blob: 68eff97dfae30c6a93f5a583d496062981df40f6 [file] [log] [blame]
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mips64
import (
"math"
"cmd/compile/internal/gc"
"cmd/compile/internal/ssa"
"cmd/compile/internal/types"
"cmd/internal/obj"
"cmd/internal/obj/mips"
)
// isFPreg reports whether r is an FP register
func isFPreg(r int16) bool {
return mips.REG_F0 <= r && r <= mips.REG_F31
}
// isHILO reports whether r is HI or LO register
func isHILO(r int16) bool {
return r == mips.REG_HI || r == mips.REG_LO
}
// loadByType returns the load instruction of the given type.
func loadByType(t *types.Type, r int16) obj.As {
if isFPreg(r) {
if t.Size() == 4 { // float32 or int32
return mips.AMOVF
} else { // float64 or int64
return mips.AMOVD
}
} else {
switch t.Size() {
case 1:
if t.IsSigned() {
return mips.AMOVB
} else {
return mips.AMOVBU
}
case 2:
if t.IsSigned() {
return mips.AMOVH
} else {
return mips.AMOVHU
}
case 4:
if t.IsSigned() {
return mips.AMOVW
} else {
return mips.AMOVWU
}
case 8:
return mips.AMOVV
}
}
panic("bad load type")
}
// storeByType returns the store instruction of the given type.
func storeByType(t *types.Type, r int16) obj.As {
if isFPreg(r) {
if t.Size() == 4 { // float32 or int32
return mips.AMOVF
} else { // float64 or int64
return mips.AMOVD
}
} else {
switch t.Size() {
case 1:
return mips.AMOVB
case 2:
return mips.AMOVH
case 4:
return mips.AMOVW
case 8:
return mips.AMOVV
}
}
panic("bad store type")
}
func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
switch v.Op {
case ssa.OpCopy, ssa.OpMIPS64MOVVreg:
if v.Type.IsMemory() {
return
}
x := v.Args[0].Reg()
y := v.Reg()
if x == y {
return
}
as := mips.AMOVV
if isFPreg(x) && isFPreg(y) {
as = mips.AMOVD
}
p := s.Prog(as)
p.From.Type = obj.TYPE_REG
p.From.Reg = x
p.To.Type = obj.TYPE_REG
p.To.Reg = y
if isHILO(x) && isHILO(y) || isHILO(x) && isFPreg(y) || isFPreg(x) && isHILO(y) {
// cannot move between special registers, use TMP as intermediate
p.To.Reg = mips.REGTMP
p = s.Prog(mips.AMOVV)
p.From.Type = obj.TYPE_REG
p.From.Reg = mips.REGTMP
p.To.Type = obj.TYPE_REG
p.To.Reg = y
}
case ssa.OpMIPS64MOVVnop:
if v.Reg() != v.Args[0].Reg() {
v.Fatalf("input[0] and output not in same register %s", v.LongString())
}
// nothing to do
case ssa.OpLoadReg:
if v.Type.IsFlags() {
v.Fatalf("load flags not implemented: %v", v.LongString())
return
}
r := v.Reg()
p := s.Prog(loadByType(v.Type, r))
gc.AddrAuto(&p.From, v.Args[0])
p.To.Type = obj.TYPE_REG
p.To.Reg = r
if isHILO(r) {
// cannot directly load, load to TMP and move
p.To.Reg = mips.REGTMP
p = s.Prog(mips.AMOVV)
p.From.Type = obj.TYPE_REG
p.From.Reg = mips.REGTMP
p.To.Type = obj.TYPE_REG
p.To.Reg = r
}
case ssa.OpStoreReg:
if v.Type.IsFlags() {
v.Fatalf("store flags not implemented: %v", v.LongString())
return
}
r := v.Args[0].Reg()
if isHILO(r) {
// cannot directly store, move to TMP and store
p := s.Prog(mips.AMOVV)
p.From.Type = obj.TYPE_REG
p.From.Reg = r
p.To.Type = obj.TYPE_REG
p.To.Reg = mips.REGTMP
r = mips.REGTMP
}
p := s.Prog(storeByType(v.Type, r))
p.From.Type = obj.TYPE_REG
p.From.Reg = r
gc.AddrAuto(&p.To, v)
case ssa.OpMIPS64ADDV,
ssa.OpMIPS64SUBV,
ssa.OpMIPS64AND,
ssa.OpMIPS64OR,
ssa.OpMIPS64XOR,
ssa.OpMIPS64NOR,
ssa.OpMIPS64SLLV,
ssa.OpMIPS64SRLV,
ssa.OpMIPS64SRAV,
ssa.OpMIPS64ADDF,
ssa.OpMIPS64ADDD,
ssa.OpMIPS64SUBF,
ssa.OpMIPS64SUBD,
ssa.OpMIPS64MULF,
ssa.OpMIPS64MULD,
ssa.OpMIPS64DIVF,
ssa.OpMIPS64DIVD:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[1].Reg()
p.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpMIPS64SGT,
ssa.OpMIPS64SGTU:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
p.Reg = v.Args[1].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpMIPS64ADDVconst,
ssa.OpMIPS64SUBVconst,
ssa.OpMIPS64ANDconst,
ssa.OpMIPS64ORconst,
ssa.OpMIPS64XORconst,
ssa.OpMIPS64NORconst,
ssa.OpMIPS64SLLVconst,
ssa.OpMIPS64SRLVconst,
ssa.OpMIPS64SRAVconst,
ssa.OpMIPS64SGTconst,
ssa.OpMIPS64SGTUconst:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpMIPS64MULV,
ssa.OpMIPS64MULVU,
ssa.OpMIPS64DIVV,
ssa.OpMIPS64DIVVU:
// result in hi,lo
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[1].Reg()
p.Reg = v.Args[0].Reg()
case ssa.OpMIPS64MOVVconst:
r := v.Reg()
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = r
if isFPreg(r) || isHILO(r) {
// cannot move into FP or special registers, use TMP as intermediate
p.To.Reg = mips.REGTMP
p = s.Prog(mips.AMOVV)
p.From.Type = obj.TYPE_REG
p.From.Reg = mips.REGTMP
p.To.Type = obj.TYPE_REG
p.To.Reg = r
}
case ssa.OpMIPS64MOVFconst,
ssa.OpMIPS64MOVDconst:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_FCONST
p.From.Val = math.Float64frombits(uint64(v.AuxInt))
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpMIPS64CMPEQF,
ssa.OpMIPS64CMPEQD,
ssa.OpMIPS64CMPGEF,
ssa.OpMIPS64CMPGED,
ssa.OpMIPS64CMPGTF,
ssa.OpMIPS64CMPGTD:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
p.Reg = v.Args[1].Reg()
case ssa.OpMIPS64MOVVaddr:
p := s.Prog(mips.AMOVV)
p.From.Type = obj.TYPE_ADDR
p.From.Reg = v.Args[0].Reg()
var wantreg string
// MOVV $sym+off(base), R
// the assembler expands it as the following:
// - base is SP: add constant offset to SP (R29)
// when constant is large, tmp register (R23) may be used
// - base is SB: load external address with relocation
switch v.Aux.(type) {
default:
v.Fatalf("aux is of unknown type %T", v.Aux)
case *obj.LSym:
wantreg = "SB"
gc.AddAux(&p.From, v)
case *gc.Node:
wantreg = "SP"
gc.AddAux(&p.From, v)
case nil:
// No sym, just MOVV $off(SP), R
wantreg = "SP"
p.From.Offset = v.AuxInt
}
if reg := v.Args[0].RegName(); reg != wantreg {
v.Fatalf("bad reg %s for symbol type %T, want %s", reg, v.Aux, wantreg)
}
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpMIPS64MOVBload,
ssa.OpMIPS64MOVBUload,
ssa.OpMIPS64MOVHload,
ssa.OpMIPS64MOVHUload,
ssa.OpMIPS64MOVWload,
ssa.OpMIPS64MOVWUload,
ssa.OpMIPS64MOVVload,
ssa.OpMIPS64MOVFload,
ssa.OpMIPS64MOVDload:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpMIPS64MOVBstore,
ssa.OpMIPS64MOVHstore,
ssa.OpMIPS64MOVWstore,
ssa.OpMIPS64MOVVstore,
ssa.OpMIPS64MOVFstore,
ssa.OpMIPS64MOVDstore:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[1].Reg()
p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg()
gc.AddAux(&p.To, v)
case ssa.OpMIPS64MOVBstorezero,
ssa.OpMIPS64MOVHstorezero,
ssa.OpMIPS64MOVWstorezero,
ssa.OpMIPS64MOVVstorezero:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = mips.REGZERO
p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg()
gc.AddAux(&p.To, v)
case ssa.OpMIPS64MOVBreg,
ssa.OpMIPS64MOVBUreg,
ssa.OpMIPS64MOVHreg,
ssa.OpMIPS64MOVHUreg,
ssa.OpMIPS64MOVWreg,
ssa.OpMIPS64MOVWUreg:
a := v.Args[0]
for a.Op == ssa.OpCopy || a.Op == ssa.OpMIPS64MOVVreg {
a = a.Args[0]
}
if a.Op == ssa.OpLoadReg {
t := a.Type
switch {
case v.Op == ssa.OpMIPS64MOVBreg && t.Size() == 1 && t.IsSigned(),
v.Op == ssa.OpMIPS64MOVBUreg && t.Size() == 1 && !t.IsSigned(),
v.Op == ssa.OpMIPS64MOVHreg && t.Size() == 2 && t.IsSigned(),
v.Op == ssa.OpMIPS64MOVHUreg && t.Size() == 2 && !t.IsSigned(),
v.Op == ssa.OpMIPS64MOVWreg && t.Size() == 4 && t.IsSigned(),
v.Op == ssa.OpMIPS64MOVWUreg && t.Size() == 4 && !t.IsSigned():
// arg is a proper-typed load, already zero/sign-extended, don't extend again
if v.Reg() == v.Args[0].Reg() {
return
}
p := s.Prog(mips.AMOVV)
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
return
default:
}
}
fallthrough
case ssa.OpMIPS64MOVWF,
ssa.OpMIPS64MOVWD,
ssa.OpMIPS64TRUNCFW,
ssa.OpMIPS64TRUNCDW,
ssa.OpMIPS64MOVVF,
ssa.OpMIPS64MOVVD,
ssa.OpMIPS64TRUNCFV,
ssa.OpMIPS64TRUNCDV,
ssa.OpMIPS64MOVFD,
ssa.OpMIPS64MOVDF,
ssa.OpMIPS64NEGF,
ssa.OpMIPS64NEGD,
ssa.OpMIPS64SQRTD:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpMIPS64NEGV:
// SUB from REGZERO
p := s.Prog(mips.ASUBVU)
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
p.Reg = mips.REGZERO
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpMIPS64DUFFZERO:
// runtime.duffzero expects start address - 8 in R1
p := s.Prog(mips.ASUBVU)
p.From.Type = obj.TYPE_CONST
p.From.Offset = 8
p.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = mips.REG_R1
p = s.Prog(obj.ADUFFZERO)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = gc.Duffzero
p.To.Offset = v.AuxInt
case ssa.OpMIPS64LoweredZero:
// SUBV $8, R1
// MOVV R0, 8(R1)
// ADDV $8, R1
// BNE Rarg1, R1, -2(PC)
// arg1 is the address of the last element to zero
var sz int64
var mov obj.As
switch {
case v.AuxInt%8 == 0:
sz = 8
mov = mips.AMOVV
case v.AuxInt%4 == 0:
sz = 4
mov = mips.AMOVW
case v.AuxInt%2 == 0:
sz = 2
mov = mips.AMOVH
default:
sz = 1
mov = mips.AMOVB
}
p := s.Prog(mips.ASUBVU)
p.From.Type = obj.TYPE_CONST
p.From.Offset = sz
p.To.Type = obj.TYPE_REG
p.To.Reg = mips.REG_R1
p2 := s.Prog(mov)
p2.From.Type = obj.TYPE_REG
p2.From.Reg = mips.REGZERO
p2.To.Type = obj.TYPE_MEM
p2.To.Reg = mips.REG_R1
p2.To.Offset = sz
p3 := s.Prog(mips.AADDVU)
p3.From.Type = obj.TYPE_CONST
p3.From.Offset = sz
p3.To.Type = obj.TYPE_REG
p3.To.Reg = mips.REG_R1
p4 := s.Prog(mips.ABNE)
p4.From.Type = obj.TYPE_REG
p4.From.Reg = v.Args[1].Reg()
p4.Reg = mips.REG_R1
p4.To.Type = obj.TYPE_BRANCH
gc.Patch(p4, p2)
case ssa.OpMIPS64LoweredMove:
// SUBV $8, R1
// MOVV 8(R1), Rtmp
// MOVV Rtmp, (R2)
// ADDV $8, R1
// ADDV $8, R2
// BNE Rarg2, R1, -4(PC)
// arg2 is the address of the last element of src
var sz int64
var mov obj.As
switch {
case v.AuxInt%8 == 0:
sz = 8
mov = mips.AMOVV
case v.AuxInt%4 == 0:
sz = 4
mov = mips.AMOVW
case v.AuxInt%2 == 0:
sz = 2
mov = mips.AMOVH
default:
sz = 1
mov = mips.AMOVB
}
p := s.Prog(mips.ASUBVU)
p.From.Type = obj.TYPE_CONST
p.From.Offset = sz
p.To.Type = obj.TYPE_REG
p.To.Reg = mips.REG_R1
p2 := s.Prog(mov)
p2.From.Type = obj.TYPE_MEM
p2.From.Reg = mips.REG_R1
p2.From.Offset = sz
p2.To.Type = obj.TYPE_REG
p2.To.Reg = mips.REGTMP
p3 := s.Prog(mov)
p3.From.Type = obj.TYPE_REG
p3.From.Reg = mips.REGTMP
p3.To.Type = obj.TYPE_MEM
p3.To.Reg = mips.REG_R2
p4 := s.Prog(mips.AADDVU)
p4.From.Type = obj.TYPE_CONST
p4.From.Offset = sz
p4.To.Type = obj.TYPE_REG
p4.To.Reg = mips.REG_R1
p5 := s.Prog(mips.AADDVU)
p5.From.Type = obj.TYPE_CONST
p5.From.Offset = sz
p5.To.Type = obj.TYPE_REG
p5.To.Reg = mips.REG_R2
p6 := s.Prog(mips.ABNE)
p6.From.Type = obj.TYPE_REG
p6.From.Reg = v.Args[2].Reg()
p6.Reg = mips.REG_R1
p6.To.Type = obj.TYPE_BRANCH
gc.Patch(p6, p2)
case ssa.OpMIPS64CALLstatic, ssa.OpMIPS64CALLclosure, ssa.OpMIPS64CALLinter:
s.Call(v)
case ssa.OpMIPS64LoweredWB:
p := s.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = v.Aux.(*obj.LSym)
case ssa.OpMIPS64LoweredPanicBoundsA, ssa.OpMIPS64LoweredPanicBoundsB, ssa.OpMIPS64LoweredPanicBoundsC:
p := s.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = gc.BoundsCheckFunc[v.AuxInt]
s.UseArgs(16) // space used in callee args area by assembly stubs
case ssa.OpMIPS64LoweredAtomicLoad8, ssa.OpMIPS64LoweredAtomicLoad32, ssa.OpMIPS64LoweredAtomicLoad64:
as := mips.AMOVV
switch v.Op {
case ssa.OpMIPS64LoweredAtomicLoad8:
as = mips.AMOVB
case ssa.OpMIPS64LoweredAtomicLoad32:
as = mips.AMOVW
}
s.Prog(mips.ASYNC)
p := s.Prog(as)
p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg0()
s.Prog(mips.ASYNC)
case ssa.OpMIPS64LoweredAtomicStore32, ssa.OpMIPS64LoweredAtomicStore64:
as := mips.AMOVV
if v.Op == ssa.OpMIPS64LoweredAtomicStore32 {
as = mips.AMOVW
}
s.Prog(mips.ASYNC)
p := s.Prog(as)
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[1].Reg()
p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg()
s.Prog(mips.ASYNC)
case ssa.OpMIPS64LoweredAtomicStorezero32, ssa.OpMIPS64LoweredAtomicStorezero64:
as := mips.AMOVV
if v.Op == ssa.OpMIPS64LoweredAtomicStorezero32 {
as = mips.AMOVW
}
s.Prog(mips.ASYNC)
p := s.Prog(as)
p.From.Type = obj.TYPE_REG
p.From.Reg = mips.REGZERO
p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg()
s.Prog(mips.ASYNC)
case ssa.OpMIPS64LoweredAtomicExchange32, ssa.OpMIPS64LoweredAtomicExchange64:
// SYNC
// MOVV Rarg1, Rtmp
// LL (Rarg0), Rout
// SC Rtmp, (Rarg0)
// BEQ Rtmp, -3(PC)
// SYNC
ll := mips.ALLV
sc := mips.ASCV
if v.Op == ssa.OpMIPS64LoweredAtomicExchange32 {
ll = mips.ALL
sc = mips.ASC
}
s.Prog(mips.ASYNC)
p := s.Prog(mips.AMOVV)
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[1].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = mips.REGTMP
p1 := s.Prog(ll)
p1.From.Type = obj.TYPE_MEM
p1.From.Reg = v.Args[0].Reg()
p1.To.Type = obj.TYPE_REG
p1.To.Reg = v.Reg0()
p2 := s.Prog(sc)
p2.From.Type = obj.TYPE_REG
p2.From.Reg = mips.REGTMP
p2.To.Type = obj.TYPE_MEM
p2.To.Reg = v.Args[0].Reg()
p3 := s.Prog(mips.ABEQ)
p3.From.Type = obj.TYPE_REG
p3.From.Reg = mips.REGTMP
p3.To.Type = obj.TYPE_BRANCH
gc.Patch(p3, p)
s.Prog(mips.ASYNC)
case ssa.OpMIPS64LoweredAtomicAdd32, ssa.OpMIPS64LoweredAtomicAdd64:
// SYNC
// LL (Rarg0), Rout
// ADDV Rarg1, Rout, Rtmp
// SC Rtmp, (Rarg0)
// BEQ Rtmp, -3(PC)
// SYNC
// ADDV Rarg1, Rout
ll := mips.ALLV
sc := mips.ASCV
if v.Op == ssa.OpMIPS64LoweredAtomicAdd32 {
ll = mips.ALL
sc = mips.ASC
}
s.Prog(mips.ASYNC)
p := s.Prog(ll)
p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg0()
p1 := s.Prog(mips.AADDVU)
p1.From.Type = obj.TYPE_REG
p1.From.Reg = v.Args[1].Reg()
p1.Reg = v.Reg0()
p1.To.Type = obj.TYPE_REG
p1.To.Reg = mips.REGTMP
p2 := s.Prog(sc)
p2.From.Type = obj.TYPE_REG
p2.From.Reg = mips.REGTMP
p2.To.Type = obj.TYPE_MEM
p2.To.Reg = v.Args[0].Reg()
p3 := s.Prog(mips.ABEQ)
p3.From.Type = obj.TYPE_REG
p3.From.Reg = mips.REGTMP
p3.To.Type = obj.TYPE_BRANCH
gc.Patch(p3, p)
s.Prog(mips.ASYNC)
p4 := s.Prog(mips.AADDVU)
p4.From.Type = obj.TYPE_REG
p4.From.Reg = v.Args[1].Reg()
p4.Reg = v.Reg0()
p4.To.Type = obj.TYPE_REG
p4.To.Reg = v.Reg0()
case ssa.OpMIPS64LoweredAtomicAddconst32, ssa.OpMIPS64LoweredAtomicAddconst64:
// SYNC
// LL (Rarg0), Rout
// ADDV $auxint, Rout, Rtmp
// SC Rtmp, (Rarg0)
// BEQ Rtmp, -3(PC)
// SYNC
// ADDV $auxint, Rout
ll := mips.ALLV
sc := mips.ASCV
if v.Op == ssa.OpMIPS64LoweredAtomicAddconst32 {
ll = mips.ALL
sc = mips.ASC
}
s.Prog(mips.ASYNC)
p := s.Prog(ll)
p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg0()
p1 := s.Prog(mips.AADDVU)
p1.From.Type = obj.TYPE_CONST
p1.From.Offset = v.AuxInt
p1.Reg = v.Reg0()
p1.To.Type = obj.TYPE_REG
p1.To.Reg = mips.REGTMP
p2 := s.Prog(sc)
p2.From.Type = obj.TYPE_REG
p2.From.Reg = mips.REGTMP
p2.To.Type = obj.TYPE_MEM
p2.To.Reg = v.Args[0].Reg()
p3 := s.Prog(mips.ABEQ)
p3.From.Type = obj.TYPE_REG
p3.From.Reg = mips.REGTMP
p3.To.Type = obj.TYPE_BRANCH
gc.Patch(p3, p)
s.Prog(mips.ASYNC)
p4 := s.Prog(mips.AADDVU)
p4.From.Type = obj.TYPE_CONST
p4.From.Offset = v.AuxInt
p4.Reg = v.Reg0()
p4.To.Type = obj.TYPE_REG
p4.To.Reg = v.Reg0()
case ssa.OpMIPS64LoweredAtomicCas32, ssa.OpMIPS64LoweredAtomicCas64:
// MOVV $0, Rout
// SYNC
// LL (Rarg0), Rtmp
// BNE Rtmp, Rarg1, 4(PC)
// MOVV Rarg2, Rout
// SC Rout, (Rarg0)
// BEQ Rout, -4(PC)
// SYNC
ll := mips.ALLV
sc := mips.ASCV
if v.Op == ssa.OpMIPS64LoweredAtomicCas32 {
ll = mips.ALL
sc = mips.ASC
}
p := s.Prog(mips.AMOVV)
p.From.Type = obj.TYPE_REG
p.From.Reg = mips.REGZERO
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg0()
s.Prog(mips.ASYNC)
p1 := s.Prog(ll)
p1.From.Type = obj.TYPE_MEM
p1.From.Reg = v.Args[0].Reg()
p1.To.Type = obj.TYPE_REG
p1.To.Reg = mips.REGTMP
p2 := s.Prog(mips.ABNE)
p2.From.Type = obj.TYPE_REG
p2.From.Reg = v.Args[1].Reg()
p2.Reg = mips.REGTMP
p2.To.Type = obj.TYPE_BRANCH
p3 := s.Prog(mips.AMOVV)
p3.From.Type = obj.TYPE_REG
p3.From.Reg = v.Args[2].Reg()
p3.To.Type = obj.TYPE_REG
p3.To.Reg = v.Reg0()
p4 := s.Prog(sc)
p4.From.Type = obj.TYPE_REG
p4.From.Reg = v.Reg0()
p4.To.Type = obj.TYPE_MEM
p4.To.Reg = v.Args[0].Reg()
p5 := s.Prog(mips.ABEQ)
p5.From.Type = obj.TYPE_REG
p5.From.Reg = v.Reg0()
p5.To.Type = obj.TYPE_BRANCH
gc.Patch(p5, p1)
p6 := s.Prog(mips.ASYNC)
gc.Patch(p2, p6)
case ssa.OpMIPS64LoweredNilCheck:
// Issue a load which will fault if arg is nil.
p := s.Prog(mips.AMOVB)
p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG
p.To.Reg = mips.REGTMP
if gc.Debug_checknil != 0 && v.Pos.Line() > 1 { // v.Pos.Line()==1 in generated wrappers
gc.Warnl(v.Pos, "generated nil check")
}
case ssa.OpMIPS64FPFlagTrue,
ssa.OpMIPS64FPFlagFalse:
// MOVV $0, r
// BFPF 2(PC)
// MOVV $1, r
branch := mips.ABFPF
if v.Op == ssa.OpMIPS64FPFlagFalse {
branch = mips.ABFPT
}
p := s.Prog(mips.AMOVV)
p.From.Type = obj.TYPE_REG
p.From.Reg = mips.REGZERO
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
p2 := s.Prog(branch)
p2.To.Type = obj.TYPE_BRANCH
p3 := s.Prog(mips.AMOVV)
p3.From.Type = obj.TYPE_CONST
p3.From.Offset = 1
p3.To.Type = obj.TYPE_REG
p3.To.Reg = v.Reg()
p4 := s.Prog(obj.ANOP) // not a machine instruction, for branch to land
gc.Patch(p2, p4)
case ssa.OpMIPS64LoweredGetClosurePtr:
// Closure pointer is R22 (mips.REGCTXT).
gc.CheckLoweredGetClosurePtr(v)
case ssa.OpMIPS64LoweredGetCallerSP:
// caller's SP is FixedFrameSize below the address of the first arg
p := s.Prog(mips.AMOVV)
p.From.Type = obj.TYPE_ADDR
p.From.Offset = -gc.Ctxt.FixedFrameSize()
p.From.Name = obj.NAME_PARAM
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpMIPS64LoweredGetCallerPC:
p := s.Prog(obj.AGETCALLERPC)
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpClobber:
// TODO: implement for clobberdead experiment. Nop is ok for now.
default:
v.Fatalf("genValue not implemented: %s", v.LongString())
}
}
var blockJump = map[ssa.BlockKind]struct {
asm, invasm obj.As
}{
ssa.BlockMIPS64EQ: {mips.ABEQ, mips.ABNE},
ssa.BlockMIPS64NE: {mips.ABNE, mips.ABEQ},
ssa.BlockMIPS64LTZ: {mips.ABLTZ, mips.ABGEZ},
ssa.BlockMIPS64GEZ: {mips.ABGEZ, mips.ABLTZ},
ssa.BlockMIPS64LEZ: {mips.ABLEZ, mips.ABGTZ},
ssa.BlockMIPS64GTZ: {mips.ABGTZ, mips.ABLEZ},
ssa.BlockMIPS64FPT: {mips.ABFPT, mips.ABFPF},
ssa.BlockMIPS64FPF: {mips.ABFPF, mips.ABFPT},
}
func ssaGenBlock(s *gc.SSAGenState, b, next *ssa.Block) {
switch b.Kind {
case ssa.BlockPlain:
if b.Succs[0].Block() != next {
p := s.Prog(obj.AJMP)
p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()})
}
case ssa.BlockDefer:
// defer returns in R1:
// 0 if we should continue executing
// 1 if we should jump to deferreturn call
p := s.Prog(mips.ABNE)
p.From.Type = obj.TYPE_REG
p.From.Reg = mips.REGZERO
p.Reg = mips.REG_R1
p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[1].Block()})
if b.Succs[0].Block() != next {
p := s.Prog(obj.AJMP)
p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()})
}
case ssa.BlockExit:
case ssa.BlockRet:
s.Prog(obj.ARET)
case ssa.BlockRetJmp:
p := s.Prog(obj.ARET)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = b.Aux.(*obj.LSym)
case ssa.BlockMIPS64EQ, ssa.BlockMIPS64NE,
ssa.BlockMIPS64LTZ, ssa.BlockMIPS64GEZ,
ssa.BlockMIPS64LEZ, ssa.BlockMIPS64GTZ,
ssa.BlockMIPS64FPT, ssa.BlockMIPS64FPF:
jmp := blockJump[b.Kind]
var p *obj.Prog
switch next {
case b.Succs[0].Block():
p = s.Br(jmp.invasm, b.Succs[1].Block())
case b.Succs[1].Block():
p = s.Br(jmp.asm, b.Succs[0].Block())
default:
if b.Likely != ssa.BranchUnlikely {
p = s.Br(jmp.asm, b.Succs[0].Block())
s.Br(obj.AJMP, b.Succs[1].Block())
} else {
p = s.Br(jmp.invasm, b.Succs[1].Block())
s.Br(obj.AJMP, b.Succs[0].Block())
}
}
if !b.Control.Type.IsFlags() {
p.From.Type = obj.TYPE_REG
p.From.Reg = b.Control.Reg()
}
default:
b.Fatalf("branch not implemented: %s. Control: %s", b.LongString(), b.Control.LongString())
}
}