blob: 6013c94c69808a9d728b9e4d67c9db1fa16dc91f [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Central free lists.
//
// See malloc.go for an overview.
//
// The mcentral doesn't actually contain the list of free objects; the mspan does.
// Each mcentral is two lists of mspans: those with free objects (c->nonempty)
// and those that are completely allocated (c->empty).
package runtime
import "runtime/internal/atomic"
// Central list of free objects of a given size.
//
//go:notinheap
type mcentral struct {
spanclass spanClass
// partial and full contain two mspan sets: one of swept in-use
// spans, and one of unswept in-use spans. These two trade
// roles on each GC cycle. The unswept set is drained either by
// allocation or by the background sweeper in every GC cycle,
// so only two roles are necessary.
//
// sweepgen is increased by 2 on each GC cycle, so the swept
// spans are in partial[sweepgen/2%2] and the unswept spans are in
// partial[1-sweepgen/2%2]. Sweeping pops spans from the
// unswept set and pushes spans that are still in-use on the
// swept set. Likewise, allocating an in-use span pushes it
// on the swept set.
//
// Some parts of the sweeper can sweep arbitrary spans, and hence
// can't remove them from the unswept set, but will add the span
// to the appropriate swept list. As a result, the parts of the
// sweeper and mcentral that do consume from the unswept list may
// encounter swept spans, and these should be ignored.
partial [2]spanSet // list of spans with a free object
full [2]spanSet // list of spans with no free objects
}
// Initialize a single central free list.
func (c *mcentral) init(spc spanClass) {
c.spanclass = spc
lockInit(&c.partial[0].spineLock, lockRankSpanSetSpine)
lockInit(&c.partial[1].spineLock, lockRankSpanSetSpine)
lockInit(&c.full[0].spineLock, lockRankSpanSetSpine)
lockInit(&c.full[1].spineLock, lockRankSpanSetSpine)
}
// partialUnswept returns the spanSet which holds partially-filled
// unswept spans for this sweepgen.
func (c *mcentral) partialUnswept(sweepgen uint32) *spanSet {
return &c.partial[1-sweepgen/2%2]
}
// partialSwept returns the spanSet which holds partially-filled
// swept spans for this sweepgen.
func (c *mcentral) partialSwept(sweepgen uint32) *spanSet {
return &c.partial[sweepgen/2%2]
}
// fullUnswept returns the spanSet which holds unswept spans without any
// free slots for this sweepgen.
func (c *mcentral) fullUnswept(sweepgen uint32) *spanSet {
return &c.full[1-sweepgen/2%2]
}
// fullSwept returns the spanSet which holds swept spans without any
// free slots for this sweepgen.
func (c *mcentral) fullSwept(sweepgen uint32) *spanSet {
return &c.full[sweepgen/2%2]
}
// Allocate a span to use in an mcache.
func (c *mcentral) cacheSpan() *mspan {
// Deduct credit for this span allocation and sweep if necessary.
spanBytes := uintptr(class_to_allocnpages[c.spanclass.sizeclass()]) * _PageSize
deductSweepCredit(spanBytes, 0)
traceDone := false
if trace.enabled {
traceGCSweepStart()
}
// If we sweep spanBudget spans without finding any free
// space, just allocate a fresh span. This limits the amount
// of time we can spend trying to find free space and
// amortizes the cost of small object sweeping over the
// benefit of having a full free span to allocate from. By
// setting this to 100, we limit the space overhead to 1%.
//
// TODO(austin,mknyszek): This still has bad worst-case
// throughput. For example, this could find just one free slot
// on the 100th swept span. That limits allocation latency, but
// still has very poor throughput. We could instead keep a
// running free-to-used budget and switch to fresh span
// allocation if the budget runs low.
spanBudget := 100
var s *mspan
sl := newSweepLocker()
sg := sl.sweepGen
// Try partial swept spans first.
if s = c.partialSwept(sg).pop(); s != nil {
goto havespan
}
// Now try partial unswept spans.
for ; spanBudget >= 0; spanBudget-- {
s = c.partialUnswept(sg).pop()
if s == nil {
break
}
if s, ok := sl.tryAcquire(s); ok {
// We got ownership of the span, so let's sweep it and use it.
s.sweep(true)
sl.dispose()
goto havespan
}
// We failed to get ownership of the span, which means it's being or
// has been swept by an asynchronous sweeper that just couldn't remove it
// from the unswept list. That sweeper took ownership of the span and
// responsibility for either freeing it to the heap or putting it on the
// right swept list. Either way, we should just ignore it (and it's unsafe
// for us to do anything else).
}
// Now try full unswept spans, sweeping them and putting them into the
// right list if we fail to get a span.
for ; spanBudget >= 0; spanBudget-- {
s = c.fullUnswept(sg).pop()
if s == nil {
break
}
if s, ok := sl.tryAcquire(s); ok {
// We got ownership of the span, so let's sweep it.
s.sweep(true)
// Check if there's any free space.
freeIndex := s.nextFreeIndex()
if freeIndex != s.nelems {
s.freeindex = freeIndex
sl.dispose()
goto havespan
}
// Add it to the swept list, because sweeping didn't give us any free space.
c.fullSwept(sg).push(s.mspan)
}
// See comment for partial unswept spans.
}
sl.dispose()
if trace.enabled {
traceGCSweepDone()
traceDone = true
}
// We failed to get a span from the mcentral so get one from mheap.
s = c.grow()
if s == nil {
return nil
}
// At this point s is a span that should have free slots.
havespan:
if trace.enabled && !traceDone {
traceGCSweepDone()
}
n := int(s.nelems) - int(s.allocCount)
if n == 0 || s.freeindex == s.nelems || uintptr(s.allocCount) == s.nelems {
throw("span has no free objects")
}
freeByteBase := s.freeindex &^ (64 - 1)
whichByte := freeByteBase / 8
// Init alloc bits cache.
s.refillAllocCache(whichByte)
// Adjust the allocCache so that s.freeindex corresponds to the low bit in
// s.allocCache.
s.allocCache >>= s.freeindex % 64
return s
}
// Return span from an mcache.
//
// s must have a span class corresponding to this
// mcentral and it must not be empty.
func (c *mcentral) uncacheSpan(s *mspan) {
if s.allocCount == 0 {
throw("uncaching span but s.allocCount == 0")
}
sg := mheap_.sweepgen
stale := s.sweepgen == sg+1
// Fix up sweepgen.
if stale {
// Span was cached before sweep began. It's our
// responsibility to sweep it.
//
// Set sweepgen to indicate it's not cached but needs
// sweeping and can't be allocated from. sweep will
// set s.sweepgen to indicate s is swept.
atomic.Store(&s.sweepgen, sg-1)
} else {
// Indicate that s is no longer cached.
atomic.Store(&s.sweepgen, sg)
}
// Put the span in the appropriate place.
if stale {
// It's stale, so just sweep it. Sweeping will put it on
// the right list.
//
// We don't use a sweepLocker here. Stale cached spans
// aren't in the global sweep lists, so mark termination
// itself holds up sweep completion until all mcaches
// have been swept.
ss := sweepLocked{s}
ss.sweep(false)
} else {
if int(s.nelems)-int(s.allocCount) > 0 {
// Put it back on the partial swept list.
c.partialSwept(sg).push(s)
} else {
// There's no free space and it's not stale, so put it on the
// full swept list.
c.fullSwept(sg).push(s)
}
}
}
// grow allocates a new empty span from the heap and initializes it for c's size class.
func (c *mcentral) grow() *mspan {
npages := uintptr(class_to_allocnpages[c.spanclass.sizeclass()])
size := uintptr(class_to_size[c.spanclass.sizeclass()])
s, _ := mheap_.alloc(npages, c.spanclass, true)
if s == nil {
return nil
}
// Use division by multiplication and shifts to quickly compute:
// n := (npages << _PageShift) / size
n := s.divideByElemSize(npages << _PageShift)
s.limit = s.base() + size*n
heapBitsForAddr(s.base()).initSpan(s)
return s
}