node
stable bool
// best maps from the ODCLFUNC of each visited function that
// recursively invokes a write barrier to the called function
// on the shortest path to a write barrier.
best map[*Node]nowritebarrierrecCall
}
type nowritebarrierrecCall struct {
target *Node
depth int
lineno src.XPos
}
func checknowritebarrierrec() {
c := nowritebarrierrecChecker{
best: make(map[*Node]nowritebarrierrecCall),
}
visitBottomUp(xtop, func(list []*Node, recursive bool) {
// Functions with write barriers have depth 0.
for _, n := range list {
if n.Func.WBPos.IsKnown() && n.Func.Pragma&Nowritebarrier != 0 {
yyerrorl(n.Func.WBPos, "write barrier prohibited")
}
if n.Func.WBPos.IsKnown() && n.Func.Pragma&Yeswritebarrierrec == 0 {
c.best[n] = nowritebarrierrecCall{target: nil, depth: 0, lineno: n.Func.WBPos}
}
}
// Propagate write barrier depth up from callees. In
// the recursive case, we have to update this at most
// len(list) times and can stop when we an iteration
// that doesn't change anything.
for _ = range list {
c.stable = false
for _, n := range list {
if n.Func.Pragma&Yeswritebarrierrec != 0 {
// Don't propagate write
// barrier up to a
// yeswritebarrierrec function.
continue
}
if !n.Func.WBPos.IsKnown() {
c.curfn = n
c.visitcodelist(n.Nbody)
}
}
if c.stable {
break
}
}
// Check nowritebarrierrec functions.
for _, n := range list {
if n.Func.Pragma&Nowritebarrierrec == 0 {
continue
}
call, hasWB := c.best[n]
if !hasWB {
continue
}
// Build the error message in reverse.
err := ""
for call.target != nil {
err = fmt.Sprintf("\n\t%v: called by %v%s", linestr(call.lineno), n.Func.Nname, err)
n = call.target
call = c.best[n]
}
err = fmt.Sprintf("write barrier prohibited by caller; %v%s", n.Func.Nname, err)
yyerrorl(n.Func.WBPos, err)
}
})
}
func (c *nowritebarrierrecChecker) visitcodelist(l Nodes) {
for _, n := range l.Slice() {
c.visitcode(n)
}
}
func (c *nowritebarrierrecChecker) visitcode(n *Node) {
if n == nil {
return
}
if n.Op == OCALLFUNC || n.Op == OCALLMETH {
c.visitcall(n)
}
c.visitcodelist(n.Ninit)
c.visitcode(n.Left)
c.visitcode(n.Right)
c.visitcodelist(n.List)
c.visitcodelist(n.Nbody)
c.visitcodelist(n.Rlist)
}
func (c *nowritebarrierrecChecker) visitcall(n *Node) {
fn := n.Left
if n.Op == OCALLMETH {
fn = asNode(n.Left.Sym.Def)
}
if fn == nil || fn.Op != ONAME || fn.Class() != PFUNC || fn.Name.Defn == nil {
return
}
defn := fn.Name.Defn
fnbest, ok := c.best[defn]
if !ok {
return
}
best, ok := c.best[c.curfn]
if ok && fnbest.depth+1 >= best.depth {
return
}
c.best[c.curfn] = nowritebarrierrecCall{target: defn, depth: fnbest.depth + 1, lineno: n.Pos}
c.stable = false
}