blob: e5fb1e98c2962a60345af87dc26db50094c299b7 [file] [log] [blame]
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Lowering arithmetic
(Add(Ptr|64|32|16|8) ...) => (ADD ...)
(Add64F ...) => (FADD ...)
(Add32F ...) => (FADDS ...)
(Sub(Ptr|64|32|16|8) ...) => (SUB ...)
(Sub32F ...) => (FSUBS ...)
(Sub64F ...) => (FSUB ...)
// Combine 64 bit integer multiply and adds
(ADD l:(MULLD x y) z) && objabi.GOPPC64 >= 9 && l.Uses == 1 && clobber(l) => (MADDLD x y z)
(Mod16 x y) => (Mod32 (SignExt16to32 x) (SignExt16to32 y))
(Mod16u x y) => (Mod32u (ZeroExt16to32 x) (ZeroExt16to32 y))
(Mod8 x y) => (Mod32 (SignExt8to32 x) (SignExt8to32 y))
(Mod8u x y) => (Mod32u (ZeroExt8to32 x) (ZeroExt8to32 y))
(Mod64 x y) && objabi.GOPPC64 >=9 => (MODSD x y)
(Mod64 x y) && objabi.GOPPC64 <=8 => (SUB x (MULLD y (DIVD x y)))
(Mod64u x y) && objabi.GOPPC64 >= 9 => (MODUD x y)
(Mod64u x y) && objabi.GOPPC64 <= 8 => (SUB x (MULLD y (DIVDU x y)))
(Mod32 x y) && objabi.GOPPC64 >= 9 => (MODSW x y)
(Mod32 x y) && objabi.GOPPC64 <= 8 => (SUB x (MULLW y (DIVW x y)))
(Mod32u x y) && objabi.GOPPC64 >= 9 => (MODUW x y)
(Mod32u x y) && objabi.GOPPC64 <= 8 => (SUB x (MULLW y (DIVWU x y)))
// (x + y) / 2 with x>=y => (x - y) / 2 + y
(Avg64u <t> x y) => (ADD (SRDconst <t> (SUB <t> x y) [1]) y)
(Add64carry ...) => (LoweredAdd64Carry ...)
(Mul64 ...) => (MULLD ...)
(Mul(32|16|8) ...) => (MULLW ...)
(Mul64uhilo ...) => (LoweredMuluhilo ...)
(Div64 [false] x y) => (DIVD x y)
(Div64u ...) => (DIVDU ...)
(Div32 [false] x y) => (DIVW x y)
(Div32u ...) => (DIVWU ...)
(Div16 [false] x y) => (DIVW (SignExt16to32 x) (SignExt16to32 y))
(Div16u x y) => (DIVWU (ZeroExt16to32 x) (ZeroExt16to32 y))
(Div8 x y) => (DIVW (SignExt8to32 x) (SignExt8to32 y))
(Div8u x y) => (DIVWU (ZeroExt8to32 x) (ZeroExt8to32 y))
(Hmul(64|64u|32|32u) ...) => (MULH(D|DU|W|WU) ...)
(Mul32F ...) => (FMULS ...)
(Mul64F ...) => (FMUL ...)
(Div32F ...) => (FDIVS ...)
(Div64F ...) => (FDIV ...)
// Lowering float <=> int
(Cvt32to32F x) => (FCFIDS (MTVSRD (SignExt32to64 x)))
(Cvt32to64F x) => (FCFID (MTVSRD (SignExt32to64 x)))
(Cvt64to32F x) => (FCFIDS (MTVSRD x))
(Cvt64to64F x) => (FCFID (MTVSRD x))
(Cvt32Fto32 x) => (MFVSRD (FCTIWZ x))
(Cvt32Fto64 x) => (MFVSRD (FCTIDZ x))
(Cvt64Fto32 x) => (MFVSRD (FCTIWZ x))
(Cvt64Fto64 x) => (MFVSRD (FCTIDZ x))
(Cvt32Fto64F ...) => (Copy ...) // Note v will have the wrong type for patterns dependent on Float32/Float64
(Cvt64Fto32F ...) => (FRSP ...)
(CvtBoolToUint8 ...) => (Copy ...)
(Round(32|64)F ...) => (LoweredRound(32|64)F ...)
(Sqrt ...) => (FSQRT ...)
(Floor ...) => (FFLOOR ...)
(Ceil ...) => (FCEIL ...)
(Trunc ...) => (FTRUNC ...)
(Round ...) => (FROUND ...)
(Copysign x y) => (FCPSGN y x)
(Abs ...) => (FABS ...)
(FMA ...) => (FMADD ...)
// Lowering constants
(Const(64|32|16|8) [val]) => (MOVDconst [int64(val)])
(Const(32|64)F ...) => (FMOV(S|D)const ...)
(ConstNil) => (MOVDconst [0])
(ConstBool [b]) => (MOVDconst [b2i(b)])
// Constant folding
(FABS (FMOVDconst [x])) => (FMOVDconst [math.Abs(x)])
(FSQRT (FMOVDconst [x])) && x >= 0 => (FMOVDconst [math.Sqrt(x)])
(FFLOOR (FMOVDconst [x])) => (FMOVDconst [math.Floor(x)])
(FCEIL (FMOVDconst [x])) => (FMOVDconst [math.Ceil(x)])
(FTRUNC (FMOVDconst [x])) => (FMOVDconst [math.Trunc(x)])
// Rotates
(RotateLeft8 <t> x (MOVDconst [c])) => (Or8 (Lsh8x64 <t> x (MOVDconst [c&7])) (Rsh8Ux64 <t> x (MOVDconst [-c&7])))
(RotateLeft16 <t> x (MOVDconst [c])) => (Or16 (Lsh16x64 <t> x (MOVDconst [c&15])) (Rsh16Ux64 <t> x (MOVDconst [-c&15])))
(RotateLeft32 x (MOVDconst [c])) => (ROTLWconst [c&31] x)
(RotateLeft64 x (MOVDconst [c])) => (ROTLconst [c&63] x)
// Rotate generation with const shift
(ADD (SLDconst x [c]) (SRDconst x [d])) && d == 64-c => (ROTLconst [c] x)
( OR (SLDconst x [c]) (SRDconst x [d])) && d == 64-c => (ROTLconst [c] x)
(XOR (SLDconst x [c]) (SRDconst x [d])) && d == 64-c => (ROTLconst [c] x)
(ADD (SLWconst x [c]) (SRWconst x [d])) && d == 32-c => (ROTLWconst [c] x)
( OR (SLWconst x [c]) (SRWconst x [d])) && d == 32-c => (ROTLWconst [c] x)
(XOR (SLWconst x [c]) (SRWconst x [d])) && d == 32-c => (ROTLWconst [c] x)
// Rotate generation with non-const shift
// these match patterns from math/bits/RotateLeft[32|64], but there could be others
(ADD (SLD x (ANDconst <typ.Int64> [63] y)) (SRD x (SUB <typ.UInt> (MOVDconst [64]) (ANDconst <typ.UInt> [63] y)))) => (ROTL x y)
(ADD (SLD x (ANDconst <typ.Int64> [63] y)) (SRD x (SUBFCconst <typ.UInt> [64] (ANDconst <typ.UInt> [63] y)))) => (ROTL x y)
( OR (SLD x (ANDconst <typ.Int64> [63] y)) (SRD x (SUB <typ.UInt> (MOVDconst [64]) (ANDconst <typ.UInt> [63] y)))) => (ROTL x y)
( OR (SLD x (ANDconst <typ.Int64> [63] y)) (SRD x (SUBFCconst <typ.UInt> [64] (ANDconst <typ.UInt> [63] y)))) => (ROTL x y)
(XOR (SLD x (ANDconst <typ.Int64> [63] y)) (SRD x (SUB <typ.UInt> (MOVDconst [64]) (ANDconst <typ.UInt> [63] y)))) => (ROTL x y)
(XOR (SLD x (ANDconst <typ.Int64> [63] y)) (SRD x (SUBFCconst <typ.UInt> [64] (ANDconst <typ.UInt> [63] y)))) => (ROTL x y)
(ADD (SLW x (ANDconst <typ.Int32> [31] y)) (SRW x (SUBFCconst <typ.UInt> [32] (ANDconst <typ.UInt> [31] y)))) => (ROTLW x y)
(ADD (SLW x (ANDconst <typ.Int32> [31] y)) (SRW x (SUB <typ.UInt> (MOVDconst [32]) (ANDconst <typ.UInt> [31] y)))) => (ROTLW x y)
( OR (SLW x (ANDconst <typ.Int32> [31] y)) (SRW x (SUBFCconst <typ.UInt> [32] (ANDconst <typ.UInt> [31] y)))) => (ROTLW x y)
( OR (SLW x (ANDconst <typ.Int32> [31] y)) (SRW x (SUB <typ.UInt> (MOVDconst [32]) (ANDconst <typ.UInt> [31] y)))) => (ROTLW x y)
(XOR (SLW x (ANDconst <typ.Int32> [31] y)) (SRW x (SUBFCconst <typ.UInt> [32] (ANDconst <typ.UInt> [31] y)))) => (ROTLW x y)
(XOR (SLW x (ANDconst <typ.Int32> [31] y)) (SRW x (SUB <typ.UInt> (MOVDconst [32]) (ANDconst <typ.UInt> [31] y)))) => (ROTLW x y)
// Lowering rotates
(RotateLeft32 x y) => (ROTLW x y)
(RotateLeft64 x y) => (ROTL x y)
// Constant rotate generation
(ROTLW x (MOVDconst [c])) => (ROTLWconst x [c&31])
(ROTL x (MOVDconst [c])) => (ROTLconst x [c&63])
// large constant shifts
(Lsh64x64 _ (MOVDconst [c])) && uint64(c) >= 64 => (MOVDconst [0])
(Rsh64Ux64 _ (MOVDconst [c])) && uint64(c) >= 64 => (MOVDconst [0])
(Lsh32x64 _ (MOVDconst [c])) && uint64(c) >= 32 => (MOVDconst [0])
(Rsh32Ux64 _ (MOVDconst [c])) && uint64(c) >= 32 => (MOVDconst [0])
(Lsh16x64 _ (MOVDconst [c])) && uint64(c) >= 16 => (MOVDconst [0])
(Rsh16Ux64 _ (MOVDconst [c])) && uint64(c) >= 16 => (MOVDconst [0])
(Lsh8x64 _ (MOVDconst [c])) && uint64(c) >= 8 => (MOVDconst [0])
(Rsh8Ux64 _ (MOVDconst [c])) && uint64(c) >= 8 => (MOVDconst [0])
// large constant signed right shift, we leave the sign bit
(Rsh64x64 x (MOVDconst [c])) && uint64(c) >= 64 => (SRADconst x [63])
(Rsh32x64 x (MOVDconst [c])) && uint64(c) >= 32 => (SRAWconst x [63])
(Rsh16x64 x (MOVDconst [c])) && uint64(c) >= 16 => (SRAWconst (SignExt16to32 x) [63])
(Rsh8x64 x (MOVDconst [c])) && uint64(c) >= 8 => (SRAWconst (SignExt8to32 x) [63])
// constant shifts
(Lsh64x64 x (MOVDconst [c])) && uint64(c) < 64 => (SLDconst x [c])
(Rsh64x64 x (MOVDconst [c])) && uint64(c) < 64 => (SRADconst x [c])
(Rsh64Ux64 x (MOVDconst [c])) && uint64(c) < 64 => (SRDconst x [c])
(Lsh32x64 x (MOVDconst [c])) && uint64(c) < 32 => (SLWconst x [c])
(Rsh32x64 x (MOVDconst [c])) && uint64(c) < 32 => (SRAWconst x [c])
(Rsh32Ux64 x (MOVDconst [c])) && uint64(c) < 32 => (SRWconst x [c])
(Lsh16x64 x (MOVDconst [c])) && uint64(c) < 16 => (SLWconst x [c])
(Rsh16x64 x (MOVDconst [c])) && uint64(c) < 16 => (SRAWconst (SignExt16to32 x) [c])
(Rsh16Ux64 x (MOVDconst [c])) && uint64(c) < 16 => (SRWconst (ZeroExt16to32 x) [c])
(Lsh8x64 x (MOVDconst [c])) && uint64(c) < 8 => (SLWconst x [c])
(Rsh8x64 x (MOVDconst [c])) && uint64(c) < 8 => (SRAWconst (SignExt8to32 x) [c])
(Rsh8Ux64 x (MOVDconst [c])) && uint64(c) < 8 => (SRWconst (ZeroExt8to32 x) [c])
(Lsh64x32 x (MOVDconst [c])) && uint32(c) < 64 => (SLDconst x [c&63])
(Rsh64x32 x (MOVDconst [c])) && uint32(c) < 64 => (SRADconst x [c&63])
(Rsh64Ux32 x (MOVDconst [c])) && uint32(c) < 64 => (SRDconst x [c&63])
(Lsh32x32 x (MOVDconst [c])) && uint32(c) < 32 => (SLWconst x [c&31])
(Rsh32x32 x (MOVDconst [c])) && uint32(c) < 32 => (SRAWconst x [c&31])
(Rsh32Ux32 x (MOVDconst [c])) && uint32(c) < 32 => (SRWconst x [c&31])
(Lsh16x32 x (MOVDconst [c])) && uint32(c) < 16 => (SLWconst x [c&31])
(Rsh16x32 x (MOVDconst [c])) && uint32(c) < 16 => (SRAWconst (SignExt16to32 x) [c&15])
(Rsh16Ux32 x (MOVDconst [c])) && uint32(c) < 16 => (SRWconst (ZeroExt16to32 x) [c&15])
(Lsh8x32 x (MOVDconst [c])) && uint32(c) < 8 => (SLWconst x [c&7])
(Rsh8x32 x (MOVDconst [c])) && uint32(c) < 8 => (SRAWconst (SignExt8to32 x) [c&7])
(Rsh8Ux32 x (MOVDconst [c])) && uint32(c) < 8 => (SRWconst (ZeroExt8to32 x) [c&7])
// Lower bounded shifts first. No need to check shift value.
(Lsh64x(64|32|16|8) x y) && shiftIsBounded(v) => (SLD x y)
(Lsh32x(64|32|16|8) x y) && shiftIsBounded(v) => (SLW x y)
(Lsh16x(64|32|16|8) x y) && shiftIsBounded(v) => (SLW x y)
(Lsh8x(64|32|16|8) x y) && shiftIsBounded(v) => (SLW x y)
(Rsh64Ux(64|32|16|8) x y) && shiftIsBounded(v) => (SRD x y)
(Rsh32Ux(64|32|16|8) x y) && shiftIsBounded(v) => (SRW x y)
(Rsh16Ux(64|32|16|8) x y) && shiftIsBounded(v) => (SRW (MOVHZreg x) y)
(Rsh8Ux(64|32|16|8) x y) && shiftIsBounded(v) => (SRW (MOVBZreg x) y)
(Rsh64x(64|32|16|8) x y) && shiftIsBounded(v) => (SRAD x y)
(Rsh32x(64|32|16|8) x y) && shiftIsBounded(v) => (SRAW x y)
(Rsh16x(64|32|16|8) x y) && shiftIsBounded(v) => (SRAW (MOVHreg x) y)
(Rsh8x(64|32|16|8) x y) && shiftIsBounded(v) => (SRAW (MOVBreg x) y)
// non-constant rotates
// These are subexpressions found in statements that can become rotates
// In these cases the shift count is known to be < 64 so the more complicated expressions
// with Mask & Carry is not needed
(Lsh64x64 x (AND y (MOVDconst [63]))) => (SLD x (ANDconst <typ.Int64> [63] y))
(Lsh64x64 x (ANDconst <typ.Int64> [63] y)) => (SLD x (ANDconst <typ.Int64> [63] y))
(Rsh64Ux64 x (AND y (MOVDconst [63]))) => (SRD x (ANDconst <typ.Int64> [63] y))
(Rsh64Ux64 x (ANDconst <typ.UInt> [63] y)) => (SRD x (ANDconst <typ.UInt> [63] y))
(Rsh64Ux64 x (SUB <typ.UInt> (MOVDconst [64]) (ANDconst <typ.UInt> [63] y))) => (SRD x (SUB <typ.UInt> (MOVDconst [64]) (ANDconst <typ.UInt> [63] y)))
(Rsh64Ux64 x (SUBFCconst <typ.UInt> [64] (ANDconst <typ.UInt> [63] y))) => (SRD x (SUBFCconst <typ.UInt> [64] (ANDconst <typ.UInt> [63] y)))
(Rsh64Ux64 x (SUB <typ.UInt> (MOVDconst [64]) (AND <typ.UInt> y (MOVDconst [63])))) => (SRD x (SUB <typ.UInt> (MOVDconst [64]) (ANDconst <typ.UInt> [63] y)))
(Rsh64Ux64 x (SUBFCconst <typ.UInt> [64] (AND <typ.UInt> y (MOVDconst [63])))) => (SRD x (SUBFCconst <typ.UInt> [64] (ANDconst <typ.UInt> [63] y)))
(Rsh64x64 x (AND y (MOVDconst [63]))) => (SRAD x (ANDconst <typ.Int64> [63] y))
(Rsh64x64 x (ANDconst <typ.UInt> [63] y)) => (SRAD x (ANDconst <typ.UInt> [63] y))
(Rsh64x64 x (SUB <typ.UInt> (MOVDconst [64]) (ANDconst <typ.UInt> [63] y))) => (SRAD x (SUB <typ.UInt> (MOVDconst [64]) (ANDconst <typ.UInt> [63] y)))
(Rsh64x64 x (SUBFCconst <typ.UInt> [64] (ANDconst <typ.UInt> [63] y))) => (SRAD x (SUBFCconst <typ.UInt> [64] (ANDconst <typ.UInt> [63] y)))
(Rsh64x64 x (SUB <typ.UInt> (MOVDconst [64]) (AND <typ.UInt> y (MOVDconst [63])))) => (SRAD x (SUB <typ.UInt> (MOVDconst [64]) (ANDconst <typ.UInt> [63] y)))
(Rsh64x64 x (SUBFCconst <typ.UInt> [64] (AND <typ.UInt> y (MOVDconst [63])))) => (SRAD x (SUBFCconst <typ.UInt> [64] (ANDconst <typ.UInt> [63] y)))
(Lsh64x64 x y) => (SLD x (ISEL [0] y (MOVDconst [-1]) (CMPU y (MOVDconst [64]))))
(Rsh64x64 x y) => (SRAD x (ISEL [0] y (MOVDconst [-1]) (CMPU y (MOVDconst [64]))))
(Rsh64Ux64 x y) => (SRD x (ISEL [0] y (MOVDconst [-1]) (CMPU y (MOVDconst [64]))))
(Lsh32x64 x (AND y (MOVDconst [31]))) => (SLW x (ANDconst <typ.Int32> [31] y))
(Lsh32x64 x (ANDconst <typ.Int32> [31] y)) => (SLW x (ANDconst <typ.Int32> [31] y))
(Rsh32Ux64 x (AND y (MOVDconst [31]))) => (SRW x (ANDconst <typ.Int32> [31] y))
(Rsh32Ux64 x (ANDconst <typ.UInt> [31] y)) => (SRW x (ANDconst <typ.UInt> [31] y))
(Rsh32Ux64 x (SUB <typ.UInt> (MOVDconst [32]) (ANDconst <typ.UInt> [31] y))) => (SRW x (SUB <typ.UInt> (MOVDconst [32]) (ANDconst <typ.UInt> [31] y)))
(Rsh32Ux64 x (SUBFCconst <typ.UInt> [32] (ANDconst <typ.UInt> [31] y))) => (SRW x (SUBFCconst <typ.UInt> [32] (ANDconst <typ.UInt> [31] y)))
(Rsh32Ux64 x (SUB <typ.UInt> (MOVDconst [32]) (AND <typ.UInt> y (MOVDconst [31])))) => (SRW x (SUB <typ.UInt> (MOVDconst [32]) (ANDconst <typ.UInt> [31] y)))
(Rsh32Ux64 x (SUBFCconst <typ.UInt> [32] (AND <typ.UInt> y (MOVDconst [31])))) => (SRW x (SUBFCconst <typ.UInt> [32] (ANDconst <typ.UInt> [31] y)))
(Rsh32x64 x (AND y (MOVDconst [31]))) => (SRAW x (ANDconst <typ.Int32> [31] y))
(Rsh32x64 x (ANDconst <typ.UInt> [31] y)) => (SRAW x (ANDconst <typ.UInt> [31] y))
(Rsh32x64 x (SUB <typ.UInt> (MOVDconst [32]) (ANDconst <typ.UInt> [31] y))) => (SRAW x (SUB <typ.UInt> (MOVDconst [32]) (ANDconst <typ.UInt> [31] y)))
(Rsh32x64 x (SUBFCconst <typ.UInt> [32] (ANDconst <typ.UInt> [31] y))) => (SRAW x (SUBFCconst <typ.UInt> [32] (ANDconst <typ.UInt> [31] y)))
(Rsh32x64 x (SUB <typ.UInt> (MOVDconst [32]) (AND <typ.UInt> y (MOVDconst [31])))) => (SRAW x (SUB <typ.UInt> (MOVDconst [32]) (ANDconst <typ.UInt> [31] y)))
(Rsh32x64 x (SUBFCconst <typ.UInt> [32] (AND <typ.UInt> y (MOVDconst [31])))) => (SRAW x (SUBFCconst <typ.UInt> [32] (ANDconst <typ.UInt> [31] y)))
(Rsh32x64 x y) => (SRAW x (ISEL [0] y (MOVDconst [-1]) (CMPU y (MOVDconst [32]))))
(Rsh32Ux64 x y) => (SRW x (ISEL [0] y (MOVDconst [-1]) (CMPU y (MOVDconst [32]))))
(Lsh32x64 x y) => (SLW x (ISEL [0] y (MOVDconst [-1]) (CMPU y (MOVDconst [32]))))
(Rsh16x64 x y) => (SRAW (SignExt16to32 x) (ISEL [0] y (MOVDconst [-1]) (CMPU y (MOVDconst [16]))))
(Rsh16Ux64 x y) => (SRW (ZeroExt16to32 x) (ISEL [0] y (MOVDconst [-1]) (CMPU y (MOVDconst [16]))))
(Lsh16x64 x y) => (SLW x (ISEL [0] y (MOVDconst [-1]) (CMPU y (MOVDconst [16]))))
(Rsh8x64 x y) => (SRAW (SignExt8to32 x) (ISEL [0] y (MOVDconst [-1]) (CMPU y (MOVDconst [8]))))
(Rsh8Ux64 x y) => (SRW (ZeroExt8to32 x) (ISEL [0] y (MOVDconst [-1]) (CMPU y (MOVDconst [8]))))
(Lsh8x64 x y) => (SLW x (ISEL [0] y (MOVDconst [-1]) (CMPU y (MOVDconst [8]))))
(Rsh64x32 x y) => (SRAD x (ISEL [0] y (MOVDconst [-1]) (CMPU y (MOVDconst [64]))))
(Rsh64Ux32 x y) => (SRD x (ISEL [0] y (MOVDconst [-1]) (CMPU y (MOVDconst [64]))))
(Lsh64x32 x y) => (SLD x (ISEL [0] y (MOVDconst [-1]) (CMPU y (MOVDconst [64]))))
(Rsh32x32 x y) => (SRAW x (ISEL [0] y (MOVDconst [-1]) (CMPU y (MOVDconst [32]))))
(Rsh32Ux32 x y) => (SRW x (ISEL [0] y (MOVDconst [-1]) (CMPU y (MOVDconst [32]))))
(Lsh32x32 x y) => (SLW x (ISEL [0] y (MOVDconst [-1]) (CMPU y (MOVDconst [32]))))
(Rsh16x32 x y) => (SRAW (SignExt16to32 x) (ISEL [0] y (MOVDconst [-1]) (CMPU y (MOVDconst [16]))))
(Rsh16Ux32 x y) => (SRW (ZeroExt16to32 x) (ISEL [0] y (MOVDconst [-1]) (CMPU y (MOVDconst [16]))))
(Lsh16x32 x y) => (SLW x (ISEL [0] y (MOVDconst [-1]) (CMPU y (MOVDconst [16]))))
(Rsh8x32 x y) => (SRAW (SignExt8to32 x) (ISEL [0] y (MOVDconst [-1]) (CMPU y (MOVDconst [8]))))
(Rsh8Ux32 x y) => (SRW (ZeroExt8to32 x) (ISEL [0] y (MOVDconst [-1]) (CMPU y (MOVDconst [8]))))
(Lsh8x32 x y) => (SLW x (ISEL [0] y (MOVDconst [-1]) (CMPU y (MOVDconst [8]))))
(Rsh64x16 x y) => (SRAD x (ISEL [0] y (MOVDconst [-1]) (CMPU (ZeroExt16to64 y) (MOVDconst [64]))))
(Rsh64Ux16 x y) => (SRD x (ISEL [0] y (MOVDconst [-1]) (CMPU (ZeroExt16to64 y) (MOVDconst [64]))))
(Lsh64x16 x y) => (SLD x (ISEL [0] y (MOVDconst [-1]) (CMPU (ZeroExt16to64 y) (MOVDconst [64]))))
(Rsh32x16 x y) => (SRAW x (ISEL [0] y (MOVDconst [-1]) (CMPU (ZeroExt16to64 y) (MOVDconst [32]))))
(Rsh32Ux16 x y) => (SRW x (ISEL [0] y (MOVDconst [-1]) (CMPU (ZeroExt16to64 y) (MOVDconst [32]))))
(Lsh32x16 x y) => (SLW x (ISEL [0] y (MOVDconst [-1]) (CMPU (ZeroExt16to64 y) (MOVDconst [32]))))
(Rsh16x16 x y) => (SRAW (SignExt16to32 x) (ISEL [0] y (MOVDconst [-1]) (CMPU (ZeroExt16to64 y) (MOVDconst [16]))))
(Rsh16Ux16 x y) => (SRW (ZeroExt16to32 x) (ISEL [0] y (MOVDconst [-1]) (CMPU (ZeroExt16to64 y) (MOVDconst [16]))))
(Lsh16x16 x y) => (SLW x (ISEL [0] y (MOVDconst [-1]) (CMPU (ZeroExt16to64 y) (MOVDconst [16]))))
(Rsh8x16 x y) => (SRAW (SignExt8to32 x) (ISEL [0] y (MOVDconst [-1]) (CMPU (ZeroExt16to64 y) (MOVDconst [8]))))
(Rsh8Ux16 x y) => (SRW (ZeroExt8to32 x) (ISEL [0] y (MOVDconst [-1]) (CMPU (ZeroExt16to64 y) (MOVDconst [8]))))
(Lsh8x16 x y) => (SLW x (ISEL [0] y (MOVDconst [-1]) (CMPU (ZeroExt16to64 y) (MOVDconst [8]))))
(Rsh64x8 x y) => (SRAD x (ISEL [0] y (MOVDconst [-1]) (CMPU (ZeroExt8to64 y) (MOVDconst [64]))))
(Rsh64Ux8 x y) => (SRD x (ISEL [0] y (MOVDconst [-1]) (CMPU (ZeroExt8to64 y) (MOVDconst [64]))))
(Lsh64x8 x y) => (SLD x (ISEL [0] y (MOVDconst [-1]) (CMPU (ZeroExt8to64 y) (MOVDconst [64]))))
(Rsh32x8 x y) => (SRAW x (ISEL [0] y (MOVDconst [-1]) (CMPU (ZeroExt8to64 y) (MOVDconst [32]))))
(Rsh32Ux8 x y) => (SRW x (ISEL [0] y (MOVDconst [-1]) (CMPU (ZeroExt8to64 y) (MOVDconst [32]))))
(Lsh32x8 x y) => (SLW x (ISEL [0] y (MOVDconst [-1]) (CMPU (ZeroExt8to64 y) (MOVDconst [32]))))
(Rsh16x8 x y) => (SRAW (SignExt16to32 x) (ISEL [0] y (MOVDconst [-1]) (CMPU (ZeroExt8to64 y) (MOVDconst [16]))))
(Rsh16Ux8 x y) => (SRW (ZeroExt16to32 x) (ISEL [0] y (MOVDconst [-1]) (CMPU (ZeroExt8to64 y) (MOVDconst [16]))))
(Lsh16x8 x y) => (SLW x (ISEL [0] y (MOVDconst [-1]) (CMPU (ZeroExt8to64 y) (MOVDconst [16]))))
(Rsh8x8 x y) => (SRAW (SignExt8to32 x) (ISEL [0] y (MOVDconst [-1]) (CMPU (ZeroExt8to64 y) (MOVDconst [8]))))
(Rsh8Ux8 x y) => (SRW (ZeroExt8to32 x) (ISEL [0] y (MOVDconst [-1]) (CMPU (ZeroExt8to64 y) (MOVDconst [8]))))
(Lsh8x8 x y) => (SLW x (ISEL [0] y (MOVDconst [-1]) (CMPU (ZeroExt8to64 y) (MOVDconst [8]))))
// Cleaning up shift ops
(ISEL [0] (ANDconst [d] y) (MOVDconst [-1]) (CMPU (ANDconst [d] y) (MOVDconst [c]))) && c >= d => (ANDconst [d] y)
(ISEL [0] (ANDconst [d] y) (MOVDconst [-1]) (CMPUconst [c] (ANDconst [d] y))) && c >= d => (ANDconst [d] y)
(ORN x (MOVDconst [-1])) => x
(S(RAD|RD|LD) x (MOVDconst [c])) => (S(RAD|RD|LD)const [c&63 | (c>>6&1*63)] x)
(S(RAW|RW|LW) x (MOVDconst [c])) => (S(RAW|RW|LW)const [c&31 | (c>>5&1*31)] x)
(Addr {sym} base) => (MOVDaddr {sym} [0] base)
(LocalAddr {sym} base _) => (MOVDaddr {sym} base)
(OffPtr [off] ptr) => (ADD (MOVDconst <typ.Int64> [off]) ptr)
// TODO: optimize these cases?
(Ctz32NonZero ...) => (Ctz32 ...)
(Ctz64NonZero ...) => (Ctz64 ...)
(Ctz64 x) && objabi.GOPPC64<=8 => (POPCNTD (ANDN <typ.Int64> (ADDconst <typ.Int64> [-1] x) x))
(Ctz64 x) => (CNTTZD x)
(Ctz32 x) && objabi.GOPPC64<=8 => (POPCNTW (MOVWZreg (ANDN <typ.Int> (ADDconst <typ.Int> [-1] x) x)))
(Ctz32 x) => (CNTTZW (MOVWZreg x))
(Ctz16 x) => (POPCNTW (MOVHZreg (ANDN <typ.Int16> (ADDconst <typ.Int16> [-1] x) x)))
(Ctz8 x) => (POPCNTB (MOVBZreg (ANDN <typ.UInt8> (ADDconst <typ.UInt8> [-1] x) x)))
(BitLen64 x) => (SUBFCconst [64] (CNTLZD <typ.Int> x))
(BitLen32 x) => (SUBFCconst [32] (CNTLZW <typ.Int> x))
(PopCount64 ...) => (POPCNTD ...)
(PopCount32 x) => (POPCNTW (MOVWZreg x))
(PopCount16 x) => (POPCNTW (MOVHZreg x))
(PopCount8 x) => (POPCNTB (MOVBZreg x))
(And(64|32|16|8) ...) => (AND ...)
(Or(64|32|16|8) ...) => (OR ...)
(Xor(64|32|16|8) ...) => (XOR ...)
(Neg(64|32|16|8) ...) => (NEG ...)
(Neg64F ...) => (FNEG ...)
(Neg32F ...) => (FNEG ...)
(Com(64|32|16|8) x) => (NOR x x)
// Lowering boolean ops
(AndB ...) => (AND ...)
(OrB ...) => (OR ...)
(Not x) => (XORconst [1] x)
// Use ANDN for AND x NOT y
(AND x (NOR y y)) => (ANDN x y)
// Lowering comparisons
(EqB x y) => (ANDconst [1] (EQV x y))
// Sign extension dependence on operand sign sets up for sign/zero-extension elision later
(Eq8 x y) && isSigned(x.Type) && isSigned(y.Type) => (Equal (CMPW (SignExt8to32 x) (SignExt8to32 y)))
(Eq16 x y) && isSigned(x.Type) && isSigned(y.Type) => (Equal (CMPW (SignExt16to32 x) (SignExt16to32 y)))
(Eq8 x y) => (Equal (CMPW (ZeroExt8to32 x) (ZeroExt8to32 y)))
(Eq16 x y) => (Equal (CMPW (ZeroExt16to32 x) (ZeroExt16to32 y)))
(Eq32 x y) => (Equal (CMPW x y))
(Eq64 x y) => (Equal (CMP x y))
(Eq32F x y) => (Equal (FCMPU x y))
(Eq64F x y) => (Equal (FCMPU x y))
(EqPtr x y) => (Equal (CMP x y))
(NeqB ...) => (XOR ...)
// Like Eq8 and Eq16, prefer sign extension likely to enable later elision.
(Neq8 x y) && isSigned(x.Type) && isSigned(y.Type) => (NotEqual (CMPW (SignExt8to32 x) (SignExt8to32 y)))
(Neq16 x y) && isSigned(x.Type) && isSigned(y.Type) => (NotEqual (CMPW (SignExt16to32 x) (SignExt16to32 y)))
(Neq8 x y) => (NotEqual (CMPW (ZeroExt8to32 x) (ZeroExt8to32 y)))
(Neq16 x y) => (NotEqual (CMPW (ZeroExt16to32 x) (ZeroExt16to32 y)))
(Neq32 x y) => (NotEqual (CMPW x y))
(Neq64 x y) => (NotEqual (CMP x y))
(Neq32F x y) => (NotEqual (FCMPU x y))
(Neq64F x y) => (NotEqual (FCMPU x y))
(NeqPtr x y) => (NotEqual (CMP x y))
(Less8 x y) => (LessThan (CMPW (SignExt8to32 x) (SignExt8to32 y)))
(Less16 x y) => (LessThan (CMPW (SignExt16to32 x) (SignExt16to32 y)))
(Less32 x y) => (LessThan (CMPW x y))
(Less64 x y) => (LessThan (CMP x y))
(Less32F x y) => (FLessThan (FCMPU x y))
(Less64F x y) => (FLessThan (FCMPU x y))
(Less8U x y) => (LessThan (CMPWU (ZeroExt8to32 x) (ZeroExt8to32 y)))
(Less16U x y) => (LessThan (CMPWU (ZeroExt16to32 x) (ZeroExt16to32 y)))
(Less32U x y) => (LessThan (CMPWU x y))
(Less64U x y) => (LessThan (CMPU x y))
(Leq8 x y) => (LessEqual (CMPW (SignExt8to32 x) (SignExt8to32 y)))
(Leq16 x y) => (LessEqual (CMPW (SignExt16to32 x) (SignExt16to32 y)))
(Leq32 x y) => (LessEqual (CMPW x y))
(Leq64 x y) => (LessEqual (CMP x y))
(Leq32F x y) => (FLessEqual (FCMPU x y))
(Leq64F x y) => (FLessEqual (FCMPU x y))
(Leq8U x y) => (LessEqual (CMPWU (ZeroExt8to32 x) (ZeroExt8to32 y)))
(Leq16U x y) => (LessEqual (CMPWU (ZeroExt16to32 x) (ZeroExt16to32 y)))
(Leq32U x y) => (LessEqual (CMPWU x y))
(Leq64U x y) => (LessEqual (CMPU x y))
// Absorb pseudo-ops into blocks.
(If (Equal cc) yes no) => (EQ cc yes no)
(If (NotEqual cc) yes no) => (NE cc yes no)
(If (LessThan cc) yes no) => (LT cc yes no)
(If (LessEqual cc) yes no) => (LE cc yes no)
(If (GreaterThan cc) yes no) => (GT cc yes no)
(If (GreaterEqual cc) yes no) => (GE cc yes no)
(If (FLessThan cc) yes no) => (FLT cc yes no)
(If (FLessEqual cc) yes no) => (FLE cc yes no)
(If (FGreaterThan cc) yes no) => (FGT cc yes no)
(If (FGreaterEqual cc) yes no) => (FGE cc yes no)
(If cond yes no) => (NE (CMPWconst [0] cond) yes no)
// Absorb boolean tests into block
(NE (CMPWconst [0] (Equal cc)) yes no) => (EQ cc yes no)
(NE (CMPWconst [0] (NotEqual cc)) yes no) => (NE cc yes no)
(NE (CMPWconst [0] (LessThan cc)) yes no) => (LT cc yes no)
(NE (CMPWconst [0] (LessEqual cc)) yes no) => (LE cc yes no)
(NE (CMPWconst [0] (GreaterThan cc)) yes no) => (GT cc yes no)
(NE (CMPWconst [0] (GreaterEqual cc)) yes no) => (GE cc yes no)
(NE (CMPWconst [0] (FLessThan cc)) yes no) => (FLT cc yes no)
(NE (CMPWconst [0] (FLessEqual cc)) yes no) => (FLE cc yes no)
(NE (CMPWconst [0] (FGreaterThan cc)) yes no) => (FGT cc yes no)
(NE (CMPWconst [0] (FGreaterEqual cc)) yes no) => (FGE cc yes no)
// Elide compares of bit tests // TODO need to make both CC and result of ANDCC available.
(EQ (CMPconst [0] (ANDconst [c] x)) yes no) => (EQ (ANDCCconst [c] x) yes no)
(NE (CMPconst [0] (ANDconst [c] x)) yes no) => (NE (ANDCCconst [c] x) yes no)
(EQ (CMPWconst [0] (ANDconst [c] x)) yes no) => (EQ (ANDCCconst [c] x) yes no)
(NE (CMPWconst [0] (ANDconst [c] x)) yes no) => (NE (ANDCCconst [c] x) yes no)
// absorb flag constants into branches
(EQ (FlagEQ) yes no) => (First yes no)
(EQ (FlagLT) yes no) => (First no yes)
(EQ (FlagGT) yes no) => (First no yes)
(NE (FlagEQ) yes no) => (First no yes)
(NE (FlagLT) yes no) => (First yes no)
(NE (FlagGT) yes no) => (First yes no)
(LT (FlagEQ) yes no) => (First no yes)
(LT (FlagLT) yes no) => (First yes no)
(LT (FlagGT) yes no) => (First no yes)
(LE (FlagEQ) yes no) => (First yes no)
(LE (FlagLT) yes no) => (First yes no)
(LE (FlagGT) yes no) => (First no yes)
(GT (FlagEQ) yes no) => (First no yes)
(GT (FlagLT) yes no) => (First no yes)
(GT (FlagGT) yes no) => (First yes no)
(GE (FlagEQ) yes no) => (First yes no)
(GE (FlagLT) yes no) => (First no yes)
(GE (FlagGT) yes no) => (First yes no)
// absorb InvertFlags into branches
(LT (InvertFlags cmp) yes no) => (GT cmp yes no)
(GT (InvertFlags cmp) yes no) => (LT cmp yes no)
(LE (InvertFlags cmp) yes no) => (GE cmp yes no)
(GE (InvertFlags cmp) yes no) => (LE cmp yes no)
(EQ (InvertFlags cmp) yes no) => (EQ cmp yes no)
(NE (InvertFlags cmp) yes no) => (NE cmp yes no)
// constant comparisons
(CMPWconst (MOVDconst [x]) [y]) && int32(x)==int32(y) => (FlagEQ)
(CMPWconst (MOVDconst [x]) [y]) && int32(x)<int32(y) => (FlagLT)
(CMPWconst (MOVDconst [x]) [y]) && int32(x)>int32(y) => (FlagGT)
(CMPconst (MOVDconst [x]) [y]) && x==y => (FlagEQ)
(CMPconst (MOVDconst [x]) [y]) && x<y => (FlagLT)
(CMPconst (MOVDconst [x]) [y]) && x>y => (FlagGT)
(CMPWUconst (MOVDconst [x]) [y]) && int32(x)==int32(y) => (FlagEQ)
(CMPWUconst (MOVDconst [x]) [y]) && uint32(x)<uint32(y) => (FlagLT)
(CMPWUconst (MOVDconst [x]) [y]) && uint32(x)>uint32(y) => (FlagGT)
(CMPUconst (MOVDconst [x]) [y]) && x==y => (FlagEQ)
(CMPUconst (MOVDconst [x]) [y]) && uint64(x)<uint64(y) => (FlagLT)
(CMPUconst (MOVDconst [x]) [y]) && uint64(x)>uint64(y) => (FlagGT)
// other known comparisons
//(CMPconst (MOVBUreg _) [c]) && 0xff < c => (FlagLT)
//(CMPconst (MOVHUreg _) [c]) && 0xffff < c => (FlagLT)
//(CMPconst (ANDconst _ [m]) [n]) && 0 <= int32(m) && int32(m) < int32(n) => (FlagLT)
//(CMPconst (SRLconst _ [c]) [n]) && 0 <= n && 0 < c && c <= 32 && (1<<uint32(32-c)) <= uint32(n) => (FlagLT)
// absorb flag constants into boolean values
(Equal (FlagEQ)) => (MOVDconst [1])
(Equal (FlagLT)) => (MOVDconst [0])
(Equal (FlagGT)) => (MOVDconst [0])
(NotEqual (FlagEQ)) => (MOVDconst [0])
(NotEqual (FlagLT)) => (MOVDconst [1])
(NotEqual (FlagGT)) => (MOVDconst [1])
(LessThan (FlagEQ)) => (MOVDconst [0])
(LessThan (FlagLT)) => (MOVDconst [1])
(LessThan (FlagGT)) => (MOVDconst [0])
(LessEqual (FlagEQ)) => (MOVDconst [1])
(LessEqual (FlagLT)) => (MOVDconst [1])
(LessEqual (FlagGT)) => (MOVDconst [0])
(GreaterThan (FlagEQ)) => (MOVDconst [0])
(GreaterThan (FlagLT)) => (MOVDconst [0])
(GreaterThan (FlagGT)) => (MOVDconst [1])
(GreaterEqual (FlagEQ)) => (MOVDconst [1])
(GreaterEqual (FlagLT)) => (MOVDconst [0])
(GreaterEqual (FlagGT)) => (MOVDconst [1])
// absorb InvertFlags into boolean values
(Equal (InvertFlags x)) => (Equal x)
(NotEqual (InvertFlags x)) => (NotEqual x)
(LessThan (InvertFlags x)) => (GreaterThan x)
(GreaterThan (InvertFlags x)) => (LessThan x)
(LessEqual (InvertFlags x)) => (GreaterEqual x)
(GreaterEqual (InvertFlags x)) => (LessEqual x)
// Elide compares of bit tests // TODO need to make both CC and result of ANDCC available.
((EQ|NE|LT|LE|GT|GE) (CMPconst [0] (ANDconst [c] x)) yes no) => ((EQ|NE|LT|LE|GT|GE) (ANDCCconst [c] x) yes no)
((EQ|NE|LT|LE|GT|GE) (CMPWconst [0] (ANDconst [c] x)) yes no) => ((EQ|NE|LT|LE|GT|GE) (ANDCCconst [c] x) yes no)
((EQ|NE|LT|LE|GT|GE) (CMPconst [0] z:(AND x y)) yes no) && z.Uses == 1 => ((EQ|NE|LT|LE|GT|GE) (ANDCC x y) yes no)
((EQ|NE|LT|LE|GT|GE) (CMPconst [0] z:(OR x y)) yes no) && z.Uses == 1 => ((EQ|NE|LT|LE|GT|GE) (ORCC x y) yes no)
((EQ|NE|LT|LE|GT|GE) (CMPconst [0] z:(XOR x y)) yes no) && z.Uses == 1 => ((EQ|NE|LT|LE|GT|GE) (XORCC x y) yes no)
(CondSelect x y bool) && flagArg(bool) != nil => (ISEL [2] x y bool)
(CondSelect x y bool) && flagArg(bool) == nil => (ISEL [2] x y (CMPWconst [0] bool))
// Lowering loads
(Load <t> ptr mem) && (is64BitInt(t) || isPtr(t)) => (MOVDload ptr mem)
(Load <t> ptr mem) && is32BitInt(t) && isSigned(t) => (MOVWload ptr mem)
(Load <t> ptr mem) && is32BitInt(t) && !isSigned(t) => (MOVWZload ptr mem)
(Load <t> ptr mem) && is16BitInt(t) && isSigned(t) => (MOVHload ptr mem)
(Load <t> ptr mem) && is16BitInt(t) && !isSigned(t) => (MOVHZload ptr mem)
(Load <t> ptr mem) && t.IsBoolean() => (MOVBZload ptr mem)
(Load <t> ptr mem) && is8BitInt(t) && isSigned(t) => (MOVBreg (MOVBZload ptr mem)) // PPC has no signed-byte load.
(Load <t> ptr mem) && is8BitInt(t) && !isSigned(t) => (MOVBZload ptr mem)
(Load <t> ptr mem) && is32BitFloat(t) => (FMOVSload ptr mem)
(Load <t> ptr mem) && is64BitFloat(t) => (FMOVDload ptr mem)
(Store {t} ptr val mem) && t.Size() == 8 && is64BitFloat(val.Type) => (FMOVDstore ptr val mem)
(Store {t} ptr val mem) && t.Size() == 8 && is32BitFloat(val.Type) => (FMOVDstore ptr val mem) // glitch from (Cvt32Fto64F x) => x -- type is wrong
(Store {t} ptr val mem) && t.Size() == 4 && is32BitFloat(val.Type) => (FMOVSstore ptr val mem)
(Store {t} ptr val mem) && t.Size() == 8 && (is64BitInt(val.Type) || isPtr(val.Type)) => (MOVDstore ptr val mem)
(Store {t} ptr val mem) && t.Size() == 4 && is32BitInt(val.Type) => (MOVWstore ptr val mem)
(Store {t} ptr val mem) && t.Size() == 2 => (MOVHstore ptr val mem)
(Store {t} ptr val mem) && t.Size() == 1 => (MOVBstore ptr val mem)
// Using Zero instead of LoweredZero allows the
// target address to be folded where possible.
(Zero [0] _ mem) => mem
(Zero [1] destptr mem) => (MOVBstorezero destptr mem)
(Zero [2] destptr mem) =>
(MOVHstorezero destptr mem)
(Zero [3] destptr mem) =>
(MOVBstorezero [2] destptr
(MOVHstorezero destptr mem))
(Zero [4] destptr mem) =>
(MOVWstorezero destptr mem)
(Zero [5] destptr mem) =>
(MOVBstorezero [4] destptr
(MOVWstorezero destptr mem))
(Zero [6] destptr mem) =>
(MOVHstorezero [4] destptr
(MOVWstorezero destptr mem))
(Zero [7] destptr mem) =>
(MOVBstorezero [6] destptr
(MOVHstorezero [4] destptr
(MOVWstorezero destptr mem)))
// MOVD for store with DS must have offsets that are multiple of 4
(Zero [8] {t} destptr mem) && t.Alignment()%4 == 0 =>
(MOVDstorezero destptr mem)
(Zero [8] destptr mem) =>
(MOVWstorezero [4] destptr
(MOVWstorezero [0] destptr mem))
// Handle these cases only if aligned properly, otherwise use general case below
(Zero [12] {t} destptr mem) && t.Alignment()%4 == 0 =>
(MOVWstorezero [8] destptr
(MOVDstorezero [0] destptr mem))
(Zero [16] {t} destptr mem) && t.Alignment()%4 == 0 =>
(MOVDstorezero [8] destptr
(MOVDstorezero [0] destptr mem))
(Zero [24] {t} destptr mem) && t.Alignment()%4 == 0 =>
(MOVDstorezero [16] destptr
(MOVDstorezero [8] destptr
(MOVDstorezero [0] destptr mem)))
(Zero [32] {t} destptr mem) && t.Alignment()%4 == 0 =>
(MOVDstorezero [24] destptr
(MOVDstorezero [16] destptr
(MOVDstorezero [8] destptr
(MOVDstorezero [0] destptr mem))))
// Handle cases not handled above
// Lowered Short cases do not generate loops, and as a result don't clobber
// the address registers or flags.
(Zero [s] ptr mem) && objabi.GOPPC64 <= 8 && s < 64 => (LoweredZeroShort [s] ptr mem)
(Zero [s] ptr mem) && objabi.GOPPC64 <= 8 => (LoweredZero [s] ptr mem)
(Zero [s] ptr mem) && s < 128 && objabi.GOPPC64 >= 9 => (LoweredQuadZeroShort [s] ptr mem)
(Zero [s] ptr mem) && objabi.GOPPC64 >= 9 => (LoweredQuadZero [s] ptr mem)
// moves
// Only the MOVD and MOVW instructions require 4 byte
// alignment in the offset field. The other MOVx instructions
// allow any alignment.
(Move [0] _ _ mem) => mem
(Move [1] dst src mem) => (MOVBstore dst (MOVBZload src mem) mem)
(Move [2] dst src mem) =>
(MOVHstore dst (MOVHZload src mem) mem)
(Move [4] dst src mem) =>
(MOVWstore dst (MOVWZload src mem) mem)
// MOVD for load and store must have offsets that are multiple of 4
(Move [8] {t} dst src mem) && t.Alignment()%4 == 0 =>
(MOVDstore dst (MOVDload src mem) mem)
(Move [8] dst src mem) =>
(MOVWstore [4] dst (MOVWZload [4] src mem)
(MOVWstore dst (MOVWZload src mem) mem))
(Move [3] dst src mem) =>
(MOVBstore [2] dst (MOVBZload [2] src mem)
(MOVHstore dst (MOVHload src mem) mem))
(Move [5] dst src mem) =>
(MOVBstore [4] dst (MOVBZload [4] src mem)
(MOVWstore dst (MOVWZload src mem) mem))
(Move [6] dst src mem) =>
(MOVHstore [4] dst (MOVHZload [4] src mem)
(MOVWstore dst (MOVWZload src mem) mem))
(Move [7] dst src mem) =>
(MOVBstore [6] dst (MOVBZload [6] src mem)
(MOVHstore [4] dst (MOVHZload [4] src mem)
(MOVWstore dst (MOVWZload src mem) mem)))
// Large move uses a loop. Since the address is computed and the
// offset is zero, any alignment can be used.
(Move [s] dst src mem) && s > 8 && objabi.GOPPC64 <= 8 && logLargeCopy(v, s) =>
(LoweredMove [s] dst src mem)
(Move [s] dst src mem) && s > 8 && s <= 64 && objabi.GOPPC64 >= 9 =>
(LoweredQuadMoveShort [s] dst src mem)
(Move [s] dst src mem) && s > 8 && objabi.GOPPC64 >= 9 && logLargeCopy(v, s) =>
(LoweredQuadMove [s] dst src mem)
// Calls
// Lowering calls
(StaticCall ...) => (CALLstatic ...)
(ClosureCall ...) => (CALLclosure ...)
(InterCall ...) => (CALLinter ...)
// Miscellaneous
(GetClosurePtr ...) => (LoweredGetClosurePtr ...)
(GetCallerSP ...) => (LoweredGetCallerSP ...)
(GetCallerPC ...) => (LoweredGetCallerPC ...)
(IsNonNil ptr) => (NotEqual (CMPconst [0] ptr))
(IsInBounds idx len) => (LessThan (CMPU idx len))
(IsSliceInBounds idx len) => (LessEqual (CMPU idx len))
(NilCheck ...) => (LoweredNilCheck ...)
// Write barrier.
(WB ...) => (LoweredWB ...)
(PanicBounds [kind] x y mem) && boundsABI(kind) == 0 => (LoweredPanicBoundsA [kind] x y mem)
(PanicBounds [kind] x y mem) && boundsABI(kind) == 1 => (LoweredPanicBoundsB [kind] x y mem)
(PanicBounds [kind] x y mem) && boundsABI(kind) == 2 => (LoweredPanicBoundsC [kind] x y mem)
// Optimizations
// Note that PPC "logical" immediates come in 0:15 and 16:31 unsigned immediate forms,
// so ORconst, XORconst easily expand into a pair.
// Include very-large constants in the const-const case.
(AND (MOVDconst [c]) (MOVDconst [d])) => (MOVDconst [c&d])
(OR (MOVDconst [c]) (MOVDconst [d])) => (MOVDconst [c|d])
(XOR (MOVDconst [c]) (MOVDconst [d])) => (MOVDconst [c^d])
(ORN (MOVDconst [c]) (MOVDconst [d])) => (MOVDconst [c|^d])
(ANDN (MOVDconst [c]) (MOVDconst [d])) => (MOVDconst [c&^d])
(NOR (MOVDconst [c]) (MOVDconst [d])) => (MOVDconst [^(c|d)])
// Discover consts
(AND x (MOVDconst [c])) && isU16Bit(c) => (ANDconst [c] x)
(XOR x (MOVDconst [c])) && isU32Bit(c) => (XORconst [c] x)
(OR x (MOVDconst [c])) && isU32Bit(c) => (ORconst [c] x)
// Simplify consts
(ANDconst [c] (ANDconst [d] x)) => (ANDconst [c&d] x)
(ORconst [c] (ORconst [d] x)) => (ORconst [c|d] x)
(XORconst [c] (XORconst [d] x)) => (XORconst [c^d] x)
(ANDconst [-1] x) => x
(ANDconst [0] _) => (MOVDconst [0])
(XORconst [0] x) => x
(ORconst [-1] _) => (MOVDconst [-1])
(ORconst [0] x) => x
// zero-extend of small and => small and
(MOVBZreg y:(ANDconst [c] _)) && uint64(c) <= 0xFF => y
(MOVHZreg y:(ANDconst [c] _)) && uint64(c) <= 0xFFFF => y
(MOVWZreg y:(ANDconst [c] _)) && uint64(c) <= 0xFFFFFFFF => y
(MOVWZreg y:(AND (MOVDconst [c]) _)) && uint64(c) <= 0xFFFFFFFF => y
// sign extend of small-positive and => small-positive-and
(MOVBreg y:(ANDconst [c] _)) && uint64(c) <= 0x7F => y
(MOVHreg y:(ANDconst [c] _)) && uint64(c) <= 0x7FFF => y
(MOVWreg y:(ANDconst [c] _)) && uint64(c) <= 0xFFFF => y // 0xFFFF is largest immediate constant, when regarded as 32-bit is > 0
(MOVWreg y:(AND (MOVDconst [c]) _)) && uint64(c) <= 0x7FFFFFFF => y
// small and of zero-extend => either zero-extend or small and
(ANDconst [c] y:(MOVBZreg _)) && c&0xFF == 0xFF => y
(ANDconst [0xFF] y:(MOVBreg _)) => y
(ANDconst [c] y:(MOVHZreg _)) && c&0xFFFF == 0xFFFF => y
(ANDconst [0xFFFF] y:(MOVHreg _)) => y
(AND (MOVDconst [c]) y:(MOVWZreg _)) && c&0xFFFFFFFF == 0xFFFFFFFF => y
(AND (MOVDconst [0xFFFFFFFF]) y:(MOVWreg x)) => (MOVWZreg x)
// normal case
(ANDconst [c] (MOV(B|BZ)reg x)) => (ANDconst [c&0xFF] x)
(ANDconst [c] (MOV(H|HZ)reg x)) => (ANDconst [c&0xFFFF] x)
(ANDconst [c] (MOV(W|WZ)reg x)) => (ANDconst [c&0xFFFFFFFF] x)
// Eliminate unnecessary sign/zero extend following right shift
(MOV(B|H|W)Zreg (SRWconst [c] (MOVBZreg x))) => (SRWconst [c] (MOVBZreg x))
(MOV(H|W)Zreg (SRWconst [c] (MOVHZreg x))) => (SRWconst [c] (MOVHZreg x))
(MOVWZreg (SRWconst [c] (MOVWZreg x))) => (SRWconst [c] (MOVWZreg x))
(MOV(B|H|W)reg (SRAWconst [c] (MOVBreg x))) => (SRAWconst [c] (MOVBreg x))
(MOV(H|W)reg (SRAWconst [c] (MOVHreg x))) => (SRAWconst [c] (MOVHreg x))
(MOVWreg (SRAWconst [c] (MOVWreg x))) => (SRAWconst [c] (MOVWreg x))
(MOVWZreg (SRWconst [c] x)) && sizeof(x.Type) <= 32 => (SRWconst [c] x)
(MOVHZreg (SRWconst [c] x)) && sizeof(x.Type) <= 16 => (SRWconst [c] x)
(MOVBZreg (SRWconst [c] x)) && sizeof(x.Type) == 8 => (SRWconst [c] x)
(MOVWreg (SRAWconst [c] x)) && sizeof(x.Type) <= 32 => (SRAWconst [c] x)
(MOVHreg (SRAWconst [c] x)) && sizeof(x.Type) <= 16 => (SRAWconst [c] x)
(MOVBreg (SRAWconst [c] x)) && sizeof(x.Type) == 8 => (SRAWconst [c] x)
// initial right shift will handle sign/zero extend
(MOVBZreg (SRDconst [c] x)) && c>=56 => (SRDconst [c] x)
(MOVBreg (SRDconst [c] x)) && c>56 => (SRDconst [c] x)
(MOVBreg (SRDconst [c] x)) && c==56 => (SRADconst [c] x)
(MOVBreg (SRADconst [c] x)) && c>=56 => (SRADconst [c] x)
(MOVBZreg (SRWconst [c] x)) && c>=24 => (SRWconst [c] x)
(MOVBreg (SRWconst [c] x)) && c>24 => (SRWconst [c] x)
(MOVBreg (SRWconst [c] x)) && c==24 => (SRAWconst [c] x)
(MOVBreg (SRAWconst [c] x)) && c>=24 => (SRAWconst [c] x)
(MOVHZreg (SRDconst [c] x)) && c>=48 => (SRDconst [c] x)
(MOVHreg (SRDconst [c] x)) && c>48 => (SRDconst [c] x)
(MOVHreg (SRDconst [c] x)) && c==48 => (SRADconst [c] x)
(MOVHreg (SRADconst [c] x)) && c>=48 => (SRADconst [c] x)
(MOVHZreg (SRWconst [c] x)) && c>=16 => (SRWconst [c] x)
(MOVHreg (SRWconst [c] x)) && c>16 => (SRWconst [c] x)
(MOVHreg (SRAWconst [c] x)) && c>=16 => (SRAWconst [c] x)
(MOVHreg (SRWconst [c] x)) && c==16 => (SRAWconst [c] x)
(MOVWZreg (SRDconst [c] x)) && c>=32 => (SRDconst [c] x)
(MOVWreg (SRDconst [c] x)) && c>32 => (SRDconst [c] x)
(MOVWreg (SRADconst [c] x)) && c>=32 => (SRADconst [c] x)
(MOVWreg (SRDconst [c] x)) && c==32 => (SRADconst [c] x)
// Various redundant zero/sign extension combinations.
(MOVBZreg y:(MOVBZreg _)) => y // repeat
(MOVBreg y:(MOVBreg _)) => y // repeat
(MOVBreg (MOVBZreg x)) => (MOVBreg x)
(MOVBZreg (MOVBreg x)) => (MOVBZreg x)
// H - there are more combinations than these
(MOVHZreg y:(MOVHZreg _)) => y // repeat
(MOVHZreg y:(MOVBZreg _)) => y // wide of narrow
(MOVHZreg y:(MOVHBRload _ _)) => y
(MOVHreg y:(MOVHreg _)) => y // repeat
(MOVHreg y:(MOVBreg _)) => y // wide of narrow
(MOVHreg y:(MOVHZreg x)) => (MOVHreg x)
(MOVHZreg y:(MOVHreg x)) => (MOVHZreg x)
// W - there are more combinations than these
(MOVWZreg y:(MOVWZreg _)) => y // repeat
(MOVWZreg y:(MOVHZreg _)) => y // wide of narrow
(MOVWZreg y:(MOVBZreg _)) => y // wide of narrow
(MOVWZreg y:(MOVHBRload _ _)) => y
(MOVWZreg y:(MOVWBRload _ _)) => y
(MOVWreg y:(MOVWreg _)) => y // repeat
(MOVWreg y:(MOVHreg _)) => y // wide of narrow
(MOVWreg y:(MOVBreg _)) => y // wide of narrow
(MOVWreg y:(MOVWZreg x)) => (MOVWreg x)
(MOVWZreg y:(MOVWreg x)) => (MOVWZreg x)
// Arithmetic constant ops
(ADD x (MOVDconst [c])) && is32Bit(c) => (ADDconst [c] x)
(ADDconst [c] (ADDconst [d] x)) && is32Bit(c+d) => (ADDconst [c+d] x)
(ADDconst [0] x) => x
(SUB x (MOVDconst [c])) && is32Bit(-c) => (ADDconst [-c] x)
(ADDconst [c] (MOVDaddr [d] {sym} x)) && is32Bit(c+int64(d)) => (MOVDaddr [int32(c+int64(d))] {sym} x)
// Subtract from (with carry, but ignored) constant.
// Note, these clobber the carry bit.
(SUB (MOVDconst [c]) x) && is32Bit(c) => (SUBFCconst [c] x)
(SUBFCconst [c] (NEG x)) => (ADDconst [c] x)
(SUBFCconst [c] (SUBFCconst [d] x)) && is32Bit(c-d) => (ADDconst [c-d] x)
(SUBFCconst [0] x) => (NEG x)
(ADDconst [c] (SUBFCconst [d] x)) && is32Bit(c+d) => (SUBFCconst [c+d] x)
(NEG (ADDconst [c] x)) && is32Bit(-c) => (SUBFCconst [-c] x)
(NEG (SUBFCconst [c] x)) && is32Bit(-c) => (ADDconst [-c] x)
// Use register moves instead of stores and loads to move int<=>float values
// Common with math Float64bits, Float64frombits
(MOVDload [off] {sym} ptr (FMOVDstore [off] {sym} ptr x _)) => (MFVSRD x)
(FMOVDload [off] {sym} ptr (MOVDstore [off] {sym} ptr x _)) => (MTVSRD x)
(FMOVDstore [off] {sym} ptr (MTVSRD x) mem) => (MOVDstore [off] {sym} ptr x mem)
(MOVDstore [off] {sym} ptr (MFVSRD x) mem) => (FMOVDstore [off] {sym} ptr x mem)
(MTVSRD (MOVDconst [c])) && !math.IsNaN(math.Float64frombits(uint64(c))) => (FMOVDconst [math.Float64frombits(uint64(c))])
(MFVSRD (FMOVDconst [c])) => (MOVDconst [int64(math.Float64bits(c))])
(MTVSRD x:(MOVDload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (FMOVDload [off] {sym} ptr mem)
(MFVSRD x:(FMOVDload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVDload [off] {sym} ptr mem)
// Fold offsets for stores.
(MOVDstore [off1] {sym} (ADDconst [off2] x) val mem) && is16Bit(int64(off1)+off2) && (int64(off1)+off2)%4 == 0 => (MOVDstore [off1+int32(off2)] {sym} x val mem)
(MOVWstore [off1] {sym} (ADDconst [off2] x) val mem) && is16Bit(int64(off1)+off2) => (MOVWstore [off1+int32(off2)] {sym} x val mem)
(MOVHstore [off1] {sym} (ADDconst [off2] x) val mem) && is16Bit(int64(off1)+off2) => (MOVHstore [off1+int32(off2)] {sym} x val mem)
(MOVBstore [off1] {sym} (ADDconst [off2] x) val mem) && is16Bit(int64(off1)+off2) => (MOVBstore [off1+int32(off2)] {sym} x val mem)
(FMOVSstore [off1] {sym} (ADDconst [off2] ptr) val mem) && is16Bit(int64(off1)+off2) => (FMOVSstore [off1+int32(off2)] {sym} ptr val mem)
(FMOVDstore [off1] {sym} (ADDconst [off2] ptr) val mem) && is16Bit(int64(off1)+off2) => (FMOVDstore [off1+int32(off2)] {sym} ptr val mem)
// Fold address into load/store.
// The assembler needs to generate several instructions and use
// temp register for accessing global, and each time it will reload
// the temp register. So don't fold address of global, unless there
// is only one use.
(MOVBstore [off1] {sym1} p:(MOVDaddr [off2] {sym2} ptr) val mem) && canMergeSym(sym1,sym2)
&& is16Bit(int64(off1+off2)) && (ptr.Op != OpSB || p.Uses == 1) =>
(MOVBstore [off1+off2] {mergeSymTyped(sym1,sym2)} ptr val mem)
(MOVHstore [off1] {sym1} p:(MOVDaddr [off2] {sym2} ptr) val mem) && canMergeSym(sym1,sym2)
&& is16Bit(int64(off1+off2)) && (ptr.Op != OpSB || p.Uses == 1) =>
(MOVHstore [off1+off2] {mergeSymTyped(sym1,sym2)} ptr val mem)
(MOVWstore [off1] {sym1} p:(MOVDaddr [off2] {sym2} ptr) val mem) && canMergeSym(sym1,sym2)
&& is16Bit(int64(off1+off2)) && (ptr.Op != OpSB || p.Uses == 1) =>
(MOVWstore [off1+off2] {mergeSymTyped(sym1,sym2)} ptr val mem)
(MOVDstore [off1] {sym1} p:(MOVDaddr [off2] {sym2} ptr) val mem) && canMergeSym(sym1,sym2)
&& is16Bit(int64(off1+off2)) && (ptr.Op != OpSB || p.Uses == 1) && (off1+off2)%4 == 0 =>
(MOVDstore [off1+off2] {mergeSymTyped(sym1,sym2)} ptr val mem)
(FMOVSstore [off1] {sym1} p:(MOVDaddr [off2] {sym2} ptr) val mem) && canMergeSym(sym1,sym2)
&& is16Bit(int64(off1+off2)) && (ptr.Op != OpSB || p.Uses == 1) =>
(FMOVSstore [off1+off2] {mergeSymTyped(sym1,sym2)} ptr val mem)
(FMOVDstore [off1] {sym1} p:(MOVDaddr [off2] {sym2} ptr) val mem) && canMergeSym(sym1,sym2)
&& is16Bit(int64(off1+off2)) && (ptr.Op != OpSB || p.Uses == 1) =>
(FMOVDstore [off1+off2] {mergeSymTyped(sym1,sym2)} ptr val mem)
(MOVBZload [off1] {sym1} p:(MOVDaddr [off2] {sym2} ptr) mem) && canMergeSym(sym1,sym2)
&& is16Bit(int64(off1+off2)) && (ptr.Op != OpSB || p.Uses == 1) =>
(MOVBZload [off1+off2] {mergeSymTyped(sym1,sym2)} ptr mem)
(MOVHload [off1] {sym1} p:(MOVDaddr [off2] {sym2} ptr) mem) && canMergeSym(sym1,sym2)
&& is16Bit(int64(off1+off2)) && (ptr.Op != OpSB || p.Uses == 1) =>
(MOVHload [off1+off2] {mergeSymTyped(sym1,sym2)} ptr mem)
(MOVHZload [off1] {sym1} p:(MOVDaddr [off2] {sym2} ptr) mem) && canMergeSym(sym1,sym2)
&& is16Bit(int64(off1+off2)) && (ptr.Op != OpSB || p.Uses == 1) =>
(MOVHZload [off1+off2] {mergeSymTyped(sym1,sym2)} ptr mem)
(MOVWload [off1] {sym1} p:(MOVDaddr [off2] {sym2} ptr) mem) && canMergeSym(sym1,sym2)
&& is16Bit(int64(off1+off2)) && (ptr.Op != OpSB || p.Uses == 1) && (off1+off2)%4 == 0 =>
(MOVWload [off1+off2] {mergeSymTyped(sym1,sym2)} ptr mem)
(MOVWZload [off1] {sym1} p:(MOVDaddr [off2] {sym2} ptr) mem) && canMergeSym(sym1,sym2)
&& is16Bit(int64(off1+off2)) && (ptr.Op != OpSB || p.Uses == 1) =>
(MOVWZload [off1+off2] {mergeSymTyped(sym1,sym2)} ptr mem)
(MOVDload [off1] {sym1} p:(MOVDaddr [off2] {sym2} ptr) mem) && canMergeSym(sym1,sym2)
&& is16Bit(int64(off1+off2)) && (ptr.Op != OpSB || p.Uses == 1) && (off1+off2)%4 == 0 =>
(MOVDload [off1+off2] {mergeSymTyped(sym1,sym2)} ptr mem)
(FMOVSload [off1] {sym1} p:(MOVDaddr [off2] {sym2} ptr) mem) && canMergeSym(sym1,sym2)
&& is16Bit(int64(off1+off2)) && (ptr.Op != OpSB || p.Uses == 1) =>
(FMOVSload [off1+off2] {mergeSymTyped(sym1,sym2)} ptr mem)
(FMOVDload [off1] {sym1} p:(MOVDaddr [off2] {sym2} ptr) mem) && canMergeSym(sym1,sym2)
&& is16Bit(int64(off1+off2)) && (ptr.Op != OpSB || p.Uses == 1) =>
(FMOVDload [off1+off2] {mergeSymTyped(sym1,sym2)} ptr mem)
// Fold offsets for loads.
(FMOVSload [off1] {sym} (ADDconst [off2] ptr) mem) && is16Bit(int64(off1)+off2) => (FMOVSload [off1+int32(off2)] {sym} ptr mem)
(FMOVDload [off1] {sym} (ADDconst [off2] ptr) mem) && is16Bit(int64(off1)+off2) => (FMOVDload [off1+int32(off2)] {sym} ptr mem)
(MOVDload [off1] {sym} (ADDconst [off2] x) mem) && is16Bit(int64(off1)+off2) && (int64(off1)+off2)%4 == 0 => (MOVDload [off1+int32(off2)] {sym} x mem)
(MOVWload [off1] {sym} (ADDconst [off2] x) mem) && is16Bit(int64(off1)+off2) && (int64(off1)+off2)%4 == 0 => (MOVWload [off1+int32(off2)] {sym} x mem)
(MOVWZload [off1] {sym} (ADDconst [off2] x) mem) && is16Bit(int64(off1)+off2) => (MOVWZload [off1+int32(off2)] {sym} x mem)
(MOVHload [off1] {sym} (ADDconst [off2] x) mem) && is16Bit(int64(off1)+off2) => (MOVHload [off1+int32(off2)] {sym} x mem)
(MOVHZload [off1] {sym} (ADDconst [off2] x) mem) && is16Bit(int64(off1)+off2) => (MOVHZload [off1+int32(off2)] {sym} x mem)
(MOVBZload [off1] {sym} (ADDconst [off2] x) mem) && is16Bit(int64(off1)+off2) => (MOVBZload [off1+int32(off2)] {sym} x mem)
// Determine load + addressing that can be done as a register indexed load
(MOV(D|W|WZ|H|HZ|BZ)load [0] {sym} p:(ADD ptr idx) mem) && sym == nil && p.Uses == 1 => (MOV(D|W|WZ|H|HZ|BZ)loadidx ptr idx mem)
// Determine indexed loads with constant values that can be done without index
(MOV(D|W)loadidx ptr (MOVDconst [c]) mem) && is16Bit(c) && c%4 == 0 => (MOV(D|W)load [int32(c)] ptr mem)
(MOV(WZ|H|HZ|BZ)loadidx ptr (MOVDconst [c]) mem) && is16Bit(c) => (MOV(WZ|H|HZ|BZ)load [int32(c)] ptr mem)
(MOV(D|W)loadidx (MOVDconst [c]) ptr mem) && is16Bit(c) && c%4 == 0 => (MOV(D|W)load [int32(c)] ptr mem)
(MOV(WZ|H|HZ|BZ)loadidx (MOVDconst [c]) ptr mem) && is16Bit(c) => (MOV(WZ|H|HZ|BZ)load [int32(c)] ptr mem)
// Store of zero => storezero
(MOVDstore [off] {sym} ptr (MOVDconst [0]) mem) => (MOVDstorezero [off] {sym} ptr mem)
(MOVWstore [off] {sym} ptr (MOVDconst [0]) mem) => (MOVWstorezero [off] {sym} ptr mem)
(MOVHstore [off] {sym} ptr (MOVDconst [0]) mem) => (MOVHstorezero [off] {sym} ptr mem)
(MOVBstore [off] {sym} ptr (MOVDconst [0]) mem) => (MOVBstorezero [off] {sym} ptr mem)
// Fold offsets for storezero
(MOVDstorezero [off1] {sym} (ADDconst [off2] x) mem) && is16Bit(int64(off1)+off2) && (int64(off1)+off2)%4 == 0 =>
(MOVDstorezero [off1+int32(off2)] {sym} x mem)
(MOVWstorezero [off1] {sym} (ADDconst [off2] x) mem) && is16Bit(int64(off1)+off2) =>
(MOVWstorezero [off1+int32(off2)] {sym} x mem)
(MOVHstorezero [off1] {sym} (ADDconst [off2] x) mem) && is16Bit(int64(off1)+off2) =>
(MOVHstorezero [off1+int32(off2)] {sym} x mem)
(MOVBstorezero [off1] {sym} (ADDconst [off2] x) mem) && is16Bit(int64(off1)+off2) =>
(MOVBstorezero [off1+int32(off2)] {sym} x mem)
// Stores with addressing that can be done as indexed stores
(MOV(D|W|H|B)store [0] {sym} p:(ADD ptr idx) val mem) && sym == nil && p.Uses == 1 => (MOV(D|W|H|B)storeidx ptr idx val mem)
// Stores with constant index values can be done without indexed instructions
(MOVDstoreidx ptr (MOVDconst [c]) val mem) && is16Bit(c) && c%4 == 0 => (MOVDstore [int32(c)] ptr val mem)
(MOV(W|H|B)storeidx ptr (MOVDconst [c]) val mem) && is16Bit(c) => (MOV(W|H|B)store [int32(c)] ptr val mem)
(MOVDstoreidx (MOVDconst [c]) ptr val mem) && is16Bit(c) && c%4 == 0 => (MOVDstore [int32(c)] ptr val mem)
(MOV(W|H|B)storeidx (MOVDconst [c]) ptr val mem) && is16Bit(c) => (MOV(W|H|B)store [int32(c)] ptr val mem)
// Fold symbols into storezero
(MOVDstorezero [off1] {sym1} p:(MOVDaddr [off2] {sym2} x) mem) && canMergeSym(sym1,sym2)
&& (x.Op != OpSB || p.Uses == 1) && (off1+off2)%4 == 0 =>
(MOVDstorezero [off1+off2] {mergeSymTyped(sym1,sym2)} x mem)
(MOVWstorezero [off1] {sym1} p:(MOVDaddr [off2] {sym2} x) mem) && canMergeSym(sym1,sym2)
&& (x.Op != OpSB || p.Uses == 1) =>
(MOVWstorezero [off1+off2] {mergeSymTyped(sym1,sym2)} x mem)
(MOVHstorezero [off1] {sym1} p:(MOVDaddr [off2] {sym2} x) mem) && canMergeSym(sym1,sym2)
&& (x.Op != OpSB || p.Uses == 1) =>
(MOVHstorezero [off1+off2] {mergeSymTyped(sym1,sym2)} x mem)
(MOVBstorezero [off1] {sym1} p:(MOVDaddr [off2] {sym2} x) mem) && canMergeSym(sym1,sym2)
&& (x.Op != OpSB || p.Uses == 1) =>
(MOVBstorezero [off1+off2] {mergeSymTyped(sym1,sym2)} x mem)
// atomic intrinsics
(AtomicLoad(8|32|64|Ptr) ptr mem) => (LoweredAtomicLoad(8|32|64|Ptr) [1] ptr mem)
(AtomicLoadAcq32 ptr mem) => (LoweredAtomicLoad32 [0] ptr mem)
(AtomicStore(8|32|64) ptr val mem) => (LoweredAtomicStore(8|32|64) [1] ptr val mem)
(AtomicStoreRel32 ptr val mem) => (LoweredAtomicStore32 [0] ptr val mem)
//(AtomicStorePtrNoWB ptr val mem) => (STLR ptr val mem)
(AtomicExchange(32|64) ...) => (LoweredAtomicExchange(32|64) ...)
(AtomicAdd(32|64) ...) => (LoweredAtomicAdd(32|64) ...)
(AtomicCompareAndSwap(32|64) ptr old new_ mem) => (LoweredAtomicCas(32|64) [1] ptr old new_ mem)
(AtomicCompareAndSwapRel32 ptr old new_ mem) => (LoweredAtomicCas32 [0] ptr old new_ mem)
(AtomicAnd8 ...) => (LoweredAtomicAnd8 ...)
(AtomicOr8 ...) => (LoweredAtomicOr8 ...)
// Lowering extension
// Note: we always extend to 64 bits even though some ops don't need that many result bits.
(SignExt8to(16|32|64) ...) => (MOVBreg ...)
(SignExt16to(32|64) ...) => (MOVHreg ...)
(SignExt32to64 ...) => (MOVWreg ...)
(ZeroExt8to(16|32|64) ...) => (MOVBZreg ...)
(ZeroExt16to(32|64) ...) => (MOVHZreg ...)
(ZeroExt32to64 ...) => (MOVWZreg ...)
(Trunc(16|32|64)to8 <t> x) && isSigned(t) => (MOVBreg x)
(Trunc(16|32|64)to8 x) => (MOVBZreg x)
(Trunc(32|64)to16 <t> x) && isSigned(t) => (MOVHreg x)
(Trunc(32|64)to16 x) => (MOVHZreg x)
(Trunc64to32 <t> x) && isSigned(t) => (MOVWreg x)
(Trunc64to32 x) => (MOVWZreg x)
(Slicemask <t> x) => (SRADconst (NEG <t> x) [63])
// Note that MOV??reg returns a 64-bit int, x is not necessarily that wide
// This may interact with other patterns in the future. (Compare with arm64)
(MOV(B|H|W)Zreg x:(MOVBZload _ _)) => x
(MOV(B|H|W)Zreg x:(MOVBZloadidx _ _ _)) => x
(MOV(H|W)Zreg x:(MOVHZload _ _)) => x
(MOV(H|W)Zreg x:(MOVHZloadidx _ _ _)) => x
(MOV(H|W)reg x:(MOVHload _ _)) => x
(MOV(H|W)reg x:(MOVHloadidx _ _ _)) => x
(MOVWZreg x:(MOVWZload _ _)) => x
(MOVWZreg x:(MOVWZloadidx _ _ _)) => x
(MOVWreg x:(MOVWload _ _)) => x
(MOVWreg x:(MOVWloadidx _ _ _)) => x
// don't extend if argument is already extended
(MOVBreg x:(Arg <t>)) && is8BitInt(t) && isSigned(t) => x
(MOVBZreg x:(Arg <t>)) && is8BitInt(t) && !isSigned(t) => x
(MOVHreg x:(Arg <t>)) && (is8BitInt(t) || is16BitInt(t)) && isSigned(t) => x
(MOVHZreg x:(Arg <t>)) && (is8BitInt(t) || is16BitInt(t)) && !isSigned(t) => x
(MOVWreg x:(Arg <t>)) && (is8BitInt(t) || is16BitInt(t) || is32BitInt(t)) && isSigned(t) => x
(MOVWZreg x:(Arg <t>)) && (is8BitInt(t) || is16BitInt(t) || is32BitInt(t)) && !isSigned(t) => x
(MOVBZreg (MOVDconst [c])) => (MOVDconst [int64(uint8(c))])
(MOVBreg (MOVDconst [c])) => (MOVDconst [int64(int8(c))])
(MOVHZreg (MOVDconst [c])) => (MOVDconst [int64(uint16(c))])
(MOVHreg (MOVDconst [c])) => (MOVDconst [int64(int16(c))])
(MOVWreg (MOVDconst [c])) => (MOVDconst [int64(int32(c))])
(MOVWZreg (MOVDconst [c])) => (MOVDconst [int64(uint32(c))])
// Lose widening ops fed to stores
(MOVBstore [off] {sym} ptr (MOV(B|BZ|H|HZ|W|WZ)reg x) mem) => (MOVBstore [off] {sym} ptr x mem)
(MOVHstore [off] {sym} ptr (MOV(H|HZ|W|WZ)reg x) mem) => (MOVHstore [off] {sym} ptr x mem)
(MOVWstore [off] {sym} ptr (MOV(W|WZ)reg x) mem) => (MOVWstore [off] {sym} ptr x mem)
(MOVBstore [off] {sym} ptr (SRWconst (MOV(H|HZ)reg x) [c]) mem) && c <= 8 => (MOVBstore [off] {sym} ptr (SRWconst <typ.UInt32> x [c]) mem)
(MOVBstore [off] {sym} ptr (SRWconst (MOV(W|WZ)reg x) [c]) mem) && c <= 24 => (MOVBstore [off] {sym} ptr (SRWconst <typ.UInt32> x [c]) mem)
(MOVBstoreidx ptr idx (MOV(B|BZ|H|HZ|W|WZ)reg x) mem) => (MOVBstoreidx ptr idx x mem)
(MOVHstoreidx ptr idx (MOV(H|HZ|W|WZ)reg x) mem) => (MOVHstoreidx ptr idx x mem)
(MOVWstoreidx ptr idx (MOV(W|WZ)reg x) mem) => (MOVWstoreidx ptr idx x mem)
(MOVBstoreidx ptr idx (SRWconst (MOV(H|HZ)reg x) [c]) mem) && c <= 8 => (MOVBstoreidx ptr idx (SRWconst <typ.UInt32> x [c]) mem)
(MOVBstoreidx ptr idx (SRWconst (MOV(W|WZ)reg x) [c]) mem) && c <= 24 => (MOVBstoreidx ptr idx (SRWconst <typ.UInt32> x [c]) mem)
(MOVHBRstore {sym} ptr (MOV(H|HZ|W|WZ)reg x) mem) => (MOVHBRstore {sym} ptr x mem)
(MOVWBRstore {sym} ptr (MOV(W|WZ)reg x) mem) => (MOVWBRstore {sym} ptr x mem)
// Lose W-widening ops fed to compare-W
(CMPW x (MOVWreg y)) => (CMPW x y)
(CMPW (MOVWreg x) y) => (CMPW x y)
(CMPWU x (MOVWZreg y)) => (CMPWU x y)
(CMPWU (MOVWZreg x) y) => (CMPWU x y)
(CMP x (MOVDconst [c])) && is16Bit(c) => (CMPconst x [c])
(CMP (MOVDconst [c]) y) && is16Bit(c) => (InvertFlags (CMPconst y [c]))
(CMPW x (MOVDconst [c])) && is16Bit(c) => (CMPWconst x [int32(c)])
(CMPW (MOVDconst [c]) y) && is16Bit(c) => (InvertFlags (CMPWconst y [int32(c)]))
(CMPU x (MOVDconst [c])) && isU16Bit(c) => (CMPUconst x [c])
(CMPU (MOVDconst [c]) y) && isU16Bit(c) => (InvertFlags (CMPUconst y [c]))
(CMPWU x (MOVDconst [c])) && isU16Bit(c) => (CMPWUconst x [int32(c)])
(CMPWU (MOVDconst [c]) y) && isU16Bit(c) => (InvertFlags (CMPWUconst y [int32(c)]))
// Canonicalize the order of arguments to comparisons - helps with CSE.
((CMP|CMPW|CMPU|CMPWU) x y) && x.ID > y.ID => (InvertFlags ((CMP|CMPW|CMPU|CMPWU) y x))
// ISEL auxInt values 0=LT 1=GT 2=EQ arg2 ? arg0 : arg1
// ISEL auxInt values 4=GE 5=LE 6=NE arg2 ? arg1 : arg0
// ISELB special case where arg0, arg1 values are 0, 1
(Equal cmp) => (ISELB [2] (MOVDconst [1]) cmp)
(NotEqual cmp) => (ISELB [6] (MOVDconst [1]) cmp)
(LessThan cmp) => (ISELB [0] (MOVDconst [1]) cmp)
(FLessThan cmp) => (ISELB [0] (MOVDconst [1]) cmp)
(FLessEqual cmp) => (ISEL [2] (MOVDconst [1]) (ISELB [0] (MOVDconst [1]) cmp) cmp)
(GreaterEqual cmp) => (ISELB [4] (MOVDconst [1]) cmp)
(GreaterThan cmp) => (ISELB [1] (MOVDconst [1]) cmp)
(FGreaterThan cmp) => (ISELB [1] (MOVDconst [1]) cmp)
(FGreaterEqual cmp) => (ISEL [2] (MOVDconst [1]) (ISELB [1] (MOVDconst [1]) cmp) cmp)
(LessEqual cmp) => (ISELB [5] (MOVDconst [1]) cmp)
(ISELB [0] _ (FlagLT)) => (MOVDconst [1])
(ISELB [0] _ (Flag(GT|EQ))) => (MOVDconst [0])
(ISELB [1] _ (FlagGT)) => (MOVDconst [1])
(ISELB [1] _ (Flag(LT|EQ))) => (MOVDconst [0])
(ISELB [2] _ (FlagEQ)) => (MOVDconst [1])
(ISELB [2] _ (Flag(LT|GT))) => (MOVDconst [0])
(ISELB [4] _ (FlagLT)) => (MOVDconst [0])
(ISELB [4] _ (Flag(GT|EQ))) => (MOVDconst [1])
(ISELB [5] _ (FlagGT)) => (MOVDconst [0])
(ISELB [5] _ (Flag(LT|EQ))) => (MOVDconst [1])
(ISELB [6] _ (FlagEQ)) => (MOVDconst [0])
(ISELB [6] _ (Flag(LT|GT))) => (MOVDconst [1])
(ISEL [2] x _ (FlagEQ)) => x
(ISEL [2] _ y (Flag(LT|GT))) => y
(ISEL [6] _ y (FlagEQ)) => y
(ISEL [6] x _ (Flag(LT|GT))) => x
(ISEL [0] _ y (Flag(EQ|GT))) => y
(ISEL [0] x _ (FlagLT)) => x
(ISEL [5] _ x (Flag(EQ|LT))) => x
(ISEL [5] y _ (FlagGT)) => y
(ISEL [1] _ y (Flag(EQ|LT))) => y
(ISEL [1] x _ (FlagGT)) => x
(ISEL [4] x _ (Flag(EQ|GT))) => x
(ISEL [4] _ y (FlagLT)) => y
(ISELB [n] (MOVDconst [1]) (InvertFlags bool)) && n%4 == 0 => (ISELB [n+1] (MOVDconst [1]) bool)
(ISELB [n] (MOVDconst [1]) (InvertFlags bool)) && n%4 == 1 => (ISELB [n-1] (MOVDconst [1]) bool)
(ISELB [n] (MOVDconst [1]) (InvertFlags bool)) && n%4 == 2 => (ISELB [n] (MOVDconst [1]) bool)
(ISEL [n] x y (InvertFlags bool)) && n%4 == 0 => (ISEL [n+1] x y bool)
(ISEL [n] x y (InvertFlags bool)) && n%4 == 1 => (ISEL [n-1] x y bool)
(ISEL [n] x y (InvertFlags bool)) && n%4 == 2 => (ISEL [n] x y bool)
// A particular pattern seen in cgo code:
(AND (MOVDconst [c]) x:(MOVBZload _ _)) => (ANDconst [c&0xFF] x)
// floating point negative abs
(FNEG (FABS x)) => (FNABS x)
(FNEG (FNABS x)) => (FABS x)
// floating-point fused multiply-add/sub
(FADD (FMUL x y) z) => (FMADD x y z)
(FSUB (FMUL x y) z) => (FMSUB x y z)
(FADDS (FMULS x y) z) => (FMADDS x y z)
(FSUBS (FMULS x y) z) => (FMSUBS x y z)
// The following statements are found in encoding/binary functions UintXX (load) and PutUintXX (store)
// and convert the statements in these functions from multiple single byte loads or stores to
// the single largest possible load or store.
// Some are marked big or little endian based on the order in which the bytes are loaded or stored,
// not on the ordering of the machine. These are intended for little endian machines.
// To implement for big endian machines, most rules would have to be duplicated but the
// resulting rule would be reversed, i. e., MOVHZload on little endian would be MOVHBRload on big endian
// and vice versa.
// b[0] | b[1]<<8 => load 16-bit Little endian
(OR <t> x0:(MOVBZload [i0] {s} p mem)
o1:(SL(W|D)const x1:(MOVBZload [i1] {s} p mem) [8]))
&& !config.BigEndian
&& i1 == i0+1
&& x0.Uses ==1 && x1.Uses == 1
&& o1.Uses == 1
&& mergePoint(b, x0, x1) != nil
&& clobber(x0, x1, o1)
=> @mergePoint(b,x0,x1) (MOVHZload <t> {s} [i0] p mem)
// b[0]<<8 | b[1] => load 16-bit Big endian on Little endian arch.
// Use byte-reverse indexed load for 2 bytes.
(OR <t> x0:(MOVBZload [i1] {s} p mem)
o1:(SL(W|D)const x1:(MOVBZload [i0] {s} p mem) [8]))
&& !config.BigEndian
&& i1 == i0+1
&& x0.Uses ==1 && x1.Uses == 1
&& o1.Uses == 1
&& mergePoint(b, x0, x1) != nil
&& clobber(x0, x1, o1)
=> @mergePoint(b,x0,x1) (MOVHBRload <t> (MOVDaddr <typ.Uintptr> [i0] {s} p) mem)
// b[0]<<n+8 | b[1]<<n => load 16-bit Big endian (where n%8== 0)
// Use byte-reverse indexed load for 2 bytes,
// then shift left to the correct position. Used to match subrules
// from longer rules.
(OR <t> s0:(SL(W|D)const x0:(MOVBZload [i1] {s} p mem) [n1])
s1:(SL(W|D)const x1:(MOVBZload [i0] {s} p mem) [n2]))
&& !config.BigEndian
&& i1 == i0+1
&& n1%8 == 0
&& n2 == n1+8
&& x0.Uses == 1 && x1.Uses == 1
&& s0.Uses == 1 && s1.Uses == 1
&& mergePoint(b, x0, x1) != nil
&& clobber(x0, x1, s0, s1)
=> @mergePoint(b,x0,x1) (SLDconst <t> (MOVHBRload <t> (MOVDaddr <typ.Uintptr> [i0] {s} p) mem) [n1])
// b[0] | b[1]<<8 | b[2]<<16 | b[3]<<24 => load 32-bit Little endian
// Use byte-reverse indexed load for 4 bytes.
(OR <t> s1:(SL(W|D)const x2:(MOVBZload [i3] {s} p mem) [24])
o0:(OR <t> s0:(SL(W|D)const x1:(MOVBZload [i2] {s} p mem) [16])
x0:(MOVHZload [i0] {s} p mem)))
&& !config.BigEndian
&& i2 == i0+2
&& i3 == i0+3
&& x0.Uses ==1 && x1.Uses == 1 && x2.Uses == 1
&& o0.Uses == 1
&& s0.Uses == 1 && s1.Uses == 1
&& mergePoint(b, x0, x1, x2) != nil
&& clobber(x0, x1, x2, s0, s1, o0)
=> @mergePoint(b,x0,x1,x2) (MOVWZload <t> {s} [i0] p mem)
// b[0]<<24 | b[1]<<16 | b[2]<<8 | b[3] => load 32-bit Big endian order on Little endian arch
// Use byte-reverse indexed load for 4 bytes with computed address.
// Could be used to match subrules of a longer rule.
(OR <t> s1:(SL(W|D)const x2:(MOVBZload [i0] {s} p mem) [24])
o0:(OR <t> s0:(SL(W|D)const x1:(MOVBZload [i1] {s} p mem) [16])
x0:(MOVHBRload <t> (MOVDaddr <typ.Uintptr> [i2] {s} p) mem)))
&& !config.BigEndian
&& i1 == i0+1
&& i2 == i0+2
&& x0.Uses == 1 && x1.Uses == 1 && x2.Uses == 1
&& o0.Uses == 1
&& s0.Uses == 1 && s1.Uses == 1
&& mergePoint(b, x0, x1, x2) != nil
&& clobber(x0, x1, x2, s0, s1, o0)
=> @mergePoint(b,x0,x1,x2) (MOVWBRload <t> (MOVDaddr <typ.Uintptr> [i0] {s} p) mem)
// b[3] | b[2]<<8 | b[1]<<16 | b[0]<<24 => load 32-bit Big endian order on Little endian arch
// Use byte-reverse indexed load for 4 bytes with computed address.
// Could be used to match subrules of a longer rule.
(OR <t> x0:(MOVBZload [i3] {s} p mem)
o0:(OR <t> s0:(SL(W|D)const x1:(MOVBZload [i2] {s} p mem) [8])
s1:(SL(W|D)const x2:(MOVHBRload <t> (MOVDaddr <typ.Uintptr> [i0] {s} p) mem) [16])))
&& !config.BigEndian
&& i2 == i0+2
&& i3 == i0+3
&& x0.Uses == 1 && x1.Uses == 1 && x2.Uses == 1
&& o0.Uses == 1
&& s0.Uses == 1 && s1.Uses == 1
&& mergePoint(b, x0, x1, x2) != nil
&& clobber(x0, x1, x2, s0, s1, o0)
=> @mergePoint(b,x0,x1,x2) (MOVWBRload <t> (MOVDaddr <typ.Uintptr> [i0] {s} p) mem)
// b[0]<<56 | b[1]<<48 | b[2]<<40 | b[3]<<32 => load 32-bit Big endian order on Little endian arch
// Use byte-reverse indexed load to for 4 bytes with computed address.
// Used to match longer rules.
(OR <t> s2:(SLDconst x2:(MOVBZload [i3] {s} p mem) [32])
o0:(OR <t> s1:(SLDconst x1:(MOVBZload [i2] {s} p mem) [40])
s0:(SLDconst x0:(MOVHBRload <t> (MOVDaddr <typ.Uintptr> [i0] {s} p) mem) [48])))
&& !config.BigEndian
&& i2 == i0+2
&& i3 == i0+3
&& x0.Uses == 1 && x1.Uses == 1 && x2.Uses == 1
&& o0.Uses == 1
&& s0.Uses == 1 && s1.Uses == 1 && s2.Uses == 1
&& mergePoint(b, x0, x1, x2) != nil
&& clobber(x0, x1, x2, s0, s1, s2, o0)
=> @mergePoint(b,x0,x1,x2) (SLDconst <t> (MOVWBRload <t> (MOVDaddr <typ.Uintptr> [i0] {s} p) mem) [32])
// b[3]<<32 | b[2]<<40 | b[1]<<48 | b[0]<<56 => load 32-bit Big endian order on Little endian arch
// Use byte-reverse indexed load for 4 bytes with constant address.
// Used to match longer rules.
(OR <t> s2:(SLDconst x2:(MOVBZload [i0] {s} p mem) [56])
o0:(OR <t> s1:(SLDconst x1:(MOVBZload [i1] {s} p mem) [48])
s0:(SLDconst x0:(MOVHBRload <t> (MOVDaddr <typ.Uintptr> [i2] {s} p) mem) [32])))
&& !config.BigEndian
&& i1 == i0+1
&& i2 == i0+2
&& x0.Uses == 1 && x1.Uses == 1 && x2.Uses == 1
&& o0.Uses == 1
&& s0.Uses == 1 && s1.Uses == 1 && s2.Uses == 1
&& mergePoint(b, x0, x1, x2) != nil
&& clobber(x0, x1, x2, s0, s1, s2, o0)
=> @mergePoint(b,x0,x1,x2) (SLDconst <t> (MOVWBRload <t> (MOVDaddr <typ.Uintptr> [i0] {s} p) mem) [32])
// b[0] | b[1]<<8 | b[2]<<16 | b[3]<<24 | b[4] <<32 | b[5]<<40 | b[6]<<48 | b[7]<<56 => load 64-bit Little endian
// Rules with commutative ops and many operands will result in extremely large functions in rewritePPC64,
// so matching shorter previously defined subrules is important.
// Offset must be multiple of 4 for MOVD
(OR <t> s6:(SLDconst x7:(MOVBZload [i7] {s} p mem) [56])
o5:(OR <t> s5:(SLDconst x6:(MOVBZload [i6] {s} p mem) [48])
o4:(OR <t> s4:(SLDconst x5:(MOVBZload [i5] {s} p mem) [40])
o3:(OR <t> s3:(SLDconst x4:(MOVBZload [i4] {s} p mem) [32])
x0:(MOVWZload {s} [i0] p mem)))))
&& !config.BigEndian
&& i0%4 == 0
&& i4 == i0+4
&& i5 == i0+5
&& i6 == i0+6
&& i7 == i0+7
&& x0.Uses == 1 && x4.Uses == 1 && x5.Uses == 1 && x6.Uses ==1 && x7.Uses == 1
&& o3.Uses == 1 && o4.Uses == 1 && o5.Uses == 1
&& s3.Uses == 1 && s4.Uses == 1 && s5.Uses == 1 && s6.Uses == 1
&& mergePoint(b, x0, x4, x5, x6, x7) != nil
&& clobber(x0, x4, x5, x6, x7, s3, s4, s5, s6, o3, o4, o5)
=> @mergePoint(b,x0,x4,x5,x6,x7) (MOVDload <t> {s} [i0] p mem)
// b[7] | b[6]<<8 | b[5]<<16 | b[4]<<24 | b[3]<<32 | b[2]<<40 | b[1]<<48 | b[0]<<56 load 64-bit Big endian ordered bytes on Little endian arch
// Use byte-reverse indexed load of 8 bytes.
// Rules with commutative ops and many operands can result in extremely large functions in rewritePPC64,
// so matching shorter previously defined subrules is important.
(OR <t> s0:(SLDconst x0:(MOVBZload [i0] {s} p mem) [56])
o0:(OR <t> s1:(SLDconst x1:(MOVBZload [i1] {s} p mem) [48])
o1:(OR <t> s2:(SLDconst x2:(MOVBZload [i2] {s} p mem) [40])
o2:(OR <t> s3:(SLDconst x3:(MOVBZload [i3] {s} p mem) [32])
x4:(MOVWBRload <t> (MOVDaddr <typ.Uintptr> [i4] p) mem)))))
&& !config.BigEndian
&& i1 == i0+1
&& i2 == i0+2
&& i3 == i0+3
&& i4 == i0+4
&& x0.Uses == 1 && x1.Uses == 1 && x2.Uses == 1 && x3.Uses == 1 && x4.Uses == 1
&& o0.Uses == 1 && o1.Uses == 1 && o2.Uses == 1
&& s0.Uses == 1 && s1.Uses == 1 && s2.Uses == 1 && s3.Uses == 1
&& mergePoint(b, x0, x1, x2, x3, x4) != nil
&& clobber(x0, x1, x2, x3, x4, o0, o1, o2, s0, s1, s2, s3)
=> @mergePoint(b,x0,x1,x2,x3,x4) (MOVDBRload <t> (MOVDaddr <typ.Uintptr> [i0] {s} p) mem)
// b[0]<<56 | b[1]<<48 | b[2]<<40 | b[3]<<32 | b[4]<<24 | b[5]<<16 | b[6]<<8 | b[7] => load 64-bit Big endian ordered bytes on Little endian arch
// Use byte-reverse indexed load of 8 bytes.
// Rules with commutative ops and many operands can result in extremely large functions in rewritePPC64,
// so matching shorter previously defined subrules is important.
(OR <t> x7:(MOVBZload [i7] {s} p mem)
o5:(OR <t> s6:(SLDconst x6:(MOVBZload [i6] {s} p mem) [8])
o4:(OR <t> s5:(SLDconst x5:(MOVBZload [i5] {s} p mem) [16])
o3:(OR <t> s4:(SLDconst x4:(MOVBZload [i4] {s} p mem) [24])
s0:(SL(W|D)const x3:(MOVWBRload <t> (MOVDaddr <typ.Uintptr> [i0] {s} p) mem) [32])))))
&& !config.BigEndian
&& i4 == i0+4
&& i5 == i0+5
&& i6 == i0+6
&& i7 == i0+7
&& x3.Uses == 1 && x4.Uses == 1 && x5.Uses == 1 && x6.Uses == 1 && x7.Uses == 1
&& o3.Uses == 1 && o4.Uses == 1 && o5.Uses == 1
&& s0.Uses == 1 && s4.Uses == 1 && s5.Uses == 1 && s6.Uses == 1
&& mergePoint(b, x3, x4, x5, x6, x7) != nil
&& clobber(x3, x4, x5, x6, x7, o3, o4, o5, s0, s4, s5, s6)
=> @mergePoint(b,x3,x4,x5,x6,x7) (MOVDBRload <t> (MOVDaddr <typ.Uintptr> [i0] {s} p) mem)
// 2 byte store Little endian as in:
// b[0] = byte(v >> 16)
// b[1] = byte(v >> 24)
// Added for use in matching longer rules.
(MOVBstore [i1] {s} p (SR(W|D)const w [24])
x0:(MOVBstore [i0] {s} p (SR(W|D)const w [16]) mem))
&& !config.BigEndian
&& x0.Uses == 1
&& i1 == i0+1
&& clobber(x0)
=> (MOVHstore [i0] {s} p (SRWconst <typ.UInt16> w [16]) mem)
// 2 byte store Little endian as in:
// b[0] = byte(v)
// b[1] = byte(v >> 8)
(MOVBstore [i1] {s} p (SR(W|D)const w [8])
x0:(MOVBstore [i0] {s} p w mem))
&& !config.BigEndian
&& x0.Uses == 1
&& i1 == i0+1
&& clobber(x0)
=> (MOVHstore [i0] {s} p w mem)
// 4 byte store Little endian as in:
// b[0:1] = uint16(v)
// b[2:3] = uint16(v >> 16)
(MOVHstore [i1] {s} p (SR(W|D)const w [16])
x0:(MOVHstore [i0] {s} p w mem))
&& !config.BigEndian
&& x0.Uses == 1
&& i1 == i0+2
&& clobber(x0)
=> (MOVWstore [i0] {s} p w mem)
// 4 byte store Big endian as in:
// b[0] = byte(v >> 24)
// b[1] = byte(v >> 16)
// b[2] = byte(v >> 8)
// b[3] = byte(v)
// Use byte-reverse indexed 4 byte store.
(MOVBstore [i3] {s} p w
x0:(MOVBstore [i2] {s} p (SRWconst w [8])
x1:(MOVBstore [i1] {s} p (SRWconst w [16])
x2:(MOVBstore [i0] {s} p (SRWconst w [24]) mem))))
&& !config.BigEndian
&& x0.Uses == 1 && x1.Uses == 1 && x2.Uses == 1
&& i1 == i0+1 && i2 == i0+2 && i3 == i0+3
&& clobber(x0, x1, x2)
=> (MOVWBRstore (MOVDaddr <typ.Uintptr> [i0] {s} p) w mem)
// The 2 byte store appears after the 4 byte store so that the
// match for the 2 byte store is not done first.
// If the 4 byte store is based on the 2 byte store then there are
// variations on the MOVDaddr subrule that would require additional
// rules to be written.
// 2 byte store Big endian as in:
// b[0] = byte(v >> 8)
// b[1] = byte(v)
(MOVBstore [i1] {s} p w x0:(MOVBstore [i0] {s} p (SRWconst w [8]) mem))
&& !config.BigEndian
&& x0.Uses == 1
&& i1 == i0+1
&& clobber(x0)
=> (MOVHBRstore (MOVDaddr <typ.Uintptr> [i0] {s} p) w mem)
// 8 byte store Little endian as in:
// b[0] = byte(v)
// b[1] = byte(v >> 8)
// b[2] = byte(v >> 16)
// b[3] = byte(v >> 24)
// b[4] = byte(v >> 32)
// b[5] = byte(v >> 40)
// b[6] = byte(v >> 48)
// b[7] = byte(v >> 56)
// Built on previously defined rules
// Offset must be multiple of 4 for MOVDstore
(MOVBstore [i7] {s} p (SRDconst w [56])
x0:(MOVBstore [i6] {s} p (SRDconst w [48])
x1:(MOVBstore [i5] {s} p (SRDconst w [40])
x2:(MOVBstore [i4] {s} p (SRDconst w [32])
x3:(MOVWstore [i0] {s} p w mem)))))
&& !config.BigEndian
&& i0%4 == 0
&& x0.Uses == 1 && x1.Uses == 1 && x2.Uses == 1 && x3.Uses == 1
&& i4 == i0+4 && i5 == i0+5 && i6 == i0+6 && i7 == i0+7
&& clobber(x0, x1, x2, x3)
=> (MOVDstore [i0] {s} p w mem)
// 8 byte store Big endian as in:
// b[0] = byte(v >> 56)
// b[1] = byte(v >> 48)
// b[2] = byte(v >> 40)
// b[3] = byte(v >> 32)
// b[4] = byte(v >> 24)
// b[5] = byte(v >> 16)
// b[6] = byte(v >> 8)
// b[7] = byte(v)
// Use byte-reverse indexed 8 byte store.
(MOVBstore [i7] {s} p w
x0:(MOVBstore [i6] {s} p (SRDconst w [8])
x1:(MOVBstore [i5] {s} p (SRDconst w [16])
x2:(MOVBstore [i4] {s} p (SRDconst w [24])
x3:(MOVBstore [i3] {s} p (SRDconst w [32])
x4:(MOVBstore [i2] {s} p (SRDconst w [40])
x5:(MOVBstore [i1] {s} p (SRDconst w [48])
x6:(MOVBstore [i0] {s} p (SRDconst w [56]) mem))))))))
&& !config.BigEndian
&& x0.Uses == 1 && x1.Uses == 1 && x2.Uses == 1 && x3.Uses == 1 && x4.Uses == 1 && x5.Uses == 1 && x6.Uses == 1
&& i1 == i0+1 && i2 == i0+2 && i3 == i0+3 && i4 == i0+4 && i5 == i0+5 && i6 == i0+6 && i7 == i0+7
&& clobber(x0, x1, x2, x3, x4, x5, x6)
=> (MOVDBRstore (MOVDaddr <typ.Uintptr> [i0] {s} p) w mem)