blob: 905c21426c4b8950c1130fe6d2a01adc3a35d681 [file] [log] [blame]
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types2
import (
"cmd/compile/internal/syntax"
"fmt"
"go/constant"
)
func (err *error_) recordAltDecl(obj Object) {
if pos := obj.Pos(); pos.IsKnown() {
// We use "other" rather than "previous" here because
// the first declaration seen may not be textually
// earlier in the source.
err.errorf(pos, "other declaration of %s", obj.Name())
}
}
func (check *Checker) declare(scope *Scope, id *syntax.Name, obj Object, pos syntax.Pos) {
// spec: "The blank identifier, represented by the underscore
// character _, may be used in a declaration like any other
// identifier but the declaration does not introduce a new
// binding."
if obj.Name() != "_" {
if alt := scope.Insert(obj); alt != nil {
var err error_
err.errorf(obj, "%s redeclared in this block", obj.Name())
err.recordAltDecl(alt)
check.report(&err)
return
}
obj.setScopePos(pos)
}
if id != nil {
check.recordDef(id, obj)
}
}
// pathString returns a string of the form a->b-> ... ->g for a path [a, b, ... g].
func pathString(path []Object) string {
var s string
for i, p := range path {
if i > 0 {
s += "->"
}
s += p.Name()
}
return s
}
// objDecl type-checks the declaration of obj in its respective (file) context.
// For the meaning of def, see Checker.definedType, in typexpr.go.
func (check *Checker) objDecl(obj Object, def *Named) {
if check.conf.Trace && obj.Type() == nil {
if check.indent == 0 {
fmt.Println() // empty line between top-level objects for readability
}
check.trace(obj.Pos(), "-- checking %s (%s, objPath = %s)", obj, obj.color(), pathString(check.objPath))
check.indent++
defer func() {
check.indent--
check.trace(obj.Pos(), "=> %s (%s)", obj, obj.color())
}()
}
// Checking the declaration of obj means inferring its type
// (and possibly its value, for constants).
// An object's type (and thus the object) may be in one of
// three states which are expressed by colors:
//
// - an object whose type is not yet known is painted white (initial color)
// - an object whose type is in the process of being inferred is painted grey
// - an object whose type is fully inferred is painted black
//
// During type inference, an object's color changes from white to grey
// to black (pre-declared objects are painted black from the start).
// A black object (i.e., its type) can only depend on (refer to) other black
// ones. White and grey objects may depend on white and black objects.
// A dependency on a grey object indicates a cycle which may or may not be
// valid.
//
// When objects turn grey, they are pushed on the object path (a stack);
// they are popped again when they turn black. Thus, if a grey object (a
// cycle) is encountered, it is on the object path, and all the objects
// it depends on are the remaining objects on that path. Color encoding
// is such that the color value of a grey object indicates the index of
// that object in the object path.
// During type-checking, white objects may be assigned a type without
// traversing through objDecl; e.g., when initializing constants and
// variables. Update the colors of those objects here (rather than
// everywhere where we set the type) to satisfy the color invariants.
if obj.color() == white && obj.Type() != nil {
obj.setColor(black)
return
}
switch obj.color() {
case white:
assert(obj.Type() == nil)
// All color values other than white and black are considered grey.
// Because black and white are < grey, all values >= grey are grey.
// Use those values to encode the object's index into the object path.
obj.setColor(grey + color(check.push(obj)))
defer func() {
check.pop().setColor(black)
}()
case black:
assert(obj.Type() != nil)
return
default:
// Color values other than white or black are considered grey.
fallthrough
case grey:
// We have a cycle.
// In the existing code, this is marked by a non-nil type
// for the object except for constants and variables whose
// type may be non-nil (known), or nil if it depends on the
// not-yet known initialization value.
// In the former case, set the type to Typ[Invalid] because
// we have an initialization cycle. The cycle error will be
// reported later, when determining initialization order.
// TODO(gri) Report cycle here and simplify initialization
// order code.
switch obj := obj.(type) {
case *Const:
if check.cycle(obj) || obj.typ == nil {
obj.typ = Typ[Invalid]
}
case *Var:
if check.cycle(obj) || obj.typ == nil {
obj.typ = Typ[Invalid]
}
case *TypeName:
if check.cycle(obj) {
// break cycle
// (without this, calling underlying()
// below may lead to an endless loop
// if we have a cycle for a defined
// (*Named) type)
obj.typ = Typ[Invalid]
}
case *Func:
if check.cycle(obj) {
// Don't set obj.typ to Typ[Invalid] here
// because plenty of code type-asserts that
// functions have a *Signature type. Grey
// functions have their type set to an empty
// signature which makes it impossible to
// initialize a variable with the function.
}
default:
unreachable()
}
assert(obj.Type() != nil)
return
}
d := check.objMap[obj]
if d == nil {
check.dump("%v: %s should have been declared", obj.Pos(), obj)
unreachable()
}
// save/restore current context and setup object context
defer func(ctxt context) {
check.context = ctxt
}(check.context)
check.context = context{
scope: d.file,
}
// Const and var declarations must not have initialization
// cycles. We track them by remembering the current declaration
// in check.decl. Initialization expressions depending on other
// consts, vars, or functions, add dependencies to the current
// check.decl.
switch obj := obj.(type) {
case *Const:
check.decl = d // new package-level const decl
check.constDecl(obj, d.vtyp, d.init, d.inherited)
case *Var:
check.decl = d // new package-level var decl
check.varDecl(obj, d.lhs, d.vtyp, d.init)
case *TypeName:
// invalid recursive types are detected via path
check.typeDecl(obj, d.tdecl, def)
check.collectMethods(obj) // methods can only be added to top-level types
case *Func:
// functions may be recursive - no need to track dependencies
check.funcDecl(obj, d)
default:
unreachable()
}
}
// cycle checks if the cycle starting with obj is valid and
// reports an error if it is not.
func (check *Checker) cycle(obj Object) (isCycle bool) {
// The object map contains the package scope objects and the non-interface methods.
if debug {
info := check.objMap[obj]
inObjMap := info != nil && (info.fdecl == nil || info.fdecl.Recv == nil) // exclude methods
isPkgObj := obj.Parent() == check.pkg.scope
if isPkgObj != inObjMap {
check.dump("%v: inconsistent object map for %s (isPkgObj = %v, inObjMap = %v)", obj.Pos(), obj, isPkgObj, inObjMap)
unreachable()
}
}
// Count cycle objects.
assert(obj.color() >= grey)
start := obj.color() - grey // index of obj in objPath
cycle := check.objPath[start:]
nval := 0 // number of (constant or variable) values in the cycle
ndef := 0 // number of type definitions in the cycle
for _, obj := range cycle {
switch obj := obj.(type) {
case *Const, *Var:
nval++
case *TypeName:
// Determine if the type name is an alias or not. For
// package-level objects, use the object map which
// provides syntactic information (which doesn't rely
// on the order in which the objects are set up). For
// local objects, we can rely on the order, so use
// the object's predicate.
// TODO(gri) It would be less fragile to always access
// the syntactic information. We should consider storing
// this information explicitly in the object.
var alias bool
if d := check.objMap[obj]; d != nil {
alias = d.tdecl.Alias // package-level object
} else {
alias = obj.IsAlias() // function local object
}
if !alias {
ndef++
}
case *Func:
// ignored for now
default:
unreachable()
}
}
if check.conf.Trace {
check.trace(obj.Pos(), "## cycle detected: objPath = %s->%s (len = %d)", pathString(cycle), obj.Name(), len(cycle))
check.trace(obj.Pos(), "## cycle contains: %d values, %d type definitions", nval, ndef)
defer func() {
if isCycle {
check.trace(obj.Pos(), "=> error: cycle is invalid")
}
}()
}
// A cycle involving only constants and variables is invalid but we
// ignore them here because they are reported via the initialization
// cycle check.
if nval == len(cycle) {
return false
}
// A cycle involving only types (and possibly functions) must have at least
// one type definition to be permitted: If there is no type definition, we
// have a sequence of alias type names which will expand ad infinitum.
if nval == 0 && ndef > 0 {
return false // cycle is permitted
}
check.cycleError(cycle)
return true
}
type typeInfo uint
// validType verifies that the given type does not "expand" infinitely
// producing a cycle in the type graph. Cycles are detected by marking
// defined types.
// (Cycles involving alias types, as in "type A = [10]A" are detected
// earlier, via the objDecl cycle detection mechanism.)
func (check *Checker) validType(typ Type, path []Object) typeInfo {
const (
unknown typeInfo = iota
marked
valid
invalid
)
switch t := typ.(type) {
case *Array:
return check.validType(t.elem, path)
case *Struct:
for _, f := range t.fields {
if check.validType(f.typ, path) == invalid {
return invalid
}
}
case *Interface:
for _, etyp := range t.embeddeds {
if check.validType(etyp, path) == invalid {
return invalid
}
}
case *Named:
t.expand(check.conf.Environment)
// don't touch the type if it is from a different package or the Universe scope
// (doing so would lead to a race condition - was issue #35049)
if t.obj.pkg != check.pkg {
return valid
}
// don't report a 2nd error if we already know the type is invalid
// (e.g., if a cycle was detected earlier, via under).
if t.underlying == Typ[Invalid] {
t.info = invalid
return invalid
}
switch t.info {
case unknown:
t.info = marked
t.info = check.validType(t.fromRHS, append(path, t.obj)) // only types of current package added to path
case marked:
// cycle detected
for i, tn := range path {
if t.obj.pkg != check.pkg {
panic("type cycle via package-external type")
}
if tn == t.obj {
check.cycleError(path[i:])
t.info = invalid
return t.info
}
}
panic("cycle start not found")
}
return t.info
}
return valid
}
// cycleError reports a declaration cycle starting with
// the object in cycle that is "first" in the source.
func (check *Checker) cycleError(cycle []Object) {
// TODO(gri) Should we start with the last (rather than the first) object in the cycle
// since that is the earliest point in the source where we start seeing the
// cycle? That would be more consistent with other error messages.
i := firstInSrc(cycle)
obj := cycle[i]
var err error_
if check.conf.CompilerErrorMessages {
err.errorf(obj, "invalid recursive type %s", obj.Name())
} else {
err.errorf(obj, "illegal cycle in declaration of %s", obj.Name())
}
for range cycle {
err.errorf(obj, "%s refers to", obj.Name())
i++
if i >= len(cycle) {
i = 0
}
obj = cycle[i]
}
err.errorf(obj, "%s", obj.Name())
check.report(&err)
}
// firstInSrc reports the index of the object with the "smallest"
// source position in path. path must not be empty.
func firstInSrc(path []Object) int {
fst, pos := 0, path[0].Pos()
for i, t := range path[1:] {
if t.Pos().Cmp(pos) < 0 {
fst, pos = i+1, t.Pos()
}
}
return fst
}
func (check *Checker) constDecl(obj *Const, typ, init syntax.Expr, inherited bool) {
assert(obj.typ == nil)
// use the correct value of iota and errpos
defer func(iota constant.Value, errpos syntax.Pos) {
check.iota = iota
check.errpos = errpos
}(check.iota, check.errpos)
check.iota = obj.val
check.errpos = nopos
// provide valid constant value under all circumstances
obj.val = constant.MakeUnknown()
// determine type, if any
if typ != nil {
t := check.typ(typ)
if !isConstType(t) {
// don't report an error if the type is an invalid C (defined) type
// (issue #22090)
if under(t) != Typ[Invalid] {
check.errorf(typ, "invalid constant type %s", t)
}
obj.typ = Typ[Invalid]
return
}
obj.typ = t
}
// check initialization
var x operand
if init != nil {
if inherited {
// The initialization expression is inherited from a previous
// constant declaration, and (error) positions refer to that
// expression and not the current constant declaration. Use
// the constant identifier position for any errors during
// init expression evaluation since that is all we have
// (see issues #42991, #42992).
check.errpos = obj.pos
}
check.expr(&x, init)
}
check.initConst(obj, &x)
}
func (check *Checker) varDecl(obj *Var, lhs []*Var, typ, init syntax.Expr) {
assert(obj.typ == nil)
// If we have undefined variable types due to errors,
// mark variables as used to avoid follow-on errors.
// Matches compiler behavior.
defer func() {
if obj.typ == Typ[Invalid] {
obj.used = true
}
for _, lhs := range lhs {
if lhs.typ == Typ[Invalid] {
lhs.used = true
}
}
}()
// determine type, if any
if typ != nil {
obj.typ = check.varType(typ)
// We cannot spread the type to all lhs variables if there
// are more than one since that would mark them as checked
// (see Checker.objDecl) and the assignment of init exprs,
// if any, would not be checked.
//
// TODO(gri) If we have no init expr, we should distribute
// a given type otherwise we need to re-evalate the type
// expr for each lhs variable, leading to duplicate work.
}
// check initialization
if init == nil {
if typ == nil {
// error reported before by arityMatch
obj.typ = Typ[Invalid]
}
return
}
if lhs == nil || len(lhs) == 1 {
assert(lhs == nil || lhs[0] == obj)
var x operand
check.expr(&x, init)
check.initVar(obj, &x, "variable declaration")
return
}
if debug {
// obj must be one of lhs
found := false
for _, lhs := range lhs {
if obj == lhs {
found = true
break
}
}
if !found {
panic("inconsistent lhs")
}
}
// We have multiple variables on the lhs and one init expr.
// Make sure all variables have been given the same type if
// one was specified, otherwise they assume the type of the
// init expression values (was issue #15755).
if typ != nil {
for _, lhs := range lhs {
lhs.typ = obj.typ
}
}
check.initVars(lhs, []syntax.Expr{init}, nopos)
}
// isImportedConstraint reports whether typ is an imported type constraint.
func (check *Checker) isImportedConstraint(typ Type) bool {
named, _ := typ.(*Named)
if named == nil || named.obj.pkg == check.pkg || named.obj.pkg == nil {
return false
}
u, _ := named.under().(*Interface)
return u != nil && u.IsConstraint()
}
func (check *Checker) typeDecl(obj *TypeName, tdecl *syntax.TypeDecl, def *Named) {
assert(obj.typ == nil)
var rhs Type
check.later(func() {
check.validType(obj.typ, nil)
// If typ is local, an error was already reported where typ is specified/defined.
if check.isImportedConstraint(rhs) && !check.allowVersion(check.pkg, 1, 18) {
check.errorf(tdecl.Type.Pos(), "using type constraint %s requires go1.18 or later", rhs)
}
})
alias := tdecl.Alias
if alias && tdecl.TParamList != nil {
// The parser will ensure this but we may still get an invalid AST.
// Complain and continue as regular type definition.
check.error(tdecl, "generic type cannot be alias")
alias = false
}
// alias declaration
if alias {
if !check.allowVersion(check.pkg, 1, 9) {
if check.conf.CompilerErrorMessages {
check.error(tdecl, "type aliases only supported as of -lang=go1.9")
} else {
check.error(tdecl, "type aliases requires go1.9 or later")
}
}
obj.typ = Typ[Invalid]
rhs = check.varType(tdecl.Type)
obj.typ = rhs
return
}
// type definition or generic type declaration
named := check.newNamed(obj, nil, nil, nil, nil)
def.setUnderlying(named)
if tdecl.TParamList != nil {
check.openScope(tdecl, "type parameters")
defer check.closeScope()
check.collectTypeParams(&named.tparams, tdecl.TParamList)
}
// determine underlying type of named
rhs = check.definedType(tdecl.Type, named)
assert(rhs != nil)
named.fromRHS = rhs
// The underlying type of named may be itself a named type that is
// incomplete:
//
// type (
// A B
// B *C
// C A
// )
//
// The type of C is the (named) type of A which is incomplete,
// and which has as its underlying type the named type B.
// Determine the (final, unnamed) underlying type by resolving
// any forward chain.
// TODO(gri) Investigate if we can just use named.fromRHS here
// and rely on lazy computation of the underlying type.
named.underlying = under(named)
// If the RHS is a type parameter, it must be from this type declaration.
if tpar, _ := named.underlying.(*TypeParam); tpar != nil && tparamIndex(named.TypeParams().list(), tpar) < 0 {
check.errorf(tdecl.Type, "cannot use function type parameter %s as RHS in type declaration", tpar)
named.underlying = Typ[Invalid]
}
}
func (check *Checker) collectTypeParams(dst **TypeParamList, list []*syntax.Field) {
tparams := make([]*TypeParam, len(list))
// Declare type parameters up-front.
// The scope of type parameters starts at the beginning of the type parameter
// list (so we can have mutually recursive parameterized type bounds).
for i, f := range list {
tparams[i] = check.declareTypeParam(f.Name)
}
// Set the type parameters before collecting the type constraints because
// the parameterized type may be used by the constraints (issue #47887).
// Example: type T[P T[P]] interface{}
*dst = bindTParams(tparams)
var bound Type
for i, f := range list {
// Optimization: Re-use the previous type bound if it hasn't changed.
// This also preserves the grouped output of type parameter lists
// when printing type strings.
if i == 0 || f.Type != list[i-1].Type {
// The predeclared identifier "any" is visible only as a type bound in a type parameter list.
// If we allow "any" for general use, this if-statement can be removed (issue #33232).
if name, _ := unparen(f.Type).(*syntax.Name); name != nil && name.Value == "any" && check.lookup("any") == universeAny {
bound = universeAny.Type()
} else {
bound = check.typ(f.Type)
}
}
tparams[i].bound = bound
}
check.later(func() {
for i, tpar := range tparams {
u := under(tpar.bound)
if _, ok := u.(*Interface); !ok && u != Typ[Invalid] {
check.errorf(list[i].Type, "%s is not an interface", tpar.bound)
}
}
})
}
func (check *Checker) declareTypeParam(name *syntax.Name) *TypeParam {
// Use Typ[Invalid] for the type constraint to ensure that a type
// is present even if the actual constraint has not been assigned
// yet.
// TODO(gri) Need to systematically review all uses of type parameter
// constraints to make sure we don't rely on them if they
// are not properly set yet.
tname := NewTypeName(name.Pos(), check.pkg, name.Value, nil)
tpar := check.newTypeParam(tname, Typ[Invalid]) // assigns type to tname as a side-effect
check.declare(check.scope, name, tname, check.scope.pos) // TODO(gri) check scope position
return tpar
}
func (check *Checker) collectMethods(obj *TypeName) {
// get associated methods
// (Checker.collectObjects only collects methods with non-blank names;
// Checker.resolveBaseTypeName ensures that obj is not an alias name
// if it has attached methods.)
methods := check.methods[obj]
if methods == nil {
return
}
delete(check.methods, obj)
assert(!check.objMap[obj].tdecl.Alias) // don't use TypeName.IsAlias (requires fully set up object)
// use an objset to check for name conflicts
var mset objset
// spec: "If the base type is a struct type, the non-blank method
// and field names must be distinct."
base := asNamed(obj.typ) // shouldn't fail but be conservative
if base != nil {
u := safeUnderlying(base) // base should be expanded, but use safeUnderlying to be conservative
if t, _ := u.(*Struct); t != nil {
for _, fld := range t.fields {
if fld.name != "_" {
assert(mset.insert(fld) == nil)
}
}
}
// Checker.Files may be called multiple times; additional package files
// may add methods to already type-checked types. Add pre-existing methods
// so that we can detect redeclarations.
for _, m := range base.methods {
assert(m.name != "_")
assert(mset.insert(m) == nil)
}
}
// add valid methods
for _, m := range methods {
// spec: "For a base type, the non-blank names of methods bound
// to it must be unique."
assert(m.name != "_")
if alt := mset.insert(m); alt != nil {
var err error_
switch alt.(type) {
case *Var:
err.errorf(m.pos, "field and method with the same name %s", m.name)
case *Func:
if check.conf.CompilerErrorMessages {
err.errorf(m.pos, "%s.%s redeclared in this block", obj.Name(), m.name)
} else {
err.errorf(m.pos, "method %s already declared for %s", m.name, obj)
}
default:
unreachable()
}
err.recordAltDecl(alt)
check.report(&err)
continue
}
if base != nil {
base.load() // TODO(mdempsky): Probably unnecessary.
base.methods = append(base.methods, m)
}
}
}
func (check *Checker) funcDecl(obj *Func, decl *declInfo) {
assert(obj.typ == nil)
// func declarations cannot use iota
assert(check.iota == nil)
sig := new(Signature)
obj.typ = sig // guard against cycles
// Avoid cycle error when referring to method while type-checking the signature.
// This avoids a nuisance in the best case (non-parameterized receiver type) and
// since the method is not a type, we get an error. If we have a parameterized
// receiver type, instantiating the receiver type leads to the instantiation of
// its methods, and we don't want a cycle error in that case.
// TODO(gri) review if this is correct and/or whether we still need this?
saved := obj.color_
obj.color_ = black
fdecl := decl.fdecl
check.funcType(sig, fdecl.Recv, fdecl.TParamList, fdecl.Type)
obj.color_ = saved
if len(fdecl.TParamList) > 0 && fdecl.Body == nil {
check.softErrorf(fdecl, "parameterized function is missing function body")
}
// function body must be type-checked after global declarations
// (functions implemented elsewhere have no body)
if !check.conf.IgnoreFuncBodies && fdecl.Body != nil {
check.later(func() {
check.funcBody(decl, obj.name, sig, fdecl.Body, nil)
})
}
}
func (check *Checker) declStmt(list []syntax.Decl) {
pkg := check.pkg
first := -1 // index of first ConstDecl in the current group, or -1
var last *syntax.ConstDecl // last ConstDecl with init expressions, or nil
for index, decl := range list {
if _, ok := decl.(*syntax.ConstDecl); !ok {
first = -1 // we're not in a constant declaration
}
switch s := decl.(type) {
case *syntax.ConstDecl:
top := len(check.delayed)
// iota is the index of the current constDecl within the group
if first < 0 || list[index-1].(*syntax.ConstDecl).Group != s.Group {
first = index
last = nil
}
iota := constant.MakeInt64(int64(index - first))
// determine which initialization expressions to use
inherited := true
switch {
case s.Type != nil || s.Values != nil:
last = s
inherited = false
case last == nil:
last = new(syntax.ConstDecl) // make sure last exists
inherited = false
}
// declare all constants
lhs := make([]*Const, len(s.NameList))
values := unpackExpr(last.Values)
for i, name := range s.NameList {
obj := NewConst(name.Pos(), pkg, name.Value, nil, iota)
lhs[i] = obj
var init syntax.Expr
if i < len(values) {
init = values[i]
}
check.constDecl(obj, last.Type, init, inherited)
}
// Constants must always have init values.
check.arity(s.Pos(), s.NameList, values, true, inherited)
// process function literals in init expressions before scope changes
check.processDelayed(top)
// spec: "The scope of a constant or variable identifier declared
// inside a function begins at the end of the ConstSpec or VarSpec
// (ShortVarDecl for short variable declarations) and ends at the
// end of the innermost containing block."
scopePos := syntax.EndPos(s)
for i, name := range s.NameList {
check.declare(check.scope, name, lhs[i], scopePos)
}
case *syntax.VarDecl:
top := len(check.delayed)
lhs0 := make([]*Var, len(s.NameList))
for i, name := range s.NameList {
lhs0[i] = NewVar(name.Pos(), pkg, name.Value, nil)
}
// initialize all variables
values := unpackExpr(s.Values)
for i, obj := range lhs0 {
var lhs []*Var
var init syntax.Expr
switch len(values) {
case len(s.NameList):
// lhs and rhs match
init = values[i]
case 1:
// rhs is expected to be a multi-valued expression
lhs = lhs0
init = values[0]
default:
if i < len(values) {
init = values[i]
}
}
check.varDecl(obj, lhs, s.Type, init)
if len(values) == 1 {
// If we have a single lhs variable we are done either way.
// If we have a single rhs expression, it must be a multi-
// valued expression, in which case handling the first lhs
// variable will cause all lhs variables to have a type
// assigned, and we are done as well.
if debug {
for _, obj := range lhs0 {
assert(obj.typ != nil)
}
}
break
}
}
// If we have no type, we must have values.
if s.Type == nil || values != nil {
check.arity(s.Pos(), s.NameList, values, false, false)
}
// process function literals in init expressions before scope changes
check.processDelayed(top)
// declare all variables
// (only at this point are the variable scopes (parents) set)
scopePos := syntax.EndPos(s) // see constant declarations
for i, name := range s.NameList {
// see constant declarations
check.declare(check.scope, name, lhs0[i], scopePos)
}
case *syntax.TypeDecl:
obj := NewTypeName(s.Name.Pos(), pkg, s.Name.Value, nil)
// spec: "The scope of a type identifier declared inside a function
// begins at the identifier in the TypeSpec and ends at the end of
// the innermost containing block."
scopePos := s.Name.Pos()
check.declare(check.scope, s.Name, obj, scopePos)
// mark and unmark type before calling typeDecl; its type is still nil (see Checker.objDecl)
obj.setColor(grey + color(check.push(obj)))
check.typeDecl(obj, s, nil)
check.pop().setColor(black)
default:
check.errorf(s, invalidAST+"unknown syntax.Decl node %T", s)
}
}
}