math/big: add 4-bit, fixed window exponentiation.
A 4-bit window is convenient because 4 divides both 32 and 64,
therefore we never have a window spanning words of the exponent.
Additionaly, the benefit of a 5-bit window is only 2.6% at 1024-bits
and 3.3% at 2048-bits.
This code is still not constant time, however.
benchmark old ns/op new ns/op delta
BenchmarkRSA2048Decrypt 17108590 11180370 -34.65%
Benchmark3PrimeRSA2048Decrypt 13003720 7680390 -40.94%
R=gri
CC=golang-dev
https://golang.org/cl/6716048
diff --git a/src/pkg/math/big/nat.go b/src/pkg/math/big/nat.go
index 2e5c56d..17985c2 100644
--- a/src/pkg/math/big/nat.go
+++ b/src/pkg/math/big/nat.go
@@ -1248,6 +1248,15 @@
}
z = z.set(x)
+ // If the base is non-trivial and the exponent is large, we use
+ // 4-bit, windowed exponentiation. This involves precomputing 14 values
+ // (x^2...x^15) but then reduces the number of multiply-reduces by a
+ // third. Even for a 32-bit exponent, this reduces the number of
+ // operations.
+ if len(x) > 1 && len(y) > 1 && len(m) > 0 {
+ return z.expNNWindowed(x, y, m)
+ }
+
v := y[len(y)-1] // v > 0 because y is normalized and y > 0
shift := leadingZeros(v) + 1
v <<= shift
@@ -1304,6 +1313,69 @@
return z.norm()
}
+// expNNWindowed calculates x**y mod m using a fixed, 4-bit window.
+func (z nat) expNNWindowed(x, y, m nat) nat {
+ // zz and r are used to avoid allocating in mul and div as otherwise
+ // the arguments would alias.
+ var zz, r nat
+
+ const n = 4
+ // powers[i] contains x^i.
+ var powers [1 << n]nat
+ powers[0] = natOne
+ powers[1] = x
+ for i := 2; i < 1<<n; i += 2 {
+ p2, p, p1 := &powers[i/2], &powers[i], &powers[i+1]
+ *p = p.mul(*p2, *p2)
+ zz, r = zz.div(r, *p, m)
+ *p, r = r, *p
+ *p1 = p1.mul(*p, x)
+ zz, r = zz.div(r, *p1, m)
+ *p1, r = r, *p1
+ }
+
+ z = z.setWord(1)
+
+ for i := len(y) - 1; i >= 0; i-- {
+ yi := y[i]
+ for j := 0; j < _W; j += n {
+ if i != len(y)-1 || j != 0 {
+ // Unrolled loop for significant performance
+ // gain. Use go test -bench=".*" in crypto/rsa
+ // to check performance before making changes.
+ zz = zz.mul(z, z)
+ zz, z = z, zz
+ zz, r = zz.div(r, z, m)
+ z, r = r, z
+
+ zz = zz.mul(z, z)
+ zz, z = z, zz
+ zz, r = zz.div(r, z, m)
+ z, r = r, z
+
+ zz = zz.mul(z, z)
+ zz, z = z, zz
+ zz, r = zz.div(r, z, m)
+ z, r = r, z
+
+ zz = zz.mul(z, z)
+ zz, z = z, zz
+ zz, r = zz.div(r, z, m)
+ z, r = r, z
+ }
+
+ zz = zz.mul(z, powers[yi>>(_W-n)])
+ zz, z = z, zz
+ zz, r = zz.div(r, z, m)
+ z, r = r, z
+
+ yi <<= n
+ }
+ }
+
+ return z.norm()
+}
+
// probablyPrime performs reps Miller-Rabin tests to check whether n is prime.
// If it returns true, n is prime with probability 1 - 1/4^reps.
// If it returns false, n is not prime.