blob: b78c268df5bfdb6d78c6e7b5dd871886c47dea42 [file] [log] [blame]
// Inferno utils/5c/reg.c
// http://code.google.com/p/inferno-os/source/browse/utils/5c/reg.c
//
// Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved.
// Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
// Portions Copyright © 1997-1999 Vita Nuova Limited
// Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
// Portions Copyright © 2004,2006 Bruce Ellis
// Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
// Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
// Portions Copyright © 2009 The Go Authors. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#include <u.h>
#include <libc.h>
#include "gg.h"
#include "opt.h"
#define NREGVAR 32
#define REGBITS ((uint32)0xffffffff)
/*c2go enum {
NREGVAR = 32,
REGBITS = 0xffffffff,
};
*/
void addsplits(void);
static Reg* firstr;
static int first = 1;
int
rcmp(const void *a1, const void *a2)
{
Rgn *p1, *p2;
int c1, c2;
p1 = (Rgn*)a1;
p2 = (Rgn*)a2;
c1 = p2->cost;
c2 = p1->cost;
if(c1 -= c2)
return c1;
return p2->varno - p1->varno;
}
void
excise(Flow *r)
{
Prog *p;
p = r->prog;
p->as = ANOP;
p->scond = zprog.scond;
p->from = zprog.from;
p->to = zprog.to;
p->reg = zprog.reg;
}
static void
setaddrs(Bits bit)
{
int i, n;
Var *v;
Node *node;
while(bany(&bit)) {
// convert each bit to a variable
i = bnum(bit);
node = var[i].node;
n = var[i].name;
bit.b[i/32] &= ~(1L<<(i%32));
// disable all pieces of that variable
for(i=0; i<nvar; i++) {
v = var+i;
if(v->node == node && v->name == n)
v->addr = 2;
}
}
}
static char* regname[] = {
".R0",
".R1",
".R2",
".R3",
".R4",
".R5",
".R6",
".R7",
".R8",
".R9",
".R10",
".R11",
".R12",
".R13",
".R14",
".R15",
".F0",
".F1",
".F2",
".F3",
".F4",
".F5",
".F6",
".F7",
".F8",
".F9",
".F10",
".F11",
".F12",
".F13",
".F14",
".F15",
};
static Node* regnodes[NREGVAR];
static void walkvardef(Node *n, Reg *r, int active);
void
regopt(Prog *firstp)
{
Reg *r, *r1;
Prog *p;
Graph *g;
int i, z, active;
uint32 vreg;
Bits bit;
ProgInfo info;
if(first) {
fmtinstall('Q', Qconv);
first = 0;
}
mergetemp(firstp);
/*
* control flow is more complicated in generated go code
* than in generated c code. define pseudo-variables for
* registers, so we have complete register usage information.
*/
nvar = NREGVAR;
memset(var, 0, NREGVAR*sizeof var[0]);
for(i=0; i<NREGVAR; i++) {
if(regnodes[i] == N)
regnodes[i] = newname(lookup(regname[i]));
var[i].node = regnodes[i];
}
regbits = RtoB(REGSP)|RtoB(REGLINK)|RtoB(REGPC);
for(z=0; z<BITS; z++) {
externs.b[z] = 0;
params.b[z] = 0;
consts.b[z] = 0;
addrs.b[z] = 0;
ivar.b[z] = 0;
ovar.b[z] = 0;
}
/*
* pass 1
* build aux data structure
* allocate pcs
* find use and set of variables
*/
g = flowstart(firstp, sizeof(Reg));
if(g == nil) {
for(i=0; i<nvar; i++)
var[i].node->opt = nil;
return;
}
firstr = (Reg*)g->start;
for(r = firstr; r != R; r = (Reg*)r->f.link) {
p = r->f.prog;
if(p->as == AVARDEF || p->as == AVARKILL)
continue;
proginfo(&info, p);
// Avoid making variables for direct-called functions.
if(p->as == ABL && p->to.name == D_EXTERN)
continue;
bit = mkvar(r, &p->from);
if(info.flags & LeftRead)
for(z=0; z<BITS; z++)
r->use1.b[z] |= bit.b[z];
if(info.flags & LeftAddr)
setaddrs(bit);
if(info.flags & RegRead) {
if(p->from.type != D_FREG)
r->use1.b[0] |= RtoB(p->reg);
else
r->use1.b[0] |= FtoB(p->reg);
}
if(info.flags & (RightAddr | RightRead | RightWrite)) {
bit = mkvar(r, &p->to);
if(info.flags & RightAddr)
setaddrs(bit);
if(info.flags & RightRead)
for(z=0; z<BITS; z++)
r->use2.b[z] |= bit.b[z];
if(info.flags & RightWrite)
for(z=0; z<BITS; z++)
r->set.b[z] |= bit.b[z];
}
/* the mod/div runtime routines smash R12 */
if(p->as == ADIV || p->as == ADIVU || p->as == AMOD || p->as == AMODU)
r->set.b[0] |= RtoB(12);
}
if(firstr == R)
return;
for(i=0; i<nvar; i++) {
Var *v = var+i;
if(v->addr) {
bit = blsh(i);
for(z=0; z<BITS; z++)
addrs.b[z] |= bit.b[z];
}
if(debug['R'] && debug['v'])
print("bit=%2d addr=%d et=%-6E w=%-2d s=%N + %lld\n",
i, v->addr, v->etype, v->width, v->node, v->offset);
}
if(debug['R'] && debug['v'])
dumpit("pass1", &firstr->f, 1);
/*
* pass 2
* find looping structure
*/
flowrpo(g);
if(debug['R'] && debug['v'])
dumpit("pass2", &firstr->f, 1);
/*
* pass 2.5
* iterate propagating fat vardef covering forward
* r->act records vars with a VARDEF since the last CALL.
* (r->act will be reused in pass 5 for something else,
* but we'll be done with it by then.)
*/
active = 0;
for(r = firstr; r != R; r = (Reg*)r->f.link) {
r->f.active = 0;
r->act = zbits;
}
for(r = firstr; r != R; r = (Reg*)r->f.link) {
p = r->f.prog;
if(p->as == AVARDEF && isfat(p->to.node->type) && p->to.node->opt != nil) {
active++;
walkvardef(p->to.node, r, active);
}
}
/*
* pass 3
* iterate propagating usage
* back until flow graph is complete
*/
loop1:
change = 0;
for(r = firstr; r != R; r = (Reg*)r->f.link)
r->f.active = 0;
for(r = firstr; r != R; r = (Reg*)r->f.link)
if(r->f.prog->as == ARET)
prop(r, zbits, zbits);
loop11:
/* pick up unreachable code */
i = 0;
for(r = firstr; r != R; r = r1) {
r1 = (Reg*)r->f.link;
if(r1 && r1->f.active && !r->f.active) {
prop(r, zbits, zbits);
i = 1;
}
}
if(i)
goto loop11;
if(change)
goto loop1;
if(debug['R'] && debug['v'])
dumpit("pass3", &firstr->f, 1);
/*
* pass 4
* iterate propagating register/variable synchrony
* forward until graph is complete
*/
loop2:
change = 0;
for(r = firstr; r != R; r = (Reg*)r->f.link)
r->f.active = 0;
synch(firstr, zbits);
if(change)
goto loop2;
addsplits();
if(debug['R'] && debug['v'])
dumpit("pass4", &firstr->f, 1);
if(debug['R'] > 1) {
print("\nprop structure:\n");
for(r = firstr; r != R; r = (Reg*)r->f.link) {
print("%d:%P", r->f.loop, r->f.prog);
for(z=0; z<BITS; z++) {
bit.b[z] = r->set.b[z] |
r->refahead.b[z] | r->calahead.b[z] |
r->refbehind.b[z] | r->calbehind.b[z] |
r->use1.b[z] | r->use2.b[z];
bit.b[z] &= ~addrs.b[z];
}
if(bany(&bit)) {
print("\t");
if(bany(&r->use1))
print(" u1=%Q", r->use1);
if(bany(&r->use2))
print(" u2=%Q", r->use2);
if(bany(&r->set))
print(" st=%Q", r->set);
if(bany(&r->refahead))
print(" ra=%Q", r->refahead);
if(bany(&r->calahead))
print(" ca=%Q", r->calahead);
if(bany(&r->refbehind))
print(" rb=%Q", r->refbehind);
if(bany(&r->calbehind))
print(" cb=%Q", r->calbehind);
}
print("\n");
}
}
/*
* pass 4.5
* move register pseudo-variables into regu.
*/
for(r = firstr; r != R; r = (Reg*)r->f.link) {
r->regu = (r->refbehind.b[0] | r->set.b[0]) & REGBITS;
r->set.b[0] &= ~REGBITS;
r->use1.b[0] &= ~REGBITS;
r->use2.b[0] &= ~REGBITS;
r->refbehind.b[0] &= ~REGBITS;
r->refahead.b[0] &= ~REGBITS;
r->calbehind.b[0] &= ~REGBITS;
r->calahead.b[0] &= ~REGBITS;
r->regdiff.b[0] &= ~REGBITS;
r->act.b[0] &= ~REGBITS;
}
if(debug['R'] && debug['v'])
dumpit("pass4.5", &firstr->f, 1);
/*
* pass 5
* isolate regions
* calculate costs (paint1)
*/
r = firstr;
if(r) {
for(z=0; z<BITS; z++)
bit.b[z] = (r->refahead.b[z] | r->calahead.b[z]) &
~(externs.b[z] | params.b[z] | addrs.b[z] | consts.b[z]);
if(bany(&bit) & !r->f.refset) {
// should never happen - all variables are preset
if(debug['w'])
print("%L: used and not set: %Q\n", r->f.prog->lineno, bit);
r->f.refset = 1;
}
}
for(r = firstr; r != R; r = (Reg*)r->f.link)
r->act = zbits;
rgp = region;
nregion = 0;
for(r = firstr; r != R; r = (Reg*)r->f.link) {
for(z=0; z<BITS; z++)
bit.b[z] = r->set.b[z] &
~(r->refahead.b[z] | r->calahead.b[z] | addrs.b[z]);
if(bany(&bit) && !r->f.refset) {
if(debug['w'])
print("%L: set and not used: %Q\n", r->f.prog->lineno, bit);
r->f.refset = 1;
excise(&r->f);
}
for(z=0; z<BITS; z++)
bit.b[z] = LOAD(r) & ~(r->act.b[z] | addrs.b[z]);
while(bany(&bit)) {
i = bnum(bit);
rgp->enter = r;
rgp->varno = i;
change = 0;
if(debug['R'] > 1)
print("\n");
paint1(r, i);
bit.b[i/32] &= ~(1L<<(i%32));
if(change <= 0) {
if(debug['R'])
print("%L $%d: %Q\n",
r->f.prog->lineno, change, blsh(i));
continue;
}
rgp->cost = change;
nregion++;
if(nregion >= NRGN) {
if(debug['R'] > 1)
print("too many regions\n");
goto brk;
}
rgp++;
}
}
brk:
qsort(region, nregion, sizeof(region[0]), rcmp);
if(debug['R'] && debug['v'])
dumpit("pass5", &firstr->f, 1);
/*
* pass 6
* determine used registers (paint2)
* replace code (paint3)
*/
rgp = region;
for(i=0; i<nregion; i++) {
bit = blsh(rgp->varno);
vreg = paint2(rgp->enter, rgp->varno);
vreg = allreg(vreg, rgp);
if(debug['R']) {
if(rgp->regno >= NREG)
print("%L $%d F%d: %Q\n",
rgp->enter->f.prog->lineno,
rgp->cost,
rgp->regno-NREG,
bit);
else
print("%L $%d R%d: %Q\n",
rgp->enter->f.prog->lineno,
rgp->cost,
rgp->regno,
bit);
}
if(rgp->regno != 0)
paint3(rgp->enter, rgp->varno, vreg, rgp->regno);
rgp++;
}
if(debug['R'] && debug['v'])
dumpit("pass6", &firstr->f, 1);
/*
* free aux structures. peep allocates new ones.
*/
for(i=0; i<nvar; i++)
var[i].node->opt = nil;
flowend(g);
firstr = R;
/*
* pass 7
* peep-hole on basic block
*/
if(!debug['R'] || debug['P']) {
peep(firstp);
}
if(debug['R'] && debug['v'])
dumpit("pass7", &firstr->f, 1);
/*
* last pass
* eliminate nops
* free aux structures
* adjust the stack pointer
* MOVW.W R1,-12(R13) <<- start
* MOVW R0,R1
* MOVW R1,8(R13)
* MOVW $0,R1
* MOVW R1,4(R13)
* BL ,runtime.newproc+0(SB)
* MOVW &ft+-32(SP),R7 <<- adjust
* MOVW &j+-40(SP),R6 <<- adjust
* MOVW autotmp_0003+-24(SP),R5 <<- adjust
* MOVW $12(R13),R13 <<- finish
*/
vreg = 0;
for(p = firstp; p != P; p = p->link) {
while(p->link != P && p->link->as == ANOP)
p->link = p->link->link;
if(p->to.type == D_BRANCH)
while(p->to.u.branch != P && p->to.u.branch->as == ANOP)
p->to.u.branch = p->to.u.branch->link;
if(p->as == AMOVW && p->to.reg == 13) {
if(p->scond & C_WBIT) {
vreg = -p->to.offset; // in adjust region
// print("%P adjusting %d\n", p, vreg);
continue;
}
if(p->from.type == D_CONST && p->to.type == D_REG) {
if(p->from.offset != vreg)
print("in and out different\n");
// print("%P finish %d\n", p, vreg);
vreg = 0; // done adjust region
continue;
}
// print("%P %d %d from type\n", p, p->from.type, D_CONST);
// print("%P %d %d to type\n\n", p, p->to.type, D_REG);
}
if(p->as == AMOVW && vreg != 0) {
if(p->from.sym != nil)
if(p->from.name == D_AUTO || p->from.name == D_PARAM) {
p->from.offset += vreg;
// print("%P adjusting from %d %d\n", p, vreg, p->from.type);
}
if(p->to.sym != nil)
if(p->to.name == D_AUTO || p->to.name == D_PARAM) {
p->to.offset += vreg;
// print("%P adjusting to %d %d\n", p, vreg, p->from.type);
}
}
}
}
static void
walkvardef(Node *n, Reg *r, int active)
{
Reg *r1, *r2;
int bn;
Var *v;
for(r1=r; r1!=R; r1=(Reg*)r1->f.s1) {
if(r1->f.active == active)
break;
r1->f.active = active;
if(r1->f.prog->as == AVARKILL && r1->f.prog->to.node == n)
break;
for(v=n->opt; v!=nil; v=v->nextinnode) {
bn = v - var;
r1->act.b[bn/32] |= 1L << (bn%32);
}
if(r1->f.prog->as == ABL)
break;
}
for(r2=r; r2!=r1; r2=(Reg*)r2->f.s1)
if(r2->f.s2 != nil)
walkvardef(n, (Reg*)r2->f.s2, active);
}
void
addsplits(void)
{
Reg *r, *r1;
int z, i;
Bits bit;
for(r = firstr; r != R; r = (Reg*)r->f.link) {
if(r->f.loop > 1)
continue;
if(r->f.prog->as == ABL)
continue;
if(r->f.prog->as == ADUFFZERO)
continue;
if(r->f.prog->as == ADUFFCOPY)
continue;
for(r1 = (Reg*)r->f.p2; r1 != R; r1 = (Reg*)r1->f.p2link) {
if(r1->f.loop <= 1)
continue;
for(z=0; z<BITS; z++)
bit.b[z] = r1->calbehind.b[z] &
(r->refahead.b[z] | r->use1.b[z] | r->use2.b[z]) &
~(r->calahead.b[z] & addrs.b[z]);
while(bany(&bit)) {
i = bnum(bit);
bit.b[i/32] &= ~(1L << (i%32));
}
}
}
}
/*
* add mov b,rn
* just after r
*/
void
addmove(Reg *r, int bn, int rn, int f)
{
Prog *p, *p1, *p2;
Adr *a;
Var *v;
p1 = mal(sizeof(*p1));
*p1 = zprog;
p = r->f.prog;
// If there's a stack fixup coming (after BL newproc or BL deferproc),
// delay the load until after the fixup.
p2 = p->link;
if(p2 && p2->as == AMOVW && p2->from.type == D_CONST && p2->from.reg == REGSP && p2->to.reg == REGSP && p2->to.type == D_REG)
p = p2;
p1->link = p->link;
p->link = p1;
p1->lineno = p->lineno;
v = var + bn;
a = &p1->to;
a->name = v->name;
a->node = v->node;
a->sym = linksym(v->node->sym);
a->offset = v->offset;
a->etype = v->etype;
a->type = D_OREG;
if(a->etype == TARRAY || a->sym == nil)
a->type = D_CONST;
if(v->addr)
fatal("addmove: shouldn't be doing this %A\n", a);
switch(v->etype) {
default:
print("What is this %E\n", v->etype);
case TINT8:
p1->as = AMOVBS;
break;
case TBOOL:
case TUINT8:
//print("movbu %E %d %S\n", v->etype, bn, v->sym);
p1->as = AMOVBU;
break;
case TINT16:
p1->as = AMOVHS;
break;
case TUINT16:
p1->as = AMOVHU;
break;
case TINT32:
case TUINT32:
case TPTR32:
p1->as = AMOVW;
break;
case TFLOAT32:
p1->as = AMOVF;
break;
case TFLOAT64:
p1->as = AMOVD;
break;
}
p1->from.type = D_REG;
p1->from.reg = rn;
if(rn >= NREG) {
p1->from.type = D_FREG;
p1->from.reg = rn-NREG;
}
if(!f) {
p1->from = *a;
*a = zprog.from;
a->type = D_REG;
a->reg = rn;
if(rn >= NREG) {
a->type = D_FREG;
a->reg = rn-NREG;
}
if(v->etype == TUINT8 || v->etype == TBOOL)
p1->as = AMOVBU;
if(v->etype == TUINT16)
p1->as = AMOVHU;
}
if(debug['R'])
print("%P\t.a%P\n", p, p1);
}
static int
overlap(int32 o1, int w1, int32 o2, int w2)
{
int32 t1, t2;
t1 = o1+w1;
t2 = o2+w2;
if(!(t1 > o2 && t2 > o1))
return 0;
return 1;
}
Bits
mkvar(Reg *r, Adr *a)
{
Var *v;
int i, t, n, et, z, w, flag;
int32 o;
Bits bit;
Node *node;
// mark registers used
t = a->type;
flag = 0;
switch(t) {
default:
print("type %d %d %D\n", t, a->name, a);
goto none;
case D_NONE:
case D_FCONST:
case D_BRANCH:
break;
case D_REGREG:
case D_REGREG2:
bit = zbits;
if(a->offset != NREG)
bit.b[0] |= RtoB(a->offset);
if(a->reg != NREG)
bit.b[0] |= RtoB(a->reg);
return bit;
case D_CONST:
case D_REG:
case D_SHIFT:
if(a->reg != NREG) {
bit = zbits;
bit.b[0] = RtoB(a->reg);
return bit;
}
break;
case D_OREG:
if(a->reg != NREG) {
if(a == &r->f.prog->from)
r->use1.b[0] |= RtoB(a->reg);
else
r->use2.b[0] |= RtoB(a->reg);
if(r->f.prog->scond & (C_PBIT|C_WBIT))
r->set.b[0] |= RtoB(a->reg);
}
break;
case D_FREG:
if(a->reg != NREG) {
bit = zbits;
bit.b[0] = FtoB(a->reg);
return bit;
}
break;
}
switch(a->name) {
default:
goto none;
case D_EXTERN:
case D_STATIC:
case D_AUTO:
case D_PARAM:
n = a->name;
break;
}
node = a->node;
if(node == N || node->op != ONAME || node->orig == N)
goto none;
node = node->orig;
if(node->orig != node)
fatal("%D: bad node", a);
if(node->sym == S || node->sym->name[0] == '.')
goto none;
et = a->etype;
o = a->offset;
w = a->width;
if(w < 0)
fatal("bad width %d for %D", w, a);
for(i=0; i<nvar; i++) {
v = var+i;
if(v->node == node && v->name == n) {
if(v->offset == o)
if(v->etype == et)
if(v->width == w)
if(!flag)
return blsh(i);
// if they overlap, disable both
if(overlap(v->offset, v->width, o, w)) {
v->addr = 1;
flag = 1;
}
}
}
switch(et) {
case 0:
case TFUNC:
goto none;
}
if(nvar >= NVAR) {
if(debug['w'] > 1 && node)
fatal("variable not optimized: %D", a);
// If we're not tracking a word in a variable, mark the rest as
// having its address taken, so that we keep the whole thing
// live at all calls. otherwise we might optimize away part of
// a variable but not all of it.
for(i=0; i<nvar; i++) {
v = var+i;
if(v->node == node)
v->addr = 1;
}
goto none;
}
i = nvar;
nvar++;
//print("var %d %E %D %S\n", i, et, a, s);
v = var+i;
v->offset = o;
v->name = n;
v->etype = et;
v->width = w;
v->addr = flag; // funny punning
v->node = node;
// node->opt is the head of a linked list
// of Vars within the given Node, so that
// we can start at a Var and find all the other
// Vars in the same Go variable.
v->nextinnode = node->opt;
node->opt = v;
bit = blsh(i);
if(n == D_EXTERN || n == D_STATIC)
for(z=0; z<BITS; z++)
externs.b[z] |= bit.b[z];
if(n == D_PARAM)
for(z=0; z<BITS; z++)
params.b[z] |= bit.b[z];
if(node->class == PPARAM)
for(z=0; z<BITS; z++)
ivar.b[z] |= bit.b[z];
if(node->class == PPARAMOUT)
for(z=0; z<BITS; z++)
ovar.b[z] |= bit.b[z];
// Treat values with their address taken as live at calls,
// because the garbage collector's liveness analysis in ../gc/plive.c does.
// These must be consistent or else we will elide stores and the garbage
// collector will see uninitialized data.
// The typical case where our own analysis is out of sync is when the
// node appears to have its address taken but that code doesn't actually
// get generated and therefore doesn't show up as an address being
// taken when we analyze the instruction stream.
// One instance of this case is when a closure uses the same name as
// an outer variable for one of its own variables declared with :=.
// The parser flags the outer variable as possibly shared, and therefore
// sets addrtaken, even though it ends up not being actually shared.
// If we were better about _ elision, _ = &x would suffice too.
// The broader := in a closure problem is mentioned in a comment in
// closure.c:/^typecheckclosure and dcl.c:/^oldname.
if(node->addrtaken)
v->addr = 1;
// Disable registerization for globals, because:
// (1) we might panic at any time and we want the recovery code
// to see the latest values (issue 1304).
// (2) we don't know what pointers might point at them and we want
// loads via those pointers to see updated values and vice versa (issue 7995).
//
// Disable registerization for results if using defer, because the deferred func
// might recover and return, causing the current values to be used.
if(node->class == PEXTERN || (hasdefer && node->class == PPARAMOUT))
v->addr = 1;
if(debug['R'])
print("bit=%2d et=%2E w=%d+%d %#N %D flag=%d\n", i, et, o, w, node, a, v->addr);
return bit;
none:
return zbits;
}
void
prop(Reg *r, Bits ref, Bits cal)
{
Reg *r1, *r2;
int z, i, j;
Var *v, *v1;
for(r1 = r; r1 != R; r1 = (Reg*)r1->f.p1) {
for(z=0; z<BITS; z++) {
ref.b[z] |= r1->refahead.b[z];
if(ref.b[z] != r1->refahead.b[z]) {
r1->refahead.b[z] = ref.b[z];
change++;
}
cal.b[z] |= r1->calahead.b[z];
if(cal.b[z] != r1->calahead.b[z]) {
r1->calahead.b[z] = cal.b[z];
change++;
}
}
switch(r1->f.prog->as) {
case ABL:
if(noreturn(r1->f.prog))
break;
// Mark all input variables (ivar) as used, because that's what the
// liveness bitmaps say. The liveness bitmaps say that so that a
// panic will not show stale values in the parameter dump.
// Mark variables with a recent VARDEF (r1->act) as used,
// so that the optimizer flushes initializations to memory,
// so that if a garbage collection happens during this CALL,
// the collector will see initialized memory. Again this is to
// match what the liveness bitmaps say.
for(z=0; z<BITS; z++) {
cal.b[z] |= ref.b[z] | externs.b[z] | ivar.b[z] | r1->act.b[z];
ref.b[z] = 0;
}
// cal.b is the current approximation of what's live across the call.
// Every bit in cal.b is a single stack word. For each such word,
// find all the other tracked stack words in the same Go variable
// (struct/slice/string/interface) and mark them live too.
// This is necessary because the liveness analysis for the garbage
// collector works at variable granularity, not at word granularity.
// It is fundamental for slice/string/interface: the garbage collector
// needs the whole value, not just some of the words, in order to
// interpret the other bits correctly. Specifically, slice needs a consistent
// ptr and cap, string needs a consistent ptr and len, and interface
// needs a consistent type word and data word.
for(z=0; z<BITS; z++) {
if(cal.b[z] == 0)
continue;
for(i=0; i<32; i++) {
if(z*32+i >= nvar || ((cal.b[z]>>i)&1) == 0)
continue;
v = var+z*32+i;
if(v->node->opt == nil) // v represents fixed register, not Go variable
continue;
// v->node->opt is the head of a linked list of Vars
// corresponding to tracked words from the Go variable v->node.
// Walk the list and set all the bits.
// For a large struct this could end up being quadratic:
// after the first setting, the outer loop (for z, i) would see a 1 bit
// for all of the remaining words in the struct, and for each such
// word would go through and turn on all the bits again.
// To avoid the quadratic behavior, we only turn on the bits if
// v is the head of the list or if the head's bit is not yet turned on.
// This will set the bits at most twice, keeping the overall loop linear.
v1 = v->node->opt;
j = v1 - var;
if(v == v1 || ((cal.b[j/32]>>(j&31))&1) == 0) {
for(; v1 != nil; v1 = v1->nextinnode) {
j = v1 - var;
cal.b[j/32] |= 1<<(j&31);
}
}
}
}
break;
case ATEXT:
for(z=0; z<BITS; z++) {
cal.b[z] = 0;
ref.b[z] = 0;
}
break;
case ARET:
for(z=0; z<BITS; z++) {
cal.b[z] = externs.b[z] | ovar.b[z];
ref.b[z] = 0;
}
break;
}
for(z=0; z<BITS; z++) {
ref.b[z] = (ref.b[z] & ~r1->set.b[z]) |
r1->use1.b[z] | r1->use2.b[z];
cal.b[z] &= ~(r1->set.b[z] | r1->use1.b[z] | r1->use2.b[z]);
r1->refbehind.b[z] = ref.b[z];
r1->calbehind.b[z] = cal.b[z];
}
if(r1->f.active)
break;
r1->f.active = 1;
}
for(; r != r1; r = (Reg*)r->f.p1)
for(r2 = (Reg*)r->f.p2; r2 != R; r2 = (Reg*)r2->f.p2link)
prop(r2, r->refbehind, r->calbehind);
}
void
synch(Reg *r, Bits dif)
{
Reg *r1;
int z;
for(r1 = r; r1 != R; r1 = (Reg*)r1->f.s1) {
for(z=0; z<BITS; z++) {
dif.b[z] = (dif.b[z] &
~(~r1->refbehind.b[z] & r1->refahead.b[z])) |
r1->set.b[z] | r1->regdiff.b[z];
if(dif.b[z] != r1->regdiff.b[z]) {
r1->regdiff.b[z] = dif.b[z];
change++;
}
}
if(r1->f.active)
break;
r1->f.active = 1;
for(z=0; z<BITS; z++)
dif.b[z] &= ~(~r1->calbehind.b[z] & r1->calahead.b[z]);
if(r1->f.s2 != nil)
synch((Reg*)r1->f.s2, dif);
}
}
uint32
allreg(uint32 b, Rgn *r)
{
Var *v;
int i;
v = var + r->varno;
r->regno = 0;
switch(v->etype) {
default:
fatal("unknown etype %d/%E", bitno(b), v->etype);
break;
case TINT8:
case TUINT8:
case TINT16:
case TUINT16:
case TINT32:
case TUINT32:
case TINT:
case TUINT:
case TUINTPTR:
case TBOOL:
case TPTR32:
i = BtoR(~b);
if(i && r->cost >= 0) {
r->regno = i;
return RtoB(i);
}
break;
case TFLOAT32:
case TFLOAT64:
i = BtoF(~b);
if(i && r->cost >= 0) {
r->regno = i+NREG;
return FtoB(i);
}
break;
case TINT64:
case TUINT64:
case TPTR64:
case TINTER:
case TSTRUCT:
case TARRAY:
break;
}
return 0;
}
void
paint1(Reg *r, int bn)
{
Reg *r1;
Prog *p;
int z;
uint32 bb;
z = bn/32;
bb = 1L<<(bn%32);
if(r->act.b[z] & bb)
return;
for(;;) {
if(!(r->refbehind.b[z] & bb))
break;
r1 = (Reg*)r->f.p1;
if(r1 == R)
break;
if(!(r1->refahead.b[z] & bb))
break;
if(r1->act.b[z] & bb)
break;
r = r1;
}
if(LOAD(r) & ~(r->set.b[z] & ~(r->use1.b[z]|r->use2.b[z])) & bb) {
change -= CLOAD * r->f.loop;
if(debug['R'] > 1)
print("%d%P\td %Q $%d\n", r->f.loop,
r->f.prog, blsh(bn), change);
}
for(;;) {
r->act.b[z] |= bb;
p = r->f.prog;
if(r->f.prog->as != ANOP) { // don't give credit for NOPs
if(r->use1.b[z] & bb) {
change += CREF * r->f.loop;
if(debug['R'] > 1)
print("%d%P\tu1 %Q $%d\n", r->f.loop,
p, blsh(bn), change);
}
if((r->use2.b[z]|r->set.b[z]) & bb) {
change += CREF * r->f.loop;
if(debug['R'] > 1)
print("%d%P\tu2 %Q $%d\n", r->f.loop,
p, blsh(bn), change);
}
}
if(STORE(r) & r->regdiff.b[z] & bb) {
change -= CLOAD * r->f.loop;
if(debug['R'] > 1)
print("%d%P\tst %Q $%d\n", r->f.loop,
p, blsh(bn), change);
}
if(r->refbehind.b[z] & bb)
for(r1 = (Reg*)r->f.p2; r1 != R; r1 = (Reg*)r1->f.p2link)
if(r1->refahead.b[z] & bb)
paint1(r1, bn);
if(!(r->refahead.b[z] & bb))
break;
r1 = (Reg*)r->f.s2;
if(r1 != R)
if(r1->refbehind.b[z] & bb)
paint1(r1, bn);
r = (Reg*)r->f.s1;
if(r == R)
break;
if(r->act.b[z] & bb)
break;
if(!(r->refbehind.b[z] & bb))
break;
}
}
uint32
paint2(Reg *r, int bn)
{
Reg *r1;
int z;
uint32 bb, vreg;
z = bn/32;
bb = 1L << (bn%32);
vreg = regbits;
if(!(r->act.b[z] & bb))
return vreg;
for(;;) {
if(!(r->refbehind.b[z] & bb))
break;
r1 = (Reg*)r->f.p1;
if(r1 == R)
break;
if(!(r1->refahead.b[z] & bb))
break;
if(!(r1->act.b[z] & bb))
break;
r = r1;
}
for(;;) {
r->act.b[z] &= ~bb;
vreg |= r->regu;
if(r->refbehind.b[z] & bb)
for(r1 = (Reg*)r->f.p2; r1 != R; r1 = (Reg*)r1->f.p2link)
if(r1->refahead.b[z] & bb)
vreg |= paint2(r1, bn);
if(!(r->refahead.b[z] & bb))
break;
r1 = (Reg*)r->f.s2;
if(r1 != R)
if(r1->refbehind.b[z] & bb)
vreg |= paint2(r1, bn);
r = (Reg*)r->f.s1;
if(r == R)
break;
if(!(r->act.b[z] & bb))
break;
if(!(r->refbehind.b[z] & bb))
break;
}
return vreg;
}
void
paint3(Reg *r, int bn, int32 rb, int rn)
{
Reg *r1;
Prog *p;
int z;
uint32 bb;
z = bn/32;
bb = 1L << (bn%32);
if(r->act.b[z] & bb)
return;
for(;;) {
if(!(r->refbehind.b[z] & bb))
break;
r1 = (Reg*)r->f.p1;
if(r1 == R)
break;
if(!(r1->refahead.b[z] & bb))
break;
if(r1->act.b[z] & bb)
break;
r = r1;
}
if(LOAD(r) & ~(r->set.b[z] & ~(r->use1.b[z]|r->use2.b[z])) & bb)
addmove(r, bn, rn, 0);
for(;;) {
r->act.b[z] |= bb;
p = r->f.prog;
if(r->use1.b[z] & bb) {
if(debug['R'])
print("%P", p);
addreg(&p->from, rn);
if(debug['R'])
print("\t.c%P\n", p);
}
if((r->use2.b[z]|r->set.b[z]) & bb) {
if(debug['R'])
print("%P", p);
addreg(&p->to, rn);
if(debug['R'])
print("\t.c%P\n", p);
}
if(STORE(r) & r->regdiff.b[z] & bb)
addmove(r, bn, rn, 1);
r->regu |= rb;
if(r->refbehind.b[z] & bb)
for(r1 = (Reg*)r->f.p2; r1 != R; r1 = (Reg*)r1->f.p2link)
if(r1->refahead.b[z] & bb)
paint3(r1, bn, rb, rn);
if(!(r->refahead.b[z] & bb))
break;
r1 = (Reg*)r->f.s2;
if(r1 != R)
if(r1->refbehind.b[z] & bb)
paint3(r1, bn, rb, rn);
r = (Reg*)r->f.s1;
if(r == R)
break;
if(r->act.b[z] & bb)
break;
if(!(r->refbehind.b[z] & bb))
break;
}
}
void
addreg(Adr *a, int rn)
{
a->sym = nil;
a->node = nil;
a->name = D_NONE;
a->type = D_REG;
a->reg = rn;
if(rn >= NREG) {
a->type = D_FREG;
a->reg = rn-NREG;
}
}
/*
* bit reg
* 0 R0
* 1 R1
* ... ...
* 10 R10
* 12 R12
*/
int32
RtoB(int r)
{
if(r >= REGTMP-2 && r != 12) // excluded R9 and R10 for m and g, but not R12
return 0;
return 1L << r;
}
int
BtoR(int32 b)
{
b &= 0x11fcL; // excluded R9 and R10 for m and g, but not R12
if(b == 0)
return 0;
return bitno(b);
}
/*
* bit reg
* 18 F2
* 19 F3
* ... ...
* 31 F15
*/
int32
FtoB(int f)
{
if(f < 2 || f > NFREG-1)
return 0;
return 1L << (f + 16);
}
int
BtoF(int32 b)
{
b &= 0xfffc0000L;
if(b == 0)
return 0;
return bitno(b) - 16;
}
void
dumpone(Flow *f, int isreg)
{
int z;
Bits bit;
Reg *r;
print("%d:%P", f->loop, f->prog);
if(isreg) {
r = (Reg*)f;
for(z=0; z<BITS; z++)
bit.b[z] =
r->set.b[z] |
r->use1.b[z] |
r->use2.b[z] |
r->refbehind.b[z] |
r->refahead.b[z] |
r->calbehind.b[z] |
r->calahead.b[z] |
r->regdiff.b[z] |
r->act.b[z] |
0;
if(bany(&bit)) {
print("\t");
if(bany(&r->set))
print(" s:%Q", r->set);
if(bany(&r->use1))
print(" u1:%Q", r->use1);
if(bany(&r->use2))
print(" u2:%Q", r->use2);
if(bany(&r->refbehind))
print(" rb:%Q ", r->refbehind);
if(bany(&r->refahead))
print(" ra:%Q ", r->refahead);
if(bany(&r->calbehind))
print(" cb:%Q ", r->calbehind);
if(bany(&r->calahead))
print(" ca:%Q ", r->calahead);
if(bany(&r->regdiff))
print(" d:%Q ", r->regdiff);
if(bany(&r->act))
print(" a:%Q ", r->act);
}
}
print("\n");
}
void
dumpit(char *str, Flow *r0, int isreg)
{
Flow *r, *r1;
print("\n%s\n", str);
for(r = r0; r != nil; r = r->link) {
dumpone(r, isreg);
r1 = r->p2;
if(r1 != nil) {
print(" pred:");
for(; r1 != nil; r1 = r1->p2link)
print(" %.4ud", (int)r1->prog->pc);
if(r->p1 != nil)
print(" (and %.4ud)", (int)r->p1->prog->pc);
else
print(" (only)");
print("\n");
}
// r1 = r->s1;
// if(r1 != nil) {
// print(" succ:");
// for(; r1 != R; r1 = r1->s1)
// print(" %.4ud", (int)r1->prog->pc);
// print("\n");
// }
}
}