reflect: inline method implementations

This CL is only cut-and-paste, moving code around.
Moving it in a separate CL should simplify the diffs in later CLs.

There are three patterns here.

1. A function like
        func (v Value) M() (...) {
                return v.panicIfNot(K).(*kValue).M()
        }
becomes
        func (v Value) M() (...) {
                vv := v.panicIfNot(K).(*kValue)

                // body of (*kValue).M, s/v./vv./g
        }

2. A function like
        func (v Value) M() (...) {
                return v.panicIfNots(kList).(mer).M()
        }
becomes
        func (v Value) M() (...) {
                switch vv := v.panicIfNots(kList).(type) {
                case *k1Value:
                        // body of (*k1Value).M, s/v./vv./g
                case *k2Value:
                        // body of (*k2Value).M, s/v./vv./g
                ...
                }
                panic("not reached")
        }

3. The rewrite of Value.Set follows 2, but each case
is built from the bodies of (*kValue).SetValue and (*kValue).Set.
        func (v *kValue) SetValue(x Value) {
                v.Set(x.panicIfNot(K).(*kValue)
        }
        func (v *kValue) Set(x *kValue) {
                ... body
        }
becomes, in the switch from 2,
                case *kValue:
                        xx := x.panicIfNot(K).(*kValue)
                        ... body, s/v./vv./g; s/x./xx./g

R=r
CC=golang-dev
https://golang.org/cl/4398044
diff --git a/src/pkg/reflect/value.go b/src/pkg/reflect/value.go
index eeae6cc..ddc3110 100644
--- a/src/pkg/reflect/value.go
+++ b/src/pkg/reflect/value.go
@@ -135,7 +135,7 @@
 // It panics if v's kind is not Bool.
 func (v Value) Bool() bool {
 	u := v.panicIfNot(Bool).(*boolValue)
-	return u.Get()
+	return *(*bool)(u.addr)
 }
 
 // CanAddr returns true if the value's address can be obtained with Addr.
@@ -161,25 +161,133 @@
 // It panics if v's Kind is not Func.
 // It returns the output parameters as Values.
 func (v Value) Call(in []Value) []Value {
-	return v.panicIfNot(Func).(*funcValue).Call(in)
+	fv := v.panicIfNot(Func).(*funcValue)
+	t := fv.Type()
+	nin := len(in)
+	if fv.first != nil && !fv.isInterface {
+		nin++
+	}
+	if nin != t.NumIn() {
+		panic("funcValue: wrong argument count")
+	}
+	nout := t.NumOut()
+
+	// Compute arg size & allocate.
+	// This computation is 6g/8g-dependent
+	// and probably wrong for gccgo, but so
+	// is most of this function.
+	size := uintptr(0)
+	if fv.isInterface {
+		// extra word for interface value
+		size += ptrSize
+	}
+	for i := 0; i < nin; i++ {
+		tv := t.In(i)
+		a := uintptr(tv.Align())
+		size = (size + a - 1) &^ (a - 1)
+		size += tv.Size()
+	}
+	size = (size + ptrSize - 1) &^ (ptrSize - 1)
+	for i := 0; i < nout; i++ {
+		tv := t.Out(i)
+		a := uintptr(tv.Align())
+		size = (size + a - 1) &^ (a - 1)
+		size += tv.Size()
+	}
+
+	// size must be > 0 in order for &args[0] to be valid.
+	// the argument copying is going to round it up to
+	// a multiple of ptrSize anyway, so make it ptrSize to begin with.
+	if size < ptrSize {
+		size = ptrSize
+	}
+
+	// round to pointer size
+	size = (size + ptrSize - 1) &^ (ptrSize - 1)
+
+	// Copy into args.
+	//
+	// TODO(rsc): revisit when reference counting happens.
+	// The values are holding up the in references for us,
+	// but something must be done for the out references.
+	// For now make everything look like a pointer by pretending
+	// to allocate a []*int.
+	args := make([]*int, size/ptrSize)
+	ptr := uintptr(unsafe.Pointer(&args[0]))
+	off := uintptr(0)
+	delta := 0
+	if v := fv.first; v != nil {
+		// Hard-wired first argument.
+		if fv.isInterface {
+			// v is a single uninterpreted word
+			memmove(addr(ptr), v.getAddr(), ptrSize)
+			off = ptrSize
+		} else {
+			// v is a real value
+			tv := v.Type()
+			typesMustMatch(t.In(0), tv)
+			n := tv.Size()
+			memmove(addr(ptr), v.getAddr(), n)
+			off = n
+			delta = 1
+		}
+	}
+	for i, v := range in {
+		tv := v.Type()
+		typesMustMatch(t.In(i+delta), tv)
+		a := uintptr(tv.Align())
+		off = (off + a - 1) &^ (a - 1)
+		n := tv.Size()
+		memmove(addr(ptr+off), v.internal().getAddr(), n)
+		off += n
+	}
+	off = (off + ptrSize - 1) &^ (ptrSize - 1)
+
+	// Call
+	call(*(**byte)(fv.addr), (*byte)(addr(ptr)), uint32(size))
+
+	// Copy return values out of args.
+	//
+	// TODO(rsc): revisit like above.
+	ret := make([]Value, nout)
+	for i := 0; i < nout; i++ {
+		tv := t.Out(i)
+		a := uintptr(tv.Align())
+		off = (off + a - 1) &^ (a - 1)
+		v := Zero(tv)
+		n := tv.Size()
+		memmove(v.internal().getAddr(), addr(ptr+off), n)
+		ret[i] = v
+		off += n
+	}
+
+	return ret
 }
 
 var capKinds = []Kind{Array, Chan, Slice}
 
-type capper interface {
-	Cap() int
-}
-
 // Cap returns v's capacity.
 // It panics if v's Kind is not Array, Chan, or Slice.
 func (v Value) Cap() int {
-	return v.panicIfNots(capKinds).(capper).Cap()
+	switch vv := v.panicIfNots(capKinds).(type) {
+	case *arrayValue:
+		return vv.typ.Len()
+	case *chanValue:
+		ch := *(**byte)(vv.addr)
+		return int(chancap(ch))
+	case *sliceValue:
+		return int(vv.slice().Cap)
+	}
+	panic("not reached")
 }
 
 // Close closes the channel v.
 // It panics if v's Kind is not Chan.
 func (v Value) Close() {
-	v.panicIfNot(Chan).(*chanValue).Close()
+	vv := v.panicIfNot(Chan).(*chanValue)
+
+	ch := *(**byte)(vv.addr)
+	chanclose(ch)
 }
 
 var complexKinds = []Kind{Complex64, Complex128}
@@ -187,40 +295,84 @@
 // Complex returns v's underlying value, as a complex128.
 // It panics if v's Kind is not Complex64 or Complex128
 func (v Value) Complex() complex128 {
-	return v.panicIfNots(complexKinds).(*complexValue).Get()
+	vv := v.panicIfNots(complexKinds).(*complexValue)
+
+	switch vv.typ.Kind() {
+	case Complex64:
+		return complex128(*(*complex64)(vv.addr))
+	case Complex128:
+		return *(*complex128)(vv.addr)
+	}
+	panic("reflect: invalid complex kind")
 }
 
 var interfaceOrPtr = []Kind{Interface, Ptr}
 
-type elemer interface {
-	Elem() Value
-}
-
 // Elem returns the value that the interface v contains
 // or that the pointer v points to.
 // It panics if v's Kind is not Interface or Ptr.
 // It returns the zero Value if v is nil.
 func (v Value) Elem() Value {
-	return v.panicIfNots(interfaceOrPtr).(elemer).Elem()
+	switch vv := v.panicIfNots(interfaceOrPtr).(type) {
+	case *interfaceValue:
+		return NewValue(vv.Interface())
+	case *ptrValue:
+		if v.IsNil() {
+			return Value{}
+		}
+		flag := canAddr
+		if vv.flag&canStore != 0 {
+			flag |= canSet | canStore
+		}
+		return newValue(vv.typ.Elem(), *(*addr)(vv.addr), flag)
+	}
+	panic("not reached")
 }
 
 // Field returns the i'th field of the struct v.
 // It panics if v's Kind is not Struct.
 func (v Value) Field(i int) Value {
-	return v.panicIfNot(Struct).(*structValue).Field(i)
+	vv := v.panicIfNot(Struct).(*structValue)
+
+	t := vv.typ
+	if i < 0 || i >= t.NumField() {
+		panic("reflect: Field index out of range")
+	}
+	f := t.Field(i)
+	flag := vv.flag
+	if f.PkgPath != "" {
+		// unexported field
+		flag &^= canSet | canStore
+	}
+	return newValue(f.Type, addr(uintptr(vv.addr)+f.Offset), flag)
 }
 
 // FieldByIndex returns the nested field corresponding to index.
 // It panics if v's Kind is not struct.
 func (v Value) FieldByIndex(index []int) Value {
-	return v.panicIfNot(Struct).(*structValue).FieldByIndex(index)
+	v.panicIfNot(Struct)
+	for i, x := range index {
+		if i > 0 {
+			if v.Kind() == Ptr {
+				v = v.Elem()
+			}
+			if v.Kind() != Struct {
+				return Value{}
+			}
+		}
+		v = v.Field(x)
+	}
+	return v
 }
 
 // FieldByName returns the struct field with the given name.
 // It returns the zero Value if no field was found.
 // It panics if v's Kind is not struct.
 func (v Value) FieldByName(name string) Value {
-	return v.panicIfNot(Struct).(*structValue).FieldByName(name)
+	if f, ok := v.Type().FieldByName(name); ok {
+		return v.FieldByIndex(f.Index)
+	}
+	return Value{}
 }
 
 // FieldByNameFunc returns the struct field with a name
@@ -228,7 +380,10 @@
 // It panics if v's Kind is not struct.
 // It returns the zero Value if no field was found.
 func (v Value) FieldByNameFunc(match func(string) bool) Value {
-	return v.panicIfNot(Struct).(*structValue).FieldByNameFunc(match)
+	if f, ok := v.Type().FieldByNameFunc(match); ok {
+		return v.FieldByIndex(f.Index)
+	}
+	return Value{}
 }
 
 var floatKinds = []Kind{Float32, Float64}
@@ -236,7 +391,16 @@
 // Float returns v's underlying value, as an float64.
 // It panics if v's Kind is not Float32 or Float64
 func (v Value) Float() float64 {
-	return v.panicIfNots(floatKinds).(*floatValue).Get()
+	vv := v.panicIfNots(floatKinds).(*floatValue)
+
+	switch vv.typ.Kind() {
+	case Float32:
+		return float64(*(*float32)(vv.addr))
+	case Float64:
+		return *(*float64)(vv.addr)
+	}
+	panic("reflect: invalid float kind")
+
 }
 
 var arrayOrSlice = []Kind{Array, Slice}
@@ -244,7 +408,29 @@
 // Index returns v's i'th element.
 // It panics if v's Kind is not Array or Slice.
 func (v Value) Index(i int) Value {
-	return v.panicIfNots(arrayOrSlice).(arrayOrSliceValue).Elem(i)
+	switch vv := v.panicIfNots(arrayOrSlice).(type) {
+	case *arrayValue:
+		typ := vv.typ.Elem()
+		n := v.Len()
+		if i < 0 || i >= n {
+			panic("array index out of bounds")
+		}
+		p := addr(uintptr(vv.addr()) + uintptr(i)*typ.Size())
+		return newValue(typ, p, vv.flag)
+	case *sliceValue:
+		typ := vv.typ.Elem()
+		n := v.Len()
+		if i < 0 || i >= n {
+			panic("reflect: slice index out of range")
+		}
+		p := addr(uintptr(vv.addr()) + uintptr(i)*typ.Size())
+		flag := canAddr
+		if vv.flag&canStore != 0 {
+			flag |= canSet | canStore
+		}
+		return newValue(typ, p, flag)
+	}
+	panic("not reached")
 }
 
 var intKinds = []Kind{Int, Int8, Int16, Int32, Int64}
@@ -252,7 +438,21 @@
 // Int returns v's underlying value, as an int64.
 // It panics if v's Kind is not a sized or unsized Int kind.
 func (v Value) Int() int64 {
-	return v.panicIfNots(intKinds).(*intValue).Get()
+	vv := v.panicIfNots(intKinds).(*intValue)
+
+	switch vv.typ.Kind() {
+	case Int:
+		return int64(*(*int)(vv.addr))
+	case Int8:
+		return int64(*(*int8)(vv.addr))
+	case Int16:
+		return int64(*(*int16)(vv.addr))
+	case Int32:
+		return int64(*(*int32)(vv.addr))
+	case Int64:
+		return *(*int64)(vv.addr)
+	}
+	panic("reflect: invalid int kind")
 }
 
 // Interface returns v's value as an interface{}.
@@ -266,19 +466,31 @@
 // InterfaceData returns the interface v's value as a uintptr pair.
 // It panics if v's Kind is not Interface.
 func (v Value) InterfaceData() [2]uintptr {
-	return v.panicIfNot(Interface).(*interfaceValue).Get()
+	vv := v.panicIfNot(Interface).(*interfaceValue)
+
+	return *(*[2]uintptr)(vv.addr)
 }
 
 var nilKinds = []Kind{Chan, Func, Interface, Map, Ptr, Slice}
 
-type isNiller interface {
-	IsNil() bool
-}
-
 // IsNil returns true if v is a nil value.
 // It panics if v's Kind is not Chan, Func, Interface, Map, Ptr, or Slice.
 func (v Value) IsNil() bool {
-	return v.panicIfNots(nilKinds).(isNiller).IsNil()
+	switch vv := v.panicIfNots(nilKinds).(type) {
+	case *chanValue:
+		return *(*uintptr)(vv.addr) == 0
+	case *funcValue:
+		return *(*uintptr)(vv.addr) == 0
+	case *interfaceValue:
+		return vv.Interface() == nil
+	case *mapValue:
+		return *(*uintptr)(vv.addr) == 0
+	case *ptrValue:
+		return *(*uintptr)(vv.addr) == 0
+	case *sliceValue:
+		return vv.slice().Data == 0
+	}
+	panic("not reached")
 }
 
 // IsValid returns true if v represents a value.
@@ -301,28 +513,68 @@
 
 var lenKinds = []Kind{Array, Chan, Map, Slice}
 
-type lenner interface {
-	Len() int
-}
-
 // Len returns v's length.
 // It panics if v's Kind is not Array, Chan, Map, or Slice.
 func (v Value) Len() int {
-	return v.panicIfNots(lenKinds).(lenner).Len()
+	switch vv := v.panicIfNots(lenKinds).(type) {
+	case *arrayValue:
+		return vv.typ.Len()
+	case *chanValue:
+		ch := *(**byte)(vv.addr)
+		return int(chanlen(ch))
+	case *mapValue:
+		m := *(**byte)(vv.addr)
+		if m == nil {
+			return 0
+		}
+		return int(maplen(m))
+	case *sliceValue:
+		return int(vv.slice().Len)
+	}
+	panic("not reached")
 }
 
 // MapIndex returns the value associated with key in the map v.
 // It panics if v's Kind is not Map.
 // It returns the zero Value if key is not found in the map.
 func (v Value) MapIndex(key Value) Value {
-	return v.panicIfNot(Map).(*mapValue).Elem(key)
+	vv := v.panicIfNot(Map).(*mapValue)
+	t := vv.Type()
+	typesMustMatch(t.Key(), key.Type())
+	m := *(**byte)(vv.addr)
+	if m == nil {
+		return Value{}
+	}
+	newval := Zero(t.Elem())
+	if !mapaccess(m, (*byte)(key.internal().getAddr()), (*byte)(newval.internal().getAddr())) {
+		return Value{}
+	}
+	return newval
 }
 
 // MapKeys returns a slice containing all the keys present in the map,
 // in unspecified order.
 // It panics if v's Kind is not Map.
 func (v Value) MapKeys() []Value {
-	return v.panicIfNot(Map).(*mapValue).Keys()
+	vv := v.panicIfNot(Map).(*mapValue)
+	tk := vv.Type().Key()
+	m := *(**byte)(vv.addr)
+	mlen := int32(0)
+	if m != nil {
+		mlen = maplen(m)
+	}
+	it := mapiterinit(m)
+	a := make([]Value, mlen)
+	var i int
+	for i = 0; i < len(a); i++ {
+		k := Zero(tk)
+		if !mapiterkey(it, (*byte)(k.internal().getAddr())) {
+			break
+		}
+		a[i] = k
+		mapiternext(it)
+	}
+	return a[0:i]
 }
 
 // Method returns a function value corresponding to v's i'th method.
@@ -335,124 +587,390 @@
 // NumField returns the number of fields in the struct v.
 // It panics if v's Kind is not Struct.
 func (v Value) NumField() int {
-	return v.panicIfNot(Struct).(*structValue).NumField()
+	return v.panicIfNot(Struct).(*structValue).typ.NumField()
 }
 
 // OverflowComplex returns true if the complex128 x cannot be represented by v's type.
 // It panics if v's Kind is not Complex64 or Complex128.
 func (v Value) OverflowComplex(x complex128) bool {
-	return v.panicIfNots(complexKinds).(*complexValue).Overflow(x)
+	vv := v.panicIfNots(complexKinds).(*complexValue)
+
+	if vv.typ.Size() == 16 {
+		return false
+	}
+	r := real(x)
+	i := imag(x)
+	if r < 0 {
+		r = -r
+	}
+	if i < 0 {
+		i = -i
+	}
+	return math.MaxFloat32 <= r && r <= math.MaxFloat64 ||
+		math.MaxFloat32 <= i && i <= math.MaxFloat64
 }
 
 // OverflowFloat returns true if the float64 x cannot be represented by v's type.
 // It panics if v's Kind is not Float32 or Float64.
 func (v Value) OverflowFloat(x float64) bool {
-	return v.panicIfNots(floatKinds).(*floatValue).Overflow(x)
+	vv := v.panicIfNots(floatKinds).(*floatValue)
+
+	if vv.typ.Size() == 8 {
+		return false
+	}
+	if x < 0 {
+		x = -x
+	}
+	return math.MaxFloat32 < x && x <= math.MaxFloat64
 }
 
 // OverflowInt returns true if the int64 x cannot be represented by v's type.
 // It panics if v's Kind is not a sized or unsized Int kind.
 func (v Value) OverflowInt(x int64) bool {
-	return v.panicIfNots(intKinds).(*intValue).Overflow(x)
+	vv := v.panicIfNots(intKinds).(*intValue)
+
+	bitSize := uint(vv.typ.Bits())
+	trunc := (x << (64 - bitSize)) >> (64 - bitSize)
+	return x != trunc
 }
 
 // OverflowUint returns true if the uint64 x cannot be represented by v's type.
 // It panics if v's Kind is not a sized or unsized Uint kind.
 func (v Value) OverflowUint(x uint64) bool {
-	return v.panicIfNots(uintKinds).(*uintValue).Overflow(x)
+	vv := v.panicIfNots(uintKinds).(*uintValue)
+
+	bitSize := uint(vv.typ.Bits())
+	trunc := (x << (64 - bitSize)) >> (64 - bitSize)
+	return x != trunc
 }
 
 var pointerKinds = []Kind{Chan, Func, Map, Ptr, Slice, UnsafePointer}
 
-type uintptrGetter interface {
-	Get() uintptr
-}
-
 // Pointer returns v's value as a uintptr.
 // It returns uintptr instead of unsafe.Pointer so that
 // code using reflect cannot obtain unsafe.Pointers
 // without importing the unsafe package explicitly.
 // It panics if v's Kind is not Chan, Func, Map, Ptr, Slice, or UnsafePointer.
 func (v Value) Pointer() uintptr {
-	return v.panicIfNots(pointerKinds).(uintptrGetter).Get()
+	switch vv := v.panicIfNots(pointerKinds).(type) {
+	case *chanValue:
+		return *(*uintptr)(vv.addr)
+	case *funcValue:
+		return *(*uintptr)(vv.addr)
+	case *mapValue:
+		return *(*uintptr)(vv.addr)
+	case *ptrValue:
+		return *(*uintptr)(vv.addr)
+	case *sliceValue:
+		typ := vv.typ
+		return uintptr(vv.addr()) + uintptr(v.Cap())*typ.Elem().Size()
+	case *unsafePointerValue:
+		return uintptr(*(*unsafe.Pointer)(vv.addr))
+	}
+	panic("not reached")
 }
 
-
 // Recv receives and returns a value from the channel v.
 // It panics if v's Kind is not Chan.
 // The receive blocks until a value is ready.
 // The boolean value ok is true if the value x corresponds to a send
 // on the channel, false if it is a zero value received because the channel is closed.
 func (v Value) Recv() (x Value, ok bool) {
-	return v.panicIfNot(Chan).(*chanValue).Recv()
+	return v.panicIfNot(Chan).(*chanValue).recv(nil)
+}
+
+// internal recv; non-blocking if selected != nil
+func (v *chanValue) recv(selected *bool) (Value, bool) {
+	t := v.Type()
+	if t.ChanDir()&RecvDir == 0 {
+		panic("recv on send-only channel")
+	}
+	ch := *(**byte)(v.addr)
+	x := Zero(t.Elem())
+	var ok bool
+	chanrecv(ch, (*byte)(x.internal().getAddr()), selected, &ok)
+	return x, ok
 }
 
 // Send sends x on the channel v.
 // It panics if v's kind is not Chan or if x's type is not the same type as v's element type.
 func (v Value) Send(x Value) {
-	v.panicIfNot(Chan).(*chanValue).Send(x)
+	v.panicIfNot(Chan).(*chanValue).send(x, nil)
+}
+
+// internal send; non-blocking if selected != nil
+func (v *chanValue) send(x Value, selected *bool) {
+	t := v.Type()
+	if t.ChanDir()&SendDir == 0 {
+		panic("send on recv-only channel")
+	}
+	typesMustMatch(t.Elem(), x.Type())
+	ch := *(**byte)(v.addr)
+	chansend(ch, (*byte)(x.internal().getAddr()), selected)
 }
 
 // Set assigns x to the value v; x must have the same type as v.
 // It panics if CanSet() returns false or if x is the zero Value.
 func (v Value) Set(x Value) {
 	x.internal()
-	v.internal().SetValue(x)
+	switch vv := v.internal().(type) {
+	case *arrayValue:
+		xx := x.panicIfNot(Array).(*arrayValue)
+		if !vv.CanSet() {
+			panic(cannotSet)
+		}
+		typesMustMatch(vv.typ, xx.typ)
+		Copy(v, x)
+
+	case *boolValue:
+		v.SetBool(x.Bool())
+
+	case *chanValue:
+		x := x.panicIfNot(Chan).(*chanValue)
+		if !vv.CanSet() {
+			panic(cannotSet)
+		}
+		typesMustMatch(vv.typ, x.typ)
+		*(*uintptr)(vv.addr) = *(*uintptr)(x.addr)
+
+	case *floatValue:
+		v.SetFloat(x.Float())
+
+	case *funcValue:
+		x := x.panicIfNot(Func).(*funcValue)
+		if !vv.CanSet() {
+			panic(cannotSet)
+		}
+		typesMustMatch(vv.typ, x.typ)
+		*(*uintptr)(vv.addr) = *(*uintptr)(x.addr)
+
+	case *intValue:
+		v.SetInt(x.Int())
+
+	case *interfaceValue:
+		i := x.Interface()
+		if !vv.CanSet() {
+			panic(cannotSet)
+		}
+		// Two different representations; see comment in Get.
+		// Empty interface is easy.
+		t := (*interfaceType)(unsafe.Pointer(vv.typ.(*commonType)))
+		if t.NumMethod() == 0 {
+			*(*interface{})(vv.addr) = i
+			return
+		}
+
+		// Non-empty interface requires a runtime check.
+		setiface(t, &i, vv.addr)
+
+	case *mapValue:
+		x := x.panicIfNot(Map).(*mapValue)
+		if !vv.CanSet() {
+			panic(cannotSet)
+		}
+		if x == nil {
+			*(**uintptr)(vv.addr) = nil
+			return
+		}
+		typesMustMatch(vv.typ, x.typ)
+		*(*uintptr)(vv.addr) = *(*uintptr)(x.addr)
+
+	case *ptrValue:
+		x := x.panicIfNot(Ptr).(*ptrValue)
+		if x == nil {
+			*(**uintptr)(vv.addr) = nil
+			return
+		}
+		if !vv.CanSet() {
+			panic(cannotSet)
+		}
+		if x.flag&canStore == 0 {
+			panic("cannot copy pointer obtained from unexported struct field")
+		}
+		typesMustMatch(vv.typ, x.typ)
+		// TODO: This will have to move into the runtime
+		// once the new gc goes in
+		*(*uintptr)(vv.addr) = *(*uintptr)(x.addr)
+
+	case *sliceValue:
+		x := x.panicIfNot(Slice).(*sliceValue)
+		if !vv.CanSet() {
+			panic(cannotSet)
+		}
+		typesMustMatch(vv.typ, x.typ)
+		*vv.slice() = *x.slice()
+
+	case *stringValue:
+		// Do the kind check explicitly, because x.String() does not.
+		x.panicIfNot(String)
+		v.SetString(x.String())
+
+	case *structValue:
+		x := x.panicIfNot(Struct).(*structValue)
+		// TODO: This will have to move into the runtime
+		// once the gc goes in.
+		if !vv.CanSet() {
+			panic(cannotSet)
+		}
+		typesMustMatch(vv.typ, x.typ)
+		memmove(vv.addr, x.addr, vv.typ.Size())
+
+	case *uintValue:
+		v.SetUint(x.Uint())
+
+	case *unsafePointerValue:
+		// Do the kind check explicitly, because x.UnsafePointer
+		// applies to more than just the UnsafePointer Kind.
+		x.panicIfNot(UnsafePointer)
+		v.SetPointer(unsafe.Pointer(x.Pointer()))
+	}
 }
 
 // SetBool sets v's underlying value.
 // It panics if v's Kind is not Bool or if CanSet() is false.
 func (v Value) SetBool(x bool) {
-	v.panicIfNot(Bool).(*boolValue).Set(x)
+	vv := v.panicIfNot(Bool).(*boolValue)
+
+	if !vv.CanSet() {
+		panic(cannotSet)
+	}
+	*(*bool)(vv.addr) = x
 }
 
 // SetComplex sets v's underlying value to x.
 // It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false.
 func (v Value) SetComplex(x complex128) {
-	v.panicIfNots(complexKinds).(*complexValue).Set(x)
+	vv := v.panicIfNots(complexKinds).(*complexValue)
+
+	if !vv.CanSet() {
+		panic(cannotSet)
+	}
+	switch vv.typ.Kind() {
+	default:
+		panic("reflect: invalid complex kind")
+	case Complex64:
+		*(*complex64)(vv.addr) = complex64(x)
+	case Complex128:
+		*(*complex128)(vv.addr) = x
+	}
 }
 
 // SetFloat sets v's underlying value to x.
 // It panics if v's Kind is not Float32 or Float64, or if CanSet() is false.
 func (v Value) SetFloat(x float64) {
-	v.panicIfNots(floatKinds).(*floatValue).Set(x)
+	vv := v.panicIfNots(floatKinds).(*floatValue)
+
+	if !vv.CanSet() {
+		panic(cannotSet)
+	}
+	switch vv.typ.Kind() {
+	default:
+		panic("reflect: invalid float kind")
+	case Float32:
+		*(*float32)(vv.addr) = float32(x)
+	case Float64:
+		*(*float64)(vv.addr) = x
+	}
 }
 
 // SetInt sets v's underlying value to x.
 // It panics if v's Kind is not a sized or unsized Int kind, or if CanSet() is false.
 func (v Value) SetInt(x int64) {
-	v.panicIfNots(intKinds).(*intValue).Set(x)
+	vv := v.panicIfNots(intKinds).(*intValue)
+
+	if !vv.CanSet() {
+		panic(cannotSet)
+	}
+	switch vv.typ.Kind() {
+	default:
+		panic("reflect: invalid int kind")
+	case Int:
+		*(*int)(vv.addr) = int(x)
+	case Int8:
+		*(*int8)(vv.addr) = int8(x)
+	case Int16:
+		*(*int16)(vv.addr) = int16(x)
+	case Int32:
+		*(*int32)(vv.addr) = int32(x)
+	case Int64:
+		*(*int64)(vv.addr) = x
+	}
 }
 
 // SetLen sets v's length to n.
 // It panics if v's Kind is not Slice.
 func (v Value) SetLen(n int) {
-	v.panicIfNot(Slice).(*sliceValue).SetLen(n)
+	vv := v.panicIfNot(Slice).(*sliceValue)
+
+	s := vv.slice()
+	if n < 0 || n > int(s.Cap) {
+		panic("reflect: slice length out of range in SetLen")
+	}
+	s.Len = n
 }
 
 // SetMapIndex sets the value associated with key in the map v to val.
 // It panics if v's Kind is not Map.
 // If val is the zero Value, SetMapIndex deletes the key from the map.
 func (v Value) SetMapIndex(key, val Value) {
-	v.panicIfNot(Map).(*mapValue).SetElem(key, val)
+	vv := v.panicIfNot(Map).(*mapValue)
+	t := vv.Type()
+	typesMustMatch(t.Key(), key.Type())
+	var vaddr *byte
+	if val.IsValid() {
+		typesMustMatch(t.Elem(), val.Type())
+		vaddr = (*byte)(val.internal().getAddr())
+	}
+	m := *(**byte)(vv.addr)
+	mapassign(m, (*byte)(key.internal().getAddr()), vaddr)
 }
 
 // SetUint sets v's underlying value to x.
 // It panics if v's Kind is not a sized or unsized Uint kind, or if CanSet() is false.
 func (v Value) SetUint(x uint64) {
-	v.panicIfNots(uintKinds).(*uintValue).Set(x)
+	vv := v.panicIfNots(uintKinds).(*uintValue)
+
+	if !vv.CanSet() {
+		panic(cannotSet)
+	}
+	switch vv.typ.Kind() {
+	default:
+		panic("reflect: invalid uint kind")
+	case Uint:
+		*(*uint)(vv.addr) = uint(x)
+	case Uint8:
+		*(*uint8)(vv.addr) = uint8(x)
+	case Uint16:
+		*(*uint16)(vv.addr) = uint16(x)
+	case Uint32:
+		*(*uint32)(vv.addr) = uint32(x)
+	case Uint64:
+		*(*uint64)(vv.addr) = x
+	case Uintptr:
+		*(*uintptr)(vv.addr) = uintptr(x)
+	}
 }
 
 // SetPointer sets the unsafe.Pointer value v to x.
 // It panics if v's Kind is not UnsafePointer.
 func (v Value) SetPointer(x unsafe.Pointer) {
-	v.panicIfNot(UnsafePointer).(*unsafePointerValue).Set(x)
+	vv := v.panicIfNot(UnsafePointer).(*unsafePointerValue)
+
+	if !vv.CanSet() {
+		panic(cannotSet)
+	}
+	*(*unsafe.Pointer)(vv.addr) = x
 }
 
 // SetString sets v's underlying value to x.
 // It panics if v's Kind is not String or if CanSet() is false.
 func (v Value) SetString(x string) {
-	v.panicIfNot(String).(*stringValue).Set(x)
+	vv := v.panicIfNot(String).(*stringValue)
+
+	if !vv.CanSet() {
+		panic(cannotSet)
+	}
+	*(*string)(vv.addr) = x
 }
 
 // BUG(rsc): Value.Slice should allow slicing arrays.
@@ -460,7 +978,25 @@
 // Slice returns a slice of v.
 // It panics if v's Kind is not Slice.
 func (v Value) Slice(beg, end int) Value {
-	return v.panicIfNot(Slice).(*sliceValue).Slice(beg, end)
+	vv := v.panicIfNot(Slice).(*sliceValue)
+
+	cap := v.Cap()
+	if beg < 0 || end < beg || end > cap {
+		panic("slice index out of bounds")
+	}
+	typ := vv.typ
+	s := new(SliceHeader)
+	s.Data = uintptr(vv.addr()) + uintptr(beg)*typ.Elem().Size()
+	s.Len = end - beg
+	s.Cap = cap - beg
+
+	// Like the result of Addr, we treat Slice as an
+	// unaddressable temporary, so don't set canAddr.
+	flag := canSet
+	if vv.flag&canStore != 0 {
+		flag |= canStore
+	}
+	return newValue(typ, addr(s), flag)
 }
 
 // String returns the string v's underlying value, as a string.
@@ -473,7 +1009,8 @@
 		return "<invalid Value>"
 	}
 	if vi.Kind() == String {
-		return vi.(*stringValue).Get()
+		vv := vi.(*stringValue)
+		return *(*string)(vv.addr)
 	}
 	return "<" + vi.Type().String() + " Value>"
 }
@@ -484,14 +1021,25 @@
 // The boolean ok is true if the value x corresponds to a send
 // on the channel, false if it is a zero value received because the channel is closed.
 func (v Value) TryRecv() (x Value, ok bool) {
-	return v.panicIfNot(Chan).(*chanValue).TryRecv()
+	vv := v.panicIfNot(Chan).(*chanValue)
+
+	var selected bool
+	x, ok = vv.recv(&selected)
+	if !selected {
+		return Value{}, false
+	}
+	return x, ok
 }
 
 // TrySend attempts to send x on the channel v but will not block.
 // It panics if v's Kind is not Chan.
 // It returns true if the value was sent, false otherwise.
 func (v Value) TrySend(x Value) bool {
-	return v.panicIfNot(Chan).(*chanValue).TrySend(x)
+	vv := v.panicIfNot(Chan).(*chanValue)
+
+	var selected bool
+	vv.send(x, &selected)
+	return selected
 }
 
 // Type returns v's type.
@@ -504,7 +1052,23 @@
 // Uint returns v's underlying value, as a uint64.
 // It panics if v's Kind is not a sized or unsized Uint kind.
 func (v Value) Uint() uint64 {
-	return v.panicIfNots(uintKinds).(*uintValue).Get()
+	vv := v.panicIfNots(uintKinds).(*uintValue)
+
+	switch vv.typ.Kind() {
+	case Uint:
+		return uint64(*(*uint)(vv.addr))
+	case Uint8:
+		return uint64(*(*uint8)(vv.addr))
+	case Uint16:
+		return uint64(*(*uint16)(vv.addr))
+	case Uint32:
+		return uint64(*(*uint32)(vv.addr))
+	case Uint64:
+		return *(*uint64)(vv.addr)
+	case Uintptr:
+		return uint64(*(*uintptr)(vv.addr))
+	}
+	panic("reflect: invalid uint kind")
 }
 
 // UnsafeAddr returns a pointer to v's data.
@@ -529,9 +1093,6 @@
 	// If CanSet returns false, calling the type-specific Set will panic.
 	CanSet() bool
 
-	// SetValue assigns v to the value; v must have the same type as the value.
-	SetValue(v Value)
-
 	// CanAddr returns true if the value's address can be obtained with Addr.
 	// Such values are called addressable.  A value is addressable if it is
 	// an element of a slice, an element of an addressable array,
@@ -635,169 +1196,21 @@
 	value "bool"
 }
 
-// Get returns the underlying bool value.
-func (v *boolValue) Get() bool { return *(*bool)(v.addr) }
-
-// Set sets v to the value x.
-func (v *boolValue) Set(x bool) {
-	if !v.CanSet() {
-		panic(cannotSet)
-	}
-	*(*bool)(v.addr) = x
-}
-
-// Set sets v to the value x.
-func (v *boolValue) SetValue(x Value) { v.Set(x.Bool()) }
-
 // floatValue represents a float value.
 type floatValue struct {
 	value "float"
 }
 
-// Get returns the underlying int value.
-func (v *floatValue) Get() float64 {
-	switch v.typ.Kind() {
-	case Float32:
-		return float64(*(*float32)(v.addr))
-	case Float64:
-		return *(*float64)(v.addr)
-	}
-	panic("reflect: invalid float kind")
-}
-
-// Set sets v to the value x.
-func (v *floatValue) Set(x float64) {
-	if !v.CanSet() {
-		panic(cannotSet)
-	}
-	switch v.typ.Kind() {
-	default:
-		panic("reflect: invalid float kind")
-	case Float32:
-		*(*float32)(v.addr) = float32(x)
-	case Float64:
-		*(*float64)(v.addr) = x
-	}
-}
-
-// Overflow returns true if x cannot be represented by the type of v.
-func (v *floatValue) Overflow(x float64) bool {
-	if v.typ.Size() == 8 {
-		return false
-	}
-	if x < 0 {
-		x = -x
-	}
-	return math.MaxFloat32 < x && x <= math.MaxFloat64
-}
-
-// Set sets v to the value x.
-func (v *floatValue) SetValue(x Value) { v.Set(x.Float()) }
-
 // complexValue represents a complex value.
 type complexValue struct {
 	value "complex"
 }
 
-// Get returns the underlying complex value.
-func (v *complexValue) Get() complex128 {
-	switch v.typ.Kind() {
-	case Complex64:
-		return complex128(*(*complex64)(v.addr))
-	case Complex128:
-		return *(*complex128)(v.addr)
-	}
-	panic("reflect: invalid complex kind")
-}
-
-// Set sets v to the value x.
-func (v *complexValue) Set(x complex128) {
-	if !v.CanSet() {
-		panic(cannotSet)
-	}
-	switch v.typ.Kind() {
-	default:
-		panic("reflect: invalid complex kind")
-	case Complex64:
-		*(*complex64)(v.addr) = complex64(x)
-	case Complex128:
-		*(*complex128)(v.addr) = x
-	}
-}
-
-// How did we forget this one?
-func (v *complexValue) Overflow(x complex128) bool {
-	if v.typ.Size() == 16 {
-		return false
-	}
-	r := real(x)
-	i := imag(x)
-	if r < 0 {
-		r = -r
-	}
-	if i < 0 {
-		i = -i
-	}
-	return math.MaxFloat32 <= r && r <= math.MaxFloat64 ||
-		math.MaxFloat32 <= i && i <= math.MaxFloat64
-}
-
-// Set sets v to the value x.
-func (v *complexValue) SetValue(x Value) { v.Set(x.Complex()) }
-
 // intValue represents an int value.
 type intValue struct {
 	value "int"
 }
 
-// Get returns the underlying int value.
-func (v *intValue) Get() int64 {
-	switch v.typ.Kind() {
-	case Int:
-		return int64(*(*int)(v.addr))
-	case Int8:
-		return int64(*(*int8)(v.addr))
-	case Int16:
-		return int64(*(*int16)(v.addr))
-	case Int32:
-		return int64(*(*int32)(v.addr))
-	case Int64:
-		return *(*int64)(v.addr)
-	}
-	panic("reflect: invalid int kind")
-}
-
-// Set sets v to the value x.
-func (v *intValue) Set(x int64) {
-	if !v.CanSet() {
-		panic(cannotSet)
-	}
-	switch v.typ.Kind() {
-	default:
-		panic("reflect: invalid int kind")
-	case Int:
-		*(*int)(v.addr) = int(x)
-	case Int8:
-		*(*int8)(v.addr) = int8(x)
-	case Int16:
-		*(*int16)(v.addr) = int16(x)
-	case Int32:
-		*(*int32)(v.addr) = int32(x)
-	case Int64:
-		*(*int64)(v.addr) = x
-	}
-}
-
-// Set sets v to the value x.
-func (v *intValue) SetValue(x Value) { v.Set(x.Int()) }
-
-// Overflow returns true if x cannot be represented by the type of v.
-func (v *intValue) Overflow(x int64) bool {
-	bitSize := uint(v.typ.Bits())
-	trunc := (x << (64 - bitSize)) >> (64 - bitSize)
-	return x != trunc
-}
-
 // StringHeader is the runtime representation of a string.
 type StringHeader struct {
 	Data uintptr
@@ -809,106 +1222,16 @@
 	value "string"
 }
 
-// Get returns the underlying string value.
-func (v *stringValue) Get() string { return *(*string)(v.addr) }
-
-// Set sets v to the value x.
-func (v *stringValue) Set(x string) {
-	if !v.CanSet() {
-		panic(cannotSet)
-	}
-	*(*string)(v.addr) = x
-}
-
-// Set sets v to the value x.
-func (v *stringValue) SetValue(x Value) {
-	// Do the kind check explicitly, because x.String() does not.
-	v.Set(x.panicIfNot(String).(*stringValue).Get())
-}
-
 // uintValue represents a uint value.
 type uintValue struct {
 	value "uint"
 }
 
-// Get returns the underlying uuint value.
-func (v *uintValue) Get() uint64 {
-	switch v.typ.Kind() {
-	case Uint:
-		return uint64(*(*uint)(v.addr))
-	case Uint8:
-		return uint64(*(*uint8)(v.addr))
-	case Uint16:
-		return uint64(*(*uint16)(v.addr))
-	case Uint32:
-		return uint64(*(*uint32)(v.addr))
-	case Uint64:
-		return *(*uint64)(v.addr)
-	case Uintptr:
-		return uint64(*(*uintptr)(v.addr))
-	}
-	panic("reflect: invalid uint kind")
-}
-
-// Set sets v to the value x.
-func (v *uintValue) Set(x uint64) {
-	if !v.CanSet() {
-		panic(cannotSet)
-	}
-	switch v.typ.Kind() {
-	default:
-		panic("reflect: invalid uint kind")
-	case Uint:
-		*(*uint)(v.addr) = uint(x)
-	case Uint8:
-		*(*uint8)(v.addr) = uint8(x)
-	case Uint16:
-		*(*uint16)(v.addr) = uint16(x)
-	case Uint32:
-		*(*uint32)(v.addr) = uint32(x)
-	case Uint64:
-		*(*uint64)(v.addr) = x
-	case Uintptr:
-		*(*uintptr)(v.addr) = uintptr(x)
-	}
-}
-
-// Overflow returns true if x cannot be represented by the type of v.
-func (v *uintValue) Overflow(x uint64) bool {
-	bitSize := uint(v.typ.Bits())
-	trunc := (x << (64 - bitSize)) >> (64 - bitSize)
-	return x != trunc
-}
-
-// Set sets v to the value x.
-func (v *uintValue) SetValue(x Value) { v.Set(x.Uint()) }
-
 // unsafePointerValue represents an unsafe.Pointer value.
 type unsafePointerValue struct {
 	value "unsafe.Pointer"
 }
 
-// Get returns the underlying uintptr value.
-// Get returns uintptr, not unsafe.Pointer, so that
-// programs that do not import "unsafe" cannot
-// obtain a value of unsafe.Pointer type from "reflect".
-func (v *unsafePointerValue) Get() uintptr { return uintptr(*(*unsafe.Pointer)(v.addr)) }
-
-// Set sets v to the value x.
-func (v *unsafePointerValue) Set(x unsafe.Pointer) {
-	if !v.CanSet() {
-		panic(cannotSet)
-	}
-	*(*unsafe.Pointer)(v.addr) = x
-}
-
-// Set sets v to the value x.
-func (v *unsafePointerValue) SetValue(x Value) {
-	// Do the kind check explicitly, because x.UnsafePointer
-	// applies to more than just the UnsafePointer Kind.
-	v.Set(unsafe.Pointer(x.panicIfNot(UnsafePointer).(*unsafePointerValue).Get()))
-}
-
 func typesMustMatch(t1, t2 Type) {
 	if t1 != t2 {
 		panic("type mismatch: " + t1.String() + " != " + t2.String())
@@ -923,9 +1246,6 @@
 // implemented by both arrayValue and sliceValue.
 type arrayOrSliceValue interface {
 	valueInterface
-	Len() int
-	Cap() int
-	Elem(i int) Value
 	addr() addr
 }
 
@@ -961,9 +1281,9 @@
 // Each x must have the same type as s' element type.
 func Append(s Value, x ...Value) Value {
 	s, i0, i1 := grow(s, len(x))
-	sa := s.panicIfNot(Slice).(*sliceValue)
+	s.panicIfNot(Slice)
 	for i, j := i0, 0; i < i1; i, j = i+1, j+1 {
-		sa.Elem(i).Set(x[j])
+		s.Index(i).Set(x[j])
 	}
 	return s
 }
@@ -1002,41 +1322,9 @@
 	value "array"
 }
 
-// Len returns the length of the array.
-func (v *arrayValue) Len() int { return v.typ.Len() }
-
-// Cap returns the capacity of the array (equal to Len()).
-func (v *arrayValue) Cap() int { return v.typ.Len() }
-
 // addr returns the base address of the data in the array.
 func (v *arrayValue) addr() addr { return v.value.addr }
 
-// Set assigns x to v.
-// The new value x must have the same type as v.
-func (v *arrayValue) Set(x *arrayValue) {
-	if !v.CanSet() {
-		panic(cannotSet)
-	}
-	typesMustMatch(v.typ, x.typ)
-	Copy(Value{v}, Value{x})
-}
-
-// Set sets v to the value x.
-func (v *arrayValue) SetValue(x Value) {
-	v.Set(x.panicIfNot(Array).(*arrayValue))
-}
-
-// Elem returns the i'th element of v.
-func (v *arrayValue) Elem(i int) Value {
-	typ := v.typ.Elem()
-	n := v.Len()
-	if i < 0 || i >= n {
-		panic("array index out of bounds")
-	}
-	p := addr(uintptr(v.addr()) + uintptr(i)*typ.Size())
-	return newValue(typ, p, v.flag)
-}
-
 /*
  * slice
  */
@@ -1055,87 +1343,9 @@
 
 func (v *sliceValue) slice() *SliceHeader { return (*SliceHeader)(v.value.addr) }
 
-// IsNil returns whether v is a nil slice.
-func (v *sliceValue) IsNil() bool { return v.slice().Data == 0 }
-
-// Len returns the length of the slice.
-func (v *sliceValue) Len() int { return int(v.slice().Len) }
-
-// Cap returns the capacity of the slice.
-func (v *sliceValue) Cap() int { return int(v.slice().Cap) }
-
 // addr returns the base address of the data in the slice.
 func (v *sliceValue) addr() addr { return addr(v.slice().Data) }
 
-// SetLen changes the length of v.
-// The new length n must be between 0 and the capacity, inclusive.
-func (v *sliceValue) SetLen(n int) {
-	s := v.slice()
-	if n < 0 || n > int(s.Cap) {
-		panic("reflect: slice length out of range in SetLen")
-	}
-	s.Len = n
-}
-
-// Set assigns x to v.
-// The new value x must have the same type as v.
-func (v *sliceValue) Set(x *sliceValue) {
-	if !v.CanSet() {
-		panic(cannotSet)
-	}
-	typesMustMatch(v.typ, x.typ)
-	*v.slice() = *x.slice()
-}
-
-// Set sets v to the value x.
-func (v *sliceValue) SetValue(x Value) {
-	v.Set(x.panicIfNot(Slice).(*sliceValue))
-}
-
-// Get returns the uintptr address of the v.Cap()'th element.  This gives
-// the same result for all slices of the same array.
-// It is mainly useful for printing.
-func (v *sliceValue) Get() uintptr {
-	typ := v.typ
-	return uintptr(v.addr()) + uintptr(v.Cap())*typ.Elem().Size()
-}
-
-// Slice returns a sub-slice of the slice v.
-func (v *sliceValue) Slice(beg, end int) Value {
-	cap := v.Cap()
-	if beg < 0 || end < beg || end > cap {
-		panic("slice index out of bounds")
-	}
-	typ := v.typ
-	s := new(SliceHeader)
-	s.Data = uintptr(v.addr()) + uintptr(beg)*typ.Elem().Size()
-	s.Len = end - beg
-	s.Cap = cap - beg
-
-	// Like the result of Addr, we treat Slice as an
-	// unaddressable temporary, so don't set canAddr.
-	flag := canSet
-	if v.flag&canStore != 0 {
-		flag |= canStore
-	}
-	return newValue(typ, addr(s), flag)
-}
-
-// Elem returns the i'th element of v.
-func (v *sliceValue) Elem(i int) Value {
-	typ := v.typ.Elem()
-	n := v.Len()
-	if i < 0 || i >= n {
-		panic("reflect: slice index out of range")
-	}
-	p := addr(uintptr(v.addr()) + uintptr(i)*typ.Size())
-	flag := canAddr
-	if v.flag&canStore != 0 {
-		flag |= canSet | canStore
-	}
-	return newValue(typ, p, flag)
-}
-
 // MakeSlice creates a new zero-initialized slice value
 // for the specified slice type, length, and capacity.
 func MakeSlice(typ Type, len, cap int) Value {
@@ -1159,28 +1369,6 @@
 	value "chan"
 }
 
-// IsNil returns whether v is a nil channel.
-func (v *chanValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
-
-// Set assigns x to v.
-// The new value x must have the same type as v.
-func (v *chanValue) Set(x *chanValue) {
-	if !v.CanSet() {
-		panic(cannotSet)
-	}
-	typesMustMatch(v.typ, x.typ)
-	*(*uintptr)(v.addr) = *(*uintptr)(x.addr)
-}
-
-// Set sets v to the value x.
-func (v *chanValue) SetValue(x Value) {
-	v.Set(x.panicIfNot(Chan).(*chanValue))
-}
-
-// Get returns the uintptr value of v.
-// It is mainly useful for printing.
-func (v *chanValue) Get() uintptr { return *(*uintptr)(v.addr) }
-
 // implemented in ../pkg/runtime/reflect.cgo
 func makechan(typ *runtime.ChanType, size uint32) (ch *byte)
 func chansend(ch, val *byte, selected *bool)
@@ -1189,79 +1377,6 @@
 func chanlen(ch *byte) int32
 func chancap(ch *byte) int32
 
-// Close closes the channel.
-func (v *chanValue) Close() {
-	ch := *(**byte)(v.addr)
-	chanclose(ch)
-}
-
-func (v *chanValue) Len() int {
-	ch := *(**byte)(v.addr)
-	return int(chanlen(ch))
-}
-
-func (v *chanValue) Cap() int {
-	ch := *(**byte)(v.addr)
-	return int(chancap(ch))
-}
-
-// internal send; non-blocking if selected != nil
-func (v *chanValue) send(x Value, selected *bool) {
-	t := v.Type()
-	if t.ChanDir()&SendDir == 0 {
-		panic("send on recv-only channel")
-	}
-	typesMustMatch(t.Elem(), x.Type())
-	ch := *(**byte)(v.addr)
-	chansend(ch, (*byte)(x.internal().getAddr()), selected)
-}
-
-// internal recv; non-blocking if selected != nil
-func (v *chanValue) recv(selected *bool) (Value, bool) {
-	t := v.Type()
-	if t.ChanDir()&RecvDir == 0 {
-		panic("recv on send-only channel")
-	}
-	ch := *(**byte)(v.addr)
-	x := Zero(t.Elem())
-	var ok bool
-	chanrecv(ch, (*byte)(x.internal().getAddr()), selected, &ok)
-	return x, ok
-}
-
-// Send sends x on the channel v.
-func (v *chanValue) Send(x Value) { v.send(x, nil) }
-
-// Recv receives and returns a value from the channel v.
-// The receive blocks until a value is ready.
-// The boolean value ok is true if the value x corresponds to a send
-// on the channel, false if it is a zero value received because the channel is closed.
-func (v *chanValue) Recv() (x Value, ok bool) {
-	return v.recv(nil)
-}
-
-// TrySend attempts to sends x on the channel v but will not block.
-// It returns true if the value was sent, false otherwise.
-func (v *chanValue) TrySend(x Value) bool {
-	var selected bool
-	v.send(x, &selected)
-	return selected
-}
-
-// TryRecv attempts to receive a value from the channel v but will not block.
-// If the receive cannot finish without blocking, TryRecv instead returns x == nil.
-// If the receive can finish without blocking, TryRecv returns x != nil.
-// The boolean value ok is true if the value x corresponds to a send
-// on the channel, false if it is a zero value received because the channel is closed.
-func (v *chanValue) TryRecv() (x Value, ok bool) {
-	var selected bool
-	x, ok = v.recv(&selected)
-	if !selected {
-		return Value{}, false
-	}
-	return x, ok
-}
-
 // MakeChan creates a new channel with the specified type and buffer size.
 func MakeChan(typ Type, buffer int) Value {
 	if typ.Kind() != Chan {
@@ -1290,28 +1405,6 @@
 	isInterface bool
 }
 
-// IsNil returns whether v is a nil function.
-func (v *funcValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
-
-// Get returns the uintptr value of v.
-// It is mainly useful for printing.
-func (v *funcValue) Get() uintptr { return *(*uintptr)(v.addr) }
-
-// Set assigns x to v.
-// The new value x must have the same type as v.
-func (v *funcValue) Set(x *funcValue) {
-	if !v.CanSet() {
-		panic(cannotSet)
-	}
-	typesMustMatch(v.typ, x.typ)
-	*(*uintptr)(v.addr) = *(*uintptr)(x.addr)
-}
-
-// Set sets v to the value x.
-func (v *funcValue) SetValue(x Value) {
-	v.Set(x.panicIfNot(Func).(*funcValue))
-}
-
 // Method returns a funcValue corresponding to v's i'th method.
 // The arguments to a Call on the returned funcValue
 // should not include a receiver; the funcValue will use v
@@ -1330,10 +1423,6 @@
 // implemented in ../pkg/runtime/*/asm.s
 func call(fn, arg *byte, n uint32)
 
-type tiny struct {
-	b byte
-}
-
 // Interface returns the fv as an interface value.
 // If fv is a method obtained by invoking Value.Method
 // (as opposed to Type.Method), Interface cannot return an
@@ -1345,111 +1434,6 @@
 	return fv.value.Interface()
 }
 
-// Call calls the function fv with input parameters in.
-// It returns the function's output parameters as Values.
-func (fv *funcValue) Call(in []Value) []Value {
-	t := fv.Type()
-	nin := len(in)
-	if fv.first != nil && !fv.isInterface {
-		nin++
-	}
-	if nin != t.NumIn() {
-		panic("funcValue: wrong argument count")
-	}
-	nout := t.NumOut()
-
-	// Compute arg size & allocate.
-	// This computation is 6g/8g-dependent
-	// and probably wrong for gccgo, but so
-	// is most of this function.
-	size := uintptr(0)
-	if fv.isInterface {
-		// extra word for interface value
-		size += ptrSize
-	}
-	for i := 0; i < nin; i++ {
-		tv := t.In(i)
-		a := uintptr(tv.Align())
-		size = (size + a - 1) &^ (a - 1)
-		size += tv.Size()
-	}
-	size = (size + ptrSize - 1) &^ (ptrSize - 1)
-	for i := 0; i < nout; i++ {
-		tv := t.Out(i)
-		a := uintptr(tv.Align())
-		size = (size + a - 1) &^ (a - 1)
-		size += tv.Size()
-	}
-
-	// size must be > 0 in order for &args[0] to be valid.
-	// the argument copying is going to round it up to
-	// a multiple of ptrSize anyway, so make it ptrSize to begin with.
-	if size < ptrSize {
-		size = ptrSize
-	}
-
-	// round to pointer size
-	size = (size + ptrSize - 1) &^ (ptrSize - 1)
-
-	// Copy into args.
-	//
-	// TODO(rsc): revisit when reference counting happens.
-	// The values are holding up the in references for us,
-	// but something must be done for the out references.
-	// For now make everything look like a pointer by pretending
-	// to allocate a []*int.
-	args := make([]*int, size/ptrSize)
-	ptr := uintptr(unsafe.Pointer(&args[0]))
-	off := uintptr(0)
-	delta := 0
-	if v := fv.first; v != nil {
-		// Hard-wired first argument.
-		if fv.isInterface {
-			// v is a single uninterpreted word
-			memmove(addr(ptr), v.getAddr(), ptrSize)
-			off = ptrSize
-		} else {
-			// v is a real value
-			tv := v.Type()
-			typesMustMatch(t.In(0), tv)
-			n := tv.Size()
-			memmove(addr(ptr), v.getAddr(), n)
-			off = n
-			delta = 1
-		}
-	}
-	for i, v := range in {
-		tv := v.Type()
-		typesMustMatch(t.In(i+delta), tv)
-		a := uintptr(tv.Align())
-		off = (off + a - 1) &^ (a - 1)
-		n := tv.Size()
-		memmove(addr(ptr+off), v.internal().getAddr(), n)
-		off += n
-	}
-	off = (off + ptrSize - 1) &^ (ptrSize - 1)
-
-	// Call
-	call(*(**byte)(fv.addr), (*byte)(addr(ptr)), uint32(size))
-
-	// Copy return values out of args.
-	//
-	// TODO(rsc): revisit like above.
-	ret := make([]Value, nout)
-	for i := 0; i < nout; i++ {
-		tv := t.Out(i)
-		a := uintptr(tv.Align())
-		off = (off + a - 1) &^ (a - 1)
-		v := Zero(tv)
-		n := tv.Size()
-		memmove(v.internal().getAddr(), addr(ptr+off), n)
-		ret[i] = v
-		off += n
-	}
-
-	return ret
-}
-
 /*
  * interface
  */
@@ -1459,44 +1443,9 @@
 	value "interface"
 }
 
-// IsNil returns whether v is a nil interface value.
-func (v *interfaceValue) IsNil() bool { return v.Interface() == nil }
-
-// No single uinptr Get because v.Interface() is available.
-
-// Get returns the two words that represent an interface in the runtime.
-// Those words are useful only when playing unsafe games.
-func (v *interfaceValue) Get() [2]uintptr {
-	return *(*[2]uintptr)(v.addr)
-}
-
-// Elem returns the concrete value stored in the interface value v.
-func (v *interfaceValue) Elem() Value { return NewValue(v.Interface()) }
-
 // ../runtime/reflect.cgo
 func setiface(typ *interfaceType, x *interface{}, addr addr)
 
-// Set assigns x to v.
-func (v *interfaceValue) Set(x Value) {
-	i := x.Interface()
-	if !v.CanSet() {
-		panic(cannotSet)
-	}
-	// Two different representations; see comment in Get.
-	// Empty interface is easy.
-	t := (*interfaceType)(unsafe.Pointer(v.typ.(*commonType)))
-	if t.NumMethod() == 0 {
-		*(*interface{})(v.addr) = i
-		return
-	}
-
-	// Non-empty interface requires a runtime check.
-	setiface(t, &i, v.addr)
-}
-
-// Set sets v to the value x.
-func (v *interfaceValue) SetValue(x Value) { v.Set(x) }
-
 // Method returns a funcValue corresponding to v's i'th method.
 // The arguments to a Call on the returned funcValue
 // should not include a receiver; the funcValue will use v
@@ -1527,32 +1476,6 @@
 	value "map"
 }
 
-// IsNil returns whether v is a nil map value.
-func (v *mapValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
-
-// Set assigns x to v.
-// The new value x must have the same type as v.
-func (v *mapValue) Set(x *mapValue) {
-	if !v.CanSet() {
-		panic(cannotSet)
-	}
-	if x == nil {
-		*(**uintptr)(v.addr) = nil
-		return
-	}
-	typesMustMatch(v.typ, x.typ)
-	*(*uintptr)(v.addr) = *(*uintptr)(x.addr)
-}
-
-// Set sets v to the value x.
-func (v *mapValue) SetValue(x Value) {
-	v.Set(x.panicIfNot(Map).(*mapValue))
-}
-
-// Get returns the uintptr value of v.
-// It is mainly useful for printing.
-func (v *mapValue) Get() uintptr { return *(*uintptr)(v.addr) }
-
 // implemented in ../pkg/runtime/reflect.cgo
 func mapaccess(m, key, val *byte) bool
 func mapassign(m, key, val *byte)
@@ -1562,68 +1485,6 @@
 func mapiterkey(it *byte, key *byte) bool
 func makemap(t *runtime.MapType) *byte
 
-// Elem returns the value associated with key in the map v.
-// It returns nil if key is not found in the map.
-func (v *mapValue) Elem(key Value) Value {
-	t := v.Type()
-	typesMustMatch(t.Key(), key.Type())
-	m := *(**byte)(v.addr)
-	if m == nil {
-		return Value{}
-	}
-	newval := Zero(t.Elem())
-	if !mapaccess(m, (*byte)(key.internal().getAddr()), (*byte)(newval.internal().getAddr())) {
-		return Value{}
-	}
-	return newval
-}
-
-// SetElem sets the value associated with key in the map v to val.
-// If val is nil, Put deletes the key from map.
-func (v *mapValue) SetElem(key, val Value) {
-	t := v.Type()
-	typesMustMatch(t.Key(), key.Type())
-	var vaddr *byte
-	if val.IsValid() {
-		typesMustMatch(t.Elem(), val.Type())
-		vaddr = (*byte)(val.internal().getAddr())
-	}
-	m := *(**byte)(v.addr)
-	mapassign(m, (*byte)(key.internal().getAddr()), vaddr)
-}
-
-// Len returns the number of keys in the map v.
-func (v *mapValue) Len() int {
-	m := *(**byte)(v.addr)
-	if m == nil {
-		return 0
-	}
-	return int(maplen(m))
-}
-
-// Keys returns a slice containing all the keys present in the map,
-// in unspecified order.
-func (v *mapValue) Keys() []Value {
-	tk := v.Type().Key()
-	m := *(**byte)(v.addr)
-	mlen := int32(0)
-	if m != nil {
-		mlen = maplen(m)
-	}
-	it := mapiterinit(m)
-	a := make([]Value, mlen)
-	var i int
-	for i = 0; i < len(a); i++ {
-		k := Zero(tk)
-		if !mapiterkey(it, (*byte)(k.internal().getAddr())) {
-			break
-		}
-		a[i] = k
-		mapiternext(it)
-	}
-	return a[0:i]
-}
-
 // MakeMap creates a new map of the specified type.
 func MakeMap(typ Type) Value {
 	if typ.Kind() != Map {
@@ -1644,66 +1505,6 @@
 	value "ptr"
 }
 
-// IsNil returns whether v is a nil pointer.
-func (v *ptrValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
-
-// Get returns the uintptr value of v.
-// It is mainly useful for printing.
-func (v *ptrValue) Get() uintptr { return *(*uintptr)(v.addr) }
-
-// Set assigns x to v.
-// The new value x must have the same type as v, and x.Elem().CanSet() must be true.
-func (v *ptrValue) Set(x *ptrValue) {
-	if x == nil {
-		*(**uintptr)(v.addr) = nil
-		return
-	}
-	if !v.CanSet() {
-		panic(cannotSet)
-	}
-	if x.flag&canStore == 0 {
-		panic("cannot copy pointer obtained from unexported struct field")
-	}
-	typesMustMatch(v.typ, x.typ)
-	// TODO: This will have to move into the runtime
-	// once the new gc goes in
-	*(*uintptr)(v.addr) = *(*uintptr)(x.addr)
-}
-
-// Set sets v to the value x.
-func (v *ptrValue) SetValue(x Value) {
-	v.Set(x.panicIfNot(Ptr).(*ptrValue))
-}
-
-// PointTo changes v to point to x.
-// If x is a nil Value, PointTo sets v to nil.
-func (v *ptrValue) PointTo(x Value) {
-	if !x.IsValid() {
-		*(**uintptr)(v.addr) = nil
-		return
-	}
-	if !x.CanSet() {
-		panic("cannot set x; cannot point to x")
-	}
-	typesMustMatch(v.typ.Elem(), x.Type())
-	// TODO: This will have to move into the runtime
-	// once the new gc goes in.
-	*(*uintptr)(v.addr) = x.UnsafeAddr()
-}
-
-// Elem returns the value that v points to.
-// If v is a nil pointer, Elem returns a nil Value.
-func (v *ptrValue) Elem() Value {
-	if v.IsNil() {
-		return Value{}
-	}
-	flag := canAddr
-	if v.flag&canStore != 0 {
-		flag |= canSet | canStore
-	}
-	return newValue(v.typ.Elem(), *(*addr)(v.addr), flag)
-}
-
 // Indirect returns the value that v points to.
 // If v is a nil pointer, Indirect returns a nil Value.
 // If v is not a pointer, Indirect returns v.
@@ -1711,7 +1512,7 @@
 	if v.Kind() != Ptr {
 		return v
 	}
-	return v.panicIfNot(Ptr).(*ptrValue).Elem()
+	return v.Elem()
 }
 
 /*
@@ -1723,77 +1524,6 @@
 	value "struct"
 }
 
-// Set assigns x to v.
-// The new value x must have the same type as v.
-func (v *structValue) Set(x *structValue) {
-	// TODO: This will have to move into the runtime
-	// once the gc goes in.
-	if !v.CanSet() {
-		panic(cannotSet)
-	}
-	typesMustMatch(v.typ, x.typ)
-	memmove(v.addr, x.addr, v.typ.Size())
-}
-
-// Set sets v to the value x.
-func (v *structValue) SetValue(x Value) {
-	v.Set(x.panicIfNot(Struct).(*structValue))
-}
-
-// Field returns the i'th field of the struct.
-func (v *structValue) Field(i int) Value {
-	t := v.typ
-	if i < 0 || i >= t.NumField() {
-		panic("reflect: Field index out of range")
-	}
-	f := t.Field(i)
-	flag := v.flag
-	if f.PkgPath != "" {
-		// unexported field
-		flag &^= canSet | canStore
-	}
-	return newValue(f.Type, addr(uintptr(v.addr)+f.Offset), flag)
-}
-
-// FieldByIndex returns the nested field corresponding to index.
-func (t *structValue) FieldByIndex(index []int) (v Value) {
-	v = Value{t}
-	for i, x := range index {
-		if i > 0 {
-			if v.Kind() == Ptr {
-				v = v.Elem()
-			}
-			if v.Kind() != Struct {
-				return Value{}
-			}
-		}
-		v = v.Field(x)
-	}
-	return
-}
-
-// FieldByName returns the struct field with the given name.
-// The result is nil if no field was found.
-func (t *structValue) FieldByName(name string) Value {
-	if f, ok := t.Type().FieldByName(name); ok {
-		return t.FieldByIndex(f.Index)
-	}
-	return Value{}
-}
-
-// FieldByNameFunc returns the struct field with a name that satisfies the
-// match function.
-// The result is nil if no field was found.
-func (t *structValue) FieldByNameFunc(match func(string) bool) Value {
-	if f, ok := t.Type().FieldByNameFunc(match); ok {
-		return t.FieldByIndex(f.Index)
-	}
-	return Value{}
-}
-
-// NumField returns the number of fields in the struct.
-func (v *structValue) NumField() int { return v.typ.NumField() }
-
 /*
  * constructors
  */