blob: 45e15bb9b7c92114c117994a3c5e23bec8f9482f [file] [log] [blame]
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//
// The inlining facility makes 2 passes: first caninl determines which
// functions are suitable for inlining, and for those that are it
// saves a copy of the body. Then inlcalls walks each function body to
// expand calls to inlinable functions.
//
// The debug['l'] flag controls the agressiveness. Note that main() swaps level 0 and 1,
// making 1 the default and -l disable. -ll and more is useful to flush out bugs.
// These additional levels (beyond -l) may be buggy and are not supported.
// 0: disabled
// 1: 40-nodes leaf functions, oneliners, lazy typechecking (default)
// 2: early typechecking of all imported bodies
// 3: allow variadic functions
// 4: allow non-leaf functions , (breaks runtime.Caller)
// 5: transitive inlining
//
// At some point this may get another default and become switch-offable with -N.
//
// The debug['m'] flag enables diagnostic output. a single -m is useful for verifying
// which calls get inlined or not, more is for debugging, and may go away at any point.
//
// TODO:
// - inline functions with ... args
// - handle T.meth(f()) with func f() (t T, arg, arg, )
#include <u.h>
#include <libc.h>
#include "go.h"
// Used by caninl.
static Node* inlcopy(Node *n);
static NodeList* inlcopylist(NodeList *ll);
static int ishairy(Node *n, int *budget);
static int ishairylist(NodeList *ll, int *budget);
// Used by inlcalls
static void inlnodelist(NodeList *l);
static void inlnode(Node **np);
static void mkinlcall(Node **np, Node *fn, int isddd);
static Node* inlvar(Node *n);
static Node* retvar(Type *n, int i);
static Node* argvar(Type *n, int i);
static Node* newlabel(void);
static Node* inlsubst(Node *n);
static NodeList* inlsubstlist(NodeList *l);
static void setlno(Node*, int);
// Used during inlsubst[list]
static Node *inlfn; // function currently being inlined
static Node *inlretlabel; // target of the goto substituted in place of a return
static NodeList *inlretvars; // temp out variables
// Get the function's package. For ordinary functions it's on the ->sym, but for imported methods
// the ->sym can be re-used in the local package, so peel it off the receiver's type.
static Pkg*
fnpkg(Node *fn)
{
Type *rcvr;
if(fn->type->thistuple) {
// method
rcvr = getthisx(fn->type)->type->type;
if(isptr[rcvr->etype])
rcvr = rcvr->type;
if(!rcvr->sym)
fatal("receiver with no sym: [%S] %lN (%T)", fn->sym, fn, rcvr);
return rcvr->sym->pkg;
}
// non-method
return fn->sym->pkg;
}
// Lazy typechecking of imported bodies. For local functions, caninl will set ->typecheck
// because they're a copy of an already checked body.
void
typecheckinl(Node *fn)
{
Node *savefn;
Pkg *pkg;
int save_safemode, lno;
lno = setlineno(fn);
// typecheckinl is only for imported functions;
// their bodies may refer to unsafe as long as the package
// was marked safe during import (which was checked then).
// the ->inl of a local function has been typechecked before caninl copied it.
pkg = fnpkg(fn);
if (pkg == localpkg || pkg == nil)
return; // typecheckinl on local function
if (debug['m']>2)
print("typecheck import [%S] %lN { %#H }\n", fn->sym, fn, fn->inl);
save_safemode = safemode;
safemode = 0;
savefn = curfn;
curfn = fn;
typechecklist(fn->inl, Etop);
curfn = savefn;
safemode = save_safemode;
lineno = lno;
}
// Caninl determines whether fn is inlineable.
// If so, caninl saves fn->nbody in fn->inl and substitutes it with a copy.
// fn and ->nbody will already have been typechecked.
void
caninl(Node *fn)
{
Node *savefn;
Type *t;
int budget;
if(fn->op != ODCLFUNC)
fatal("caninl %N", fn);
if(!fn->nname)
fatal("caninl no nname %+N", fn);
// If fn has no body (is defined outside of Go), cannot inline it.
if(fn->nbody == nil)
return;
if(fn->typecheck == 0)
fatal("caninl on non-typechecked function %N", fn);
// can't handle ... args yet
if(debug['l'] < 3)
for(t=fn->type->type->down->down->type; t; t=t->down)
if(t->isddd)
return;
budget = 40; // allowed hairyness
if(ishairylist(fn->nbody, &budget))
return;
savefn = curfn;
curfn = fn;
fn->nname->inl = fn->nbody;
fn->nbody = inlcopylist(fn->nname->inl);
fn->nname->inldcl = inlcopylist(fn->nname->defn->dcl);
// hack, TODO, check for better way to link method nodes back to the thing with the ->inl
// this is so export can find the body of a method
fn->type->nname = fn->nname;
if(debug['m'] > 1)
print("%L: can inline %#N as: %#T { %#H }\n", fn->lineno, fn->nname, fn->type, fn->nname->inl);
else if(debug['m'])
print("%L: can inline %N\n", fn->lineno, fn->nname);
curfn = savefn;
}
// Look for anything we want to punt on.
static int
ishairylist(NodeList *ll, int* budget)
{
for(;ll;ll=ll->next)
if(ishairy(ll->n, budget))
return 1;
return 0;
}
static int
ishairy(Node *n, int *budget)
{
if(!n)
return 0;
// Things that are too hairy, irrespective of the budget
switch(n->op) {
case OCALL:
case OCALLFUNC:
case OCALLINTER:
case OCALLMETH:
case OPANIC:
case ORECOVER:
if(debug['l'] < 4)
return 1;
break;
case OCLOSURE:
case OCALLPART:
case ORANGE:
case OFOR:
case OSELECT:
case OSWITCH:
case OPROC:
case ODEFER:
case ODCLTYPE: // can't print yet
case ODCLCONST: // can't print yet
case ORETJMP:
return 1;
break;
}
(*budget)--;
return *budget < 0 ||
ishairy(n->left, budget) ||
ishairy(n->right, budget) ||
ishairylist(n->list, budget) ||
ishairylist(n->rlist, budget) ||
ishairylist(n->ninit, budget) ||
ishairy(n->ntest, budget) ||
ishairy(n->nincr, budget) ||
ishairylist(n->nbody, budget) ||
ishairylist(n->nelse, budget);
}
// Inlcopy and inlcopylist recursively copy the body of a function.
// Any name-like node of non-local class is marked for re-export by adding it to
// the exportlist.
static NodeList*
inlcopylist(NodeList *ll)
{
NodeList *l;
l = nil;
for(; ll; ll=ll->next)
l = list(l, inlcopy(ll->n));
return l;
}
static Node*
inlcopy(Node *n)
{
Node *m;
if(n == N)
return N;
switch(n->op) {
case ONAME:
case OTYPE:
case OLITERAL:
return n;
}
m = nod(OXXX, N, N);
*m = *n;
m->inl = nil;
m->left = inlcopy(n->left);
m->right = inlcopy(n->right);
m->list = inlcopylist(n->list);
m->rlist = inlcopylist(n->rlist);
m->ninit = inlcopylist(n->ninit);
m->ntest = inlcopy(n->ntest);
m->nincr = inlcopy(n->nincr);
m->nbody = inlcopylist(n->nbody);
m->nelse = inlcopylist(n->nelse);
return m;
}
// Inlcalls/nodelist/node walks fn's statements and expressions and substitutes any
// calls made to inlineable functions. This is the external entry point.
void
inlcalls(Node *fn)
{
Node *savefn;
savefn = curfn;
curfn = fn;
inlnode(&fn);
if(fn != curfn)
fatal("inlnode replaced curfn");
curfn = savefn;
}
// Turn an OINLCALL into a statement.
static void
inlconv2stmt(Node *n)
{
n->op = OBLOCK;
// n->ninit stays
n->list = n->nbody;
n->nbody = nil;
n->rlist = nil;
}
// Turn an OINLCALL into a single valued expression.
static void
inlconv2expr(Node **np)
{
Node *n, *r;
n = *np;
r = n->rlist->n;
addinit(&r, concat(n->ninit, n->nbody));
*np = r;
}
// Turn the rlist (with the return values) of the OINLCALL in
// n into an expression list lumping the ninit and body
// containing the inlined statements on the first list element so
// order will be preserved Used in return, oas2func and call
// statements.
static NodeList*
inlconv2list(Node *n)
{
NodeList *l;
if(n->op != OINLCALL || n->rlist == nil)
fatal("inlconv2list %+N\n", n);
l = n->rlist;
addinit(&l->n, concat(n->ninit, n->nbody));
return l;
}
static void
inlnodelist(NodeList *l)
{
for(; l; l=l->next)
inlnode(&l->n);
}
// inlnode recurses over the tree to find inlineable calls, which will
// be turned into OINLCALLs by mkinlcall. When the recursion comes
// back up will examine left, right, list, rlist, ninit, ntest, nincr,
// nbody and nelse and use one of the 4 inlconv/glue functions above
// to turn the OINLCALL into an expression, a statement, or patch it
// in to this nodes list or rlist as appropriate.
// NOTE it makes no sense to pass the glue functions down the
// recursion to the level where the OINLCALL gets created because they
// have to edit /this/ n, so you'd have to push that one down as well,
// but then you may as well do it here. so this is cleaner and
// shorter and less complicated.
static void
inlnode(Node **np)
{
Node *n;
NodeList *l;
int lno;
if(*np == nil)
return;
n = *np;
switch(n->op) {
case ODEFER:
case OPROC:
// inhibit inlining of their argument
switch(n->left->op) {
case OCALLFUNC:
case OCALLMETH:
n->left->etype = n->op;
}
case OCLOSURE:
// TODO do them here (or earlier),
// so escape analysis can avoid more heapmoves.
return;
}
lno = setlineno(n);
inlnodelist(n->ninit);
for(l=n->ninit; l; l=l->next)
if(l->n->op == OINLCALL)
inlconv2stmt(l->n);
inlnode(&n->left);
if(n->left && n->left->op == OINLCALL)
inlconv2expr(&n->left);
inlnode(&n->right);
if(n->right && n->right->op == OINLCALL)
inlconv2expr(&n->right);
inlnodelist(n->list);
switch(n->op) {
case OBLOCK:
for(l=n->list; l; l=l->next)
if(l->n->op == OINLCALL)
inlconv2stmt(l->n);
break;
case ORETURN:
case OCALLFUNC:
case OCALLMETH:
case OCALLINTER:
case OAPPEND:
case OCOMPLEX:
// if we just replaced arg in f(arg()) or return arg with an inlined call
// and arg returns multiple values, glue as list
if(count(n->list) == 1 && n->list->n->op == OINLCALL && count(n->list->n->rlist) > 1) {
n->list = inlconv2list(n->list->n);
break;
}
// fallthrough
default:
for(l=n->list; l; l=l->next)
if(l->n->op == OINLCALL)
inlconv2expr(&l->n);
}
inlnodelist(n->rlist);
switch(n->op) {
case OAS2FUNC:
if(n->rlist->n->op == OINLCALL) {
n->rlist = inlconv2list(n->rlist->n);
n->op = OAS2;
n->typecheck = 0;
typecheck(np, Etop);
break;
}
// fallthrough
default:
for(l=n->rlist; l; l=l->next)
if(l->n->op == OINLCALL)
inlconv2expr(&l->n);
}
inlnode(&n->ntest);
if(n->ntest && n->ntest->op == OINLCALL)
inlconv2expr(&n->ntest);
inlnode(&n->nincr);
if(n->nincr && n->nincr->op == OINLCALL)
inlconv2stmt(n->nincr);
inlnodelist(n->nbody);
for(l=n->nbody; l; l=l->next)
if(l->n->op == OINLCALL)
inlconv2stmt(l->n);
inlnodelist(n->nelse);
for(l=n->nelse; l; l=l->next)
if(l->n->op == OINLCALL)
inlconv2stmt(l->n);
// with all the branches out of the way, it is now time to
// transmogrify this node itself unless inhibited by the
// switch at the top of this function.
switch(n->op) {
case OCALLFUNC:
case OCALLMETH:
if (n->etype == OPROC || n->etype == ODEFER)
return;
}
switch(n->op) {
case OCALLFUNC:
if(debug['m']>3)
print("%L:call to func %+N\n", n->lineno, n->left);
if(n->left->inl) // normal case
mkinlcall(np, n->left, n->isddd);
else if(n->left->op == ONAME && n->left->left && n->left->left->op == OTYPE && n->left->right && n->left->right->op == ONAME) // methods called as functions
if(n->left->sym->def)
mkinlcall(np, n->left->sym->def, n->isddd);
break;
case OCALLMETH:
if(debug['m']>3)
print("%L:call to meth %lN\n", n->lineno, n->left->right);
// typecheck should have resolved ODOTMETH->type, whose nname points to the actual function.
if(n->left->type == T)
fatal("no function type for [%p] %+N\n", n->left, n->left);
if(n->left->type->nname == N)
fatal("no function definition for [%p] %+T\n", n->left->type, n->left->type);
mkinlcall(np, n->left->type->nname, n->isddd);
break;
}
lineno = lno;
}
static void mkinlcall1(Node **np, Node *fn, int isddd);
static void
mkinlcall(Node **np, Node *fn, int isddd)
{
int save_safemode;
Pkg *pkg;
save_safemode = safemode;
// imported functions may refer to unsafe as long as the
// package was marked safe during import (already checked).
pkg = fnpkg(fn);
if(pkg != localpkg && pkg != nil)
safemode = 0;
mkinlcall1(np, fn, isddd);
safemode = save_safemode;
}
static Node*
tinlvar(Type *t)
{
if(t->nname && !isblank(t->nname)) {
if(!t->nname->inlvar)
fatal("missing inlvar for %N\n", t->nname);
return t->nname->inlvar;
}
typecheck(&nblank, Erv | Easgn);
return nblank;
}
static int inlgen;
// if *np is a call, and fn is a function with an inlinable body, substitute *np with an OINLCALL.
// On return ninit has the parameter assignments, the nbody is the
// inlined function body and list, rlist contain the input, output
// parameters.
static void
mkinlcall1(Node **np, Node *fn, int isddd)
{
int i;
int chkargcount;
Node *n, *call, *saveinlfn, *as, *m;
NodeList *dcl, *ll, *ninit, *body;
Type *t;
// For variadic fn.
int variadic, varargcount, multiret;
Node *vararg;
NodeList *varargs;
Type *varargtype, *vararrtype;
if (fn->inl == nil)
return;
if (fn == curfn || fn->defn == curfn)
return;
if(debug['l']<2)
typecheckinl(fn);
n = *np;
// Bingo, we have a function node, and it has an inlineable body
if(debug['m']>1)
print("%L: inlining call to %S %#T { %#H }\n", n->lineno, fn->sym, fn->type, fn->inl);
else if(debug['m'])
print("%L: inlining call to %N\n", n->lineno, fn);
if(debug['m']>2)
print("%L: Before inlining: %+N\n", n->lineno, n);
saveinlfn = inlfn;
inlfn = fn;
ninit = n->ninit;
//dumplist("ninit pre", ninit);
if(fn->defn) // local function
dcl = fn->inldcl;
else // imported function
dcl = fn->dcl;
inlretvars = nil;
i = 0;
// Make temp names to use instead of the originals
for(ll = dcl; ll; ll=ll->next) {
if(ll->n->class == PPARAMOUT) // return values handled below.
continue;
if(ll->n->op == ONAME) {
ll->n->inlvar = inlvar(ll->n);
// Typecheck because inlvar is not necessarily a function parameter.
typecheck(&ll->n->inlvar, Erv);
if ((ll->n->class&~PHEAP) != PAUTO)
ninit = list(ninit, nod(ODCL, ll->n->inlvar, N)); // otherwise gen won't emit the allocations for heapallocs
}
}
// temporaries for return values.
for(t = getoutargx(fn->type)->type; t; t = t->down) {
if(t != T && t->nname != N && !isblank(t->nname)) {
m = inlvar(t->nname);
typecheck(&m, Erv);
t->nname->inlvar = m;
} else {
// anonymous return values, synthesize names for use in assignment that replaces return
m = retvar(t, i++);
}
ninit = list(ninit, nod(ODCL, m, N));
inlretvars = list(inlretvars, m);
}
// assign receiver.
if(fn->type->thistuple && n->left->op == ODOTMETH) {
// method call with a receiver.
t = getthisx(fn->type)->type;
if(t != T && t->nname != N && !isblank(t->nname) && !t->nname->inlvar)
fatal("missing inlvar for %N\n", t->nname);
if(!n->left->left)
fatal("method call without receiver: %+N", n);
if(t == T)
fatal("method call unknown receiver type: %+N", n);
as = nod(OAS, tinlvar(t), n->left->left);
if(as != N) {
typecheck(&as, Etop);
ninit = list(ninit, as);
}
}
// check if inlined function is variadic.
variadic = 0;
varargtype = T;
varargcount = 0;
for(t=fn->type->type->down->down->type; t; t=t->down) {
if(t->isddd) {
variadic = 1;
varargtype = t->type;
}
}
// but if argument is dotted too forget about variadicity.
if(variadic && isddd)
variadic = 0;
// check if argument is actually a returned tuple from call.
multiret = 0;
if(n->list && !n->list->next) {
switch(n->list->n->op) {
case OCALL:
case OCALLFUNC:
case OCALLINTER:
case OCALLMETH:
if(n->list->n->left->type->outtuple > 1)
multiret = n->list->n->left->type->outtuple-1;
}
}
if(variadic) {
varargcount = count(n->list) + multiret;
if(n->left->op != ODOTMETH)
varargcount -= fn->type->thistuple;
varargcount -= fn->type->intuple - 1;
}
// assign arguments to the parameters' temp names
as = nod(OAS2, N, N);
as->rlist = n->list;
ll = n->list;
// TODO: if len(nlist) == 1 but multiple args, check that n->list->n is a call?
if(fn->type->thistuple && n->left->op != ODOTMETH) {
// non-method call to method
if(!n->list)
fatal("non-method call to method without first arg: %+N", n);
// append receiver inlvar to LHS.
t = getthisx(fn->type)->type;
if(t != T && t->nname != N && !isblank(t->nname) && !t->nname->inlvar)
fatal("missing inlvar for %N\n", t->nname);
if(t == T)
fatal("method call unknown receiver type: %+N", n);
as->list = list(as->list, tinlvar(t));
ll = ll->next; // track argument count.
}
// append ordinary arguments to LHS.
chkargcount = n->list && n->list->next;
vararg = N; // the slice argument to a variadic call
varargs = nil; // the list of LHS names to put in vararg.
if(!chkargcount) {
// 0 or 1 expression on RHS.
for(t = getinargx(fn->type)->type; t; t=t->down) {
if(variadic && t->isddd) {
vararg = tinlvar(t);
for(i=0; i<varargcount && ll; i++) {
m = argvar(varargtype, i);
varargs = list(varargs, m);
as->list = list(as->list, m);
}
break;
}
as->list = list(as->list, tinlvar(t));
}
} else {
// match arguments except final variadic (unless the call is dotted itself)
for(t = getinargx(fn->type)->type; t;) {
if(!ll)
break;
if(variadic && t->isddd)
break;
as->list = list(as->list, tinlvar(t));
t=t->down;
ll=ll->next;
}
// match varargcount arguments with variadic parameters.
if(variadic && t && t->isddd) {
vararg = tinlvar(t);
for(i=0; i<varargcount && ll; i++) {
m = argvar(varargtype, i);
varargs = list(varargs, m);
as->list = list(as->list, m);
ll=ll->next;
}
if(i==varargcount)
t=t->down;
}
if(ll || t)
fatal("arg count mismatch: %#T vs %,H\n", getinargx(fn->type), n->list);
}
if (as->rlist) {
typecheck(&as, Etop);
ninit = list(ninit, as);
}
// turn the variadic args into a slice.
if(variadic) {
as = nod(OAS, vararg, N);
if(!varargcount) {
as->right = nodnil();
as->right->type = varargtype;
} else {
vararrtype = typ(TARRAY);
vararrtype->type = varargtype->type;
vararrtype->bound = varargcount;
as->right = nod(OCOMPLIT, N, typenod(varargtype));
as->right->list = varargs;
as->right = nod(OSLICE, as->right, nod(OKEY, N, N));
}
typecheck(&as, Etop);
ninit = list(ninit, as);
}
// zero the outparams
for(ll = inlretvars; ll; ll=ll->next) {
as = nod(OAS, ll->n, N);
typecheck(&as, Etop);
ninit = list(ninit, as);
}
inlretlabel = newlabel();
inlgen++;
body = inlsubstlist(fn->inl);
body = list(body, nod(OGOTO, inlretlabel, N)); // avoid 'not used' when function doesnt have return
body = list(body, nod(OLABEL, inlretlabel, N));
typechecklist(body, Etop);
//dumplist("ninit post", ninit);
call = nod(OINLCALL, N, N);
call->ninit = ninit;
call->nbody = body;
call->rlist = inlretvars;
call->type = n->type;
call->typecheck = 1;
setlno(call, n->lineno);
//dumplist("call body", body);
*np = call;
inlfn = saveinlfn;
// transitive inlining
// TODO do this pre-expansion on fn->inl directly. requires
// either supporting exporting statemetns with complex ninits
// or saving inl and making inlinl
if(debug['l'] >= 5) {
body = fn->inl;
fn->inl = nil; // prevent infinite recursion
inlnodelist(call->nbody);
for(ll=call->nbody; ll; ll=ll->next)
if(ll->n->op == OINLCALL)
inlconv2stmt(ll->n);
fn->inl = body;
}
if(debug['m']>2)
print("%L: After inlining %+N\n\n", n->lineno, *np);
}
// Every time we expand a function we generate a new set of tmpnames,
// PAUTO's in the calling functions, and link them off of the
// PPARAM's, PAUTOS and PPARAMOUTs of the called function.
static Node*
inlvar(Node *var)
{
Node *n;
if(debug['m']>3)
print("inlvar %+N\n", var);
n = newname(var->sym);
n->type = var->type;
n->class = PAUTO;
n->used = 1;
n->curfn = curfn; // the calling function, not the called one
n->addrtaken = var->addrtaken;
// Esc pass wont run if we're inlining into a iface wrapper.
// Luckily, we can steal the results from the target func.
// If inlining a function defined in another package after
// escape analysis is done, treat all local vars as escaping.
// See issue 9537.
if(var->esc == EscHeap || (inl_nonlocal && var->op == ONAME))
addrescapes(n);
curfn->dcl = list(curfn->dcl, n);
return n;
}
// Synthesize a variable to store the inlined function's results in.
static Node*
retvar(Type *t, int i)
{
Node *n;
snprint(namebuf, sizeof(namebuf), "~r%d", i);
n = newname(lookup(namebuf));
n->type = t->type;
n->class = PAUTO;
n->used = 1;
n->curfn = curfn; // the calling function, not the called one
curfn->dcl = list(curfn->dcl, n);
return n;
}
// Synthesize a variable to store the inlined function's arguments
// when they come from a multiple return call.
static Node*
argvar(Type *t, int i)
{
Node *n;
snprint(namebuf, sizeof(namebuf), "~arg%d", i);
n = newname(lookup(namebuf));
n->type = t->type;
n->class = PAUTO;
n->used = 1;
n->curfn = curfn; // the calling function, not the called one
curfn->dcl = list(curfn->dcl, n);
return n;
}
static Node*
newlabel(void)
{
Node *n;
static int label;
label++;
snprint(namebuf, sizeof(namebuf), ".inlret%.6d", label);
n = newname(lookup(namebuf));
n->etype = 1; // flag 'safe' for escape analysis (no backjumps)
return n;
}
// inlsubst and inlsubstlist recursively copy the body of the saved
// pristine ->inl body of the function while substituting references
// to input/output parameters with ones to the tmpnames, and
// substituting returns with assignments to the output.
static NodeList*
inlsubstlist(NodeList *ll)
{
NodeList *l;
l = nil;
for(; ll; ll=ll->next)
l = list(l, inlsubst(ll->n));
return l;
}
static Node*
inlsubst(Node *n)
{
char *p;
Node *m, *as;
NodeList *ll;
if(n == N)
return N;
switch(n->op) {
case ONAME:
if(n->inlvar) { // These will be set during inlnode
if (debug['m']>2)
print ("substituting name %+N -> %+N\n", n, n->inlvar);
return n->inlvar;
}
if (debug['m']>2)
print ("not substituting name %+N\n", n);
return n;
case OLITERAL:
case OTYPE:
return n;
case ORETURN:
// Since we don't handle bodies with closures, this return is guaranteed to belong to the current inlined function.
// dump("Return before substitution", n);
m = nod(OGOTO, inlretlabel, N);
m->ninit = inlsubstlist(n->ninit);
if(inlretvars && n->list) {
as = nod(OAS2, N, N);
// shallow copy or OINLCALL->rlist will be the same list, and later walk and typecheck may clobber that.
for(ll=inlretvars; ll; ll=ll->next)
as->list = list(as->list, ll->n);
as->rlist = inlsubstlist(n->list);
typecheck(&as, Etop);
m->ninit = list(m->ninit, as);
}
typechecklist(m->ninit, Etop);
typecheck(&m, Etop);
// dump("Return after substitution", m);
return m;
case OGOTO:
case OLABEL:
m = nod(OXXX, N, N);
*m = *n;
m->ninit = nil;
p = smprint("%s·%d", n->left->sym->name, inlgen);
m->left = newname(lookup(p));
free(p);
return m;
}
m = nod(OXXX, N, N);
*m = *n;
m->ninit = nil;
if(n->op == OCLOSURE)
fatal("cannot inline function containing closure: %+N", n);
m->left = inlsubst(n->left);
m->right = inlsubst(n->right);
m->list = inlsubstlist(n->list);
m->rlist = inlsubstlist(n->rlist);
m->ninit = concat(m->ninit, inlsubstlist(n->ninit));
m->ntest = inlsubst(n->ntest);
m->nincr = inlsubst(n->nincr);
m->nbody = inlsubstlist(n->nbody);
m->nelse = inlsubstlist(n->nelse);
return m;
}
// Plaster over linenumbers
static void
setlnolist(NodeList *ll, int lno)
{
for(;ll;ll=ll->next)
setlno(ll->n, lno);
}
static void
setlno(Node *n, int lno)
{
if(!n)
return;
// don't clobber names, unless they're freshly synthesized
if(n->op != ONAME || n->lineno == 0)
n->lineno = lno;
setlno(n->left, lno);
setlno(n->right, lno);
setlnolist(n->list, lno);
setlnolist(n->rlist, lno);
setlnolist(n->ninit, lno);
setlno(n->ntest, lno);
setlno(n->nincr, lno);
setlnolist(n->nbody, lno);
setlnolist(n->nelse, lno);
}