test: remove semiocolons.
The ken directory is untouched so we have some examples with explicit semis.
R=gri
CC=golang-dev
https://golang.org/cl/2157041
diff --git a/test/chan/fifo.go b/test/chan/fifo.go
index 00a297a..0dddfca 100644
--- a/test/chan/fifo.go
+++ b/test/chan/fifo.go
@@ -13,20 +13,20 @@
const N = 10
func AsynchFifo() {
- ch := make(chan int, N);
+ ch := make(chan int, N)
for i := 0; i < N; i++ {
ch <- i
}
for i := 0; i < N; i++ {
if <-ch != i {
- print("bad receive\n");
- os.Exit(1);
+ print("bad receive\n")
+ os.Exit(1)
}
}
}
func Chain(ch <-chan int, val int, in <-chan int, out chan<- int) {
- <-in;
+ <-in
if <-ch != val {
panic(val)
}
@@ -35,15 +35,15 @@
// thread together a daisy chain to read the elements in sequence
func SynchFifo() {
- ch := make(chan int);
- in := make(chan int);
- start := in;
+ ch := make(chan int)
+ in := make(chan int)
+ start := in
for i := 0; i < N; i++ {
- out := make(chan int);
- go Chain(ch, i, in, out);
- in = out;
+ out := make(chan int)
+ go Chain(ch, i, in, out)
+ in = out
}
- start <- 0;
+ start <- 0
for i := 0; i < N; i++ {
ch <- i
}
@@ -51,7 +51,7 @@
}
func main() {
- AsynchFifo();
- SynchFifo();
+ AsynchFifo()
+ SynchFifo()
}
diff --git a/test/chan/goroutines.go b/test/chan/goroutines.go
index cee8a18..d8f8803 100644
--- a/test/chan/goroutines.go
+++ b/test/chan/goroutines.go
@@ -10,32 +10,32 @@
package main
import (
- "os";
- "strconv";
+ "os"
+ "strconv"
)
func f(left, right chan int) {
- left <- <-right;
+ left <- <-right
}
func main() {
- var n = 10000;
+ var n = 10000
if len(os.Args) > 1 {
- var err os.Error;
- n, err = strconv.Atoi(os.Args[1]);
+ var err os.Error
+ n, err = strconv.Atoi(os.Args[1])
if err != nil {
- print("bad arg\n");
- os.Exit(1);
+ print("bad arg\n")
+ os.Exit(1)
}
}
- leftmost := make(chan int);
- right := leftmost;
- left := leftmost;
+ leftmost := make(chan int)
+ right := leftmost
+ left := leftmost
for i := 0; i < n; i++ {
- right = make(chan int);
- go f(left, right);
- left = right;
+ right = make(chan int)
+ go f(left, right)
+ left = right
}
- go func(c chan int) { c <- 1 }(right);
- <-leftmost;
+ go func(c chan int) { c <- 1 }(right)
+ <-leftmost
}
diff --git a/test/chan/perm.go b/test/chan/perm.go
index 502e787..d08c035 100644
--- a/test/chan/perm.go
+++ b/test/chan/perm.go
@@ -7,51 +7,51 @@
package main
var (
- cr <-chan int;
- cs chan<- int;
- c chan int;
+ cr <-chan int
+ cs chan<- int
+ c chan int
)
func main() {
- cr = c; // ok
- cs = c; // ok
- c = cr; // ERROR "illegal types|incompatible|cannot"
- c = cs; // ERROR "illegal types|incompatible|cannot"
- cr = cs; // ERROR "illegal types|incompatible|cannot"
- cs = cr; // ERROR "illegal types|incompatible|cannot"
+ cr = c // ok
+ cs = c // ok
+ c = cr // ERROR "illegal types|incompatible|cannot"
+ c = cs // ERROR "illegal types|incompatible|cannot"
+ cr = cs // ERROR "illegal types|incompatible|cannot"
+ cs = cr // ERROR "illegal types|incompatible|cannot"
- c <- 0; // ok
- ok := c <- 0; // ok
- _ = ok;
- <-c; // ok
- x, ok := <-c; // ok
- _, _ = x, ok;
+ c <- 0 // ok
+ ok := c <- 0 // ok
+ _ = ok
+ <-c // ok
+ x, ok := <-c // ok
+ _, _ = x, ok
- cr <- 0; // ERROR "send"
- ok = cr <- 0; // ERROR "send"
- _ = ok;
- <-cr; // ok
- x, ok = <-cr; // ok
- _, _ = x, ok;
+ cr <- 0 // ERROR "send"
+ ok = cr <- 0 // ERROR "send"
+ _ = ok
+ <-cr // ok
+ x, ok = <-cr // ok
+ _, _ = x, ok
- cs <- 0; // ok
- ok = cs <- 0; // ok
- _ = ok;
- <-cs; // ERROR "receive"
- x, ok = <-cs; // ERROR "receive"
- _, _ = x, ok;
+ cs <- 0 // ok
+ ok = cs <- 0 // ok
+ _ = ok
+ <-cs // ERROR "receive"
+ x, ok = <-cs // ERROR "receive"
+ _, _ = x, ok
select {
case c <- 0: // ok
case x := <-c: // ok
- _ = x;
+ _ = x
case cr <- 0: // ERROR "send"
case x := <-cr: // ok
- _ = x;
+ _ = x
- case cs <- 0: // ok;
+ case cs <- 0: // ok
case x := <-cs: // ERROR "receive"
- _ = x;
+ _ = x
}
}
diff --git a/test/chan/powser1.go b/test/chan/powser1.go
index bb36b15..dc4ff53 100644
--- a/test/chan/powser1.go
+++ b/test/chan/powser1.go
@@ -16,7 +16,7 @@
import "os"
type rat struct {
- num, den int64; // numerator, denominator
+ num, den int64 // numerator, denominator
}
func (u rat) pr() {
@@ -33,9 +33,9 @@
}
type dch struct {
- req chan int;
- dat chan rat;
- nam int;
+ req chan int
+ dat chan rat
+ nam int
}
type dch2 [2] *dch
@@ -45,20 +45,20 @@
var seqno int
func mkdch() *dch {
- c := chnameserial % len(chnames);
- chnameserial++;
- d := new(dch);
- d.req = make(chan int);
- d.dat = make(chan rat);
- d.nam = c;
- return d;
+ c := chnameserial % len(chnames)
+ chnameserial++
+ d := new(dch)
+ d.req = make(chan int)
+ d.dat = make(chan rat)
+ d.nam = c
+ return d
}
func mkdch2() *dch2 {
- d2 := new(dch2);
- d2[0] = mkdch();
- d2[1] = mkdch();
- return d2;
+ d2 := new(dch2)
+ d2[0] = mkdch()
+ d2[1] = mkdch()
+ return d2
}
// split reads a single demand channel and replicates its
@@ -76,98 +76,97 @@
// generation to begin servicing out[1].
func dosplit(in *dch, out *dch2, wait chan int ) {
- var t *dch;
- both := false; // do not service both channels
+ both := false // do not service both channels
select {
case <-out[0].req:
- ;
+
case <-wait:
- both = true;
+ both = true
select {
case <-out[0].req:
- ;
+
case <-out[1].req:
- t=out[0]; out[0]=out[1]; out[1]=t;
+ out[0], out[1] = out[1], out[0]
}
}
- seqno++;
- in.req <- seqno;
- release := make(chan int);
- go dosplit(in, out, release);
- dat := <-in.dat;
- out[0].dat <- dat;
+ seqno++
+ in.req <- seqno
+ release := make(chan int)
+ go dosplit(in, out, release)
+ dat := <-in.dat
+ out[0].dat <- dat
if !both {
<-wait
}
- <-out[1].req;
- out[1].dat <- dat;
- release <- 0;
+ <-out[1].req
+ out[1].dat <- dat
+ release <- 0
}
func split(in *dch, out *dch2) {
- release := make(chan int);
- go dosplit(in, out, release);
- release <- 0;
+ release := make(chan int)
+ go dosplit(in, out, release)
+ release <- 0
}
func put(dat rat, out *dch) {
- <-out.req;
- out.dat <- dat;
+ <-out.req
+ out.dat <- dat
}
func get(in *dch) rat {
- seqno++;
- in.req <- seqno;
- return <-in.dat;
+ seqno++
+ in.req <- seqno
+ return <-in.dat
}
// Get one rat from each of n demand channels
func getn(in []*dch) []rat {
- n := len(in);
- if n != 2 { panic("bad n in getn") };
- req := new([2] chan int);
- dat := new([2] chan rat);
- out := make([]rat, 2);
- var i int;
- var it rat;
+ n := len(in)
+ if n != 2 { panic("bad n in getn") }
+ req := new([2] chan int)
+ dat := new([2] chan rat)
+ out := make([]rat, 2)
+ var i int
+ var it rat
for i=0; i<n; i++ {
- req[i] = in[i].req;
- dat[i] = nil;
+ req[i] = in[i].req
+ dat[i] = nil
}
for n=2*n; n>0; n-- {
- seqno++;
+ seqno++
select {
case req[0] <- seqno:
- dat[0] = in[0].dat;
- req[0] = nil;
+ dat[0] = in[0].dat
+ req[0] = nil
case req[1] <- seqno:
- dat[1] = in[1].dat;
- req[1] = nil;
+ dat[1] = in[1].dat
+ req[1] = nil
case it = <-dat[0]:
- out[0] = it;
- dat[0] = nil;
+ out[0] = it
+ dat[0] = nil
case it = <-dat[1]:
- out[1] = it;
- dat[1] = nil;
+ out[1] = it
+ dat[1] = nil
}
}
- return out;
+ return out
}
// Get one rat from each of 2 demand channels
func get2(in0 *dch, in1 *dch) []rat {
- return getn([]*dch{in0, in1});
+ return getn([]*dch{in0, in1})
}
func copy(in *dch, out *dch) {
for {
- <-out.req;
- out.dat <- get(in);
+ <-out.req
+ out.dat <- get(in)
}
}
@@ -177,8 +176,8 @@
}
}
-type PS *dch; // power series
-type PS2 *[2] PS; // pair of power series
+type PS *dch // power series
+type PS2 *[2] PS // pair of power series
var Ones PS
var Twos PS
@@ -208,29 +207,29 @@
// Make a rational from two ints and from one int
func i2tor(u, v int64) rat {
- g := gcd(u,v);
- var r rat;
+ g := gcd(u,v)
+ var r rat
if v > 0 {
- r.num = u/g;
- r.den = v/g;
+ r.num = u/g
+ r.den = v/g
} else {
- r.num = -u/g;
- r.den = -v/g;
+ r.num = -u/g
+ r.den = -v/g
}
- return r;
+ return r
}
func itor(u int64) rat {
- return i2tor(u, 1);
+ return i2tor(u, 1)
}
-var zero rat;
-var one rat;
+var zero rat
+var one rat
// End mark and end test
-var finis rat;
+var finis rat
func end(u rat) int64 {
if u.den==0 { return 1 }
@@ -240,68 +239,68 @@
// Operations on rationals
func add(u, v rat) rat {
- g := gcd(u.den,v.den);
- return i2tor(u.num*(v.den/g)+v.num*(u.den/g),u.den*(v.den/g));
+ g := gcd(u.den,v.den)
+ return i2tor(u.num*(v.den/g)+v.num*(u.den/g),u.den*(v.den/g))
}
func mul(u, v rat) rat {
- g1 := gcd(u.num,v.den);
- g2 := gcd(u.den,v.num);
- var r rat;
- r.num = (u.num/g1)*(v.num/g2);
- r.den = (u.den/g2)*(v.den/g1);
- return r;
+ g1 := gcd(u.num,v.den)
+ g2 := gcd(u.den,v.num)
+ var r rat
+ r.num = (u.num/g1)*(v.num/g2)
+ r.den = (u.den/g2)*(v.den/g1)
+ return r
}
func neg(u rat) rat {
- return i2tor(-u.num, u.den);
+ return i2tor(-u.num, u.den)
}
func sub(u, v rat) rat {
- return add(u, neg(v));
+ return add(u, neg(v))
}
func inv(u rat) rat { // invert a rat
if u.num == 0 { panic("zero divide in inv") }
- return i2tor(u.den, u.num);
+ return i2tor(u.den, u.num)
}
// print eval in floating point of PS at x=c to n terms
func evaln(c rat, U PS, n int) {
- xn := float64(1);
- x := float64(c.num)/float64(c.den);
- val := float64(0);
+ xn := float64(1)
+ x := float64(c.num)/float64(c.den)
+ val := float64(0)
for i:=0; i<n; i++ {
- u := get(U);
+ u := get(U)
if end(u) != 0 {
- break;
+ break
}
- val = val + x * float64(u.num)/float64(u.den);
- xn = xn*x;
+ val = val + x * float64(u.num)/float64(u.den)
+ xn = xn*x
}
- print(val, "\n");
+ print(val, "\n")
}
// Print n terms of a power series
func printn(U PS, n int) {
- done := false;
+ done := false
for ; !done && n>0; n-- {
- u := get(U);
+ u := get(U)
if end(u) != 0 {
done = true
} else {
u.pr()
}
}
- print(("\n"));
+ print(("\n"))
}
// Evaluate n terms of power series U at x=c
func eval(c rat, U PS, n int) rat {
if n==0 { return zero }
- y := get(U);
+ y := get(U)
if end(y) != 0 { return zero }
- return add(y,mul(c,eval(c,U,n-1)));
+ return add(y,mul(c,eval(c,U,n-1)))
}
// Power-series constructors return channels on which power
@@ -311,105 +310,105 @@
// Make a pair of power series identical to a given power series
func Split(U PS) *dch2 {
- UU := mkdch2();
- go split(U,UU);
- return UU;
+ UU := mkdch2()
+ go split(U,UU)
+ return UU
}
// Add two power series
func Add(U, V PS) PS {
- Z := mkPS();
+ Z := mkPS()
go func() {
- var uv []rat;
+ var uv []rat
for {
- <-Z.req;
- uv = get2(U,V);
+ <-Z.req
+ uv = get2(U,V)
switch end(uv[0])+2*end(uv[1]) {
case 0:
- Z.dat <- add(uv[0], uv[1]);
+ Z.dat <- add(uv[0], uv[1])
case 1:
- Z.dat <- uv[1];
- copy(V,Z);
+ Z.dat <- uv[1]
+ copy(V,Z)
case 2:
- Z.dat <- uv[0];
- copy(U,Z);
+ Z.dat <- uv[0]
+ copy(U,Z)
case 3:
- Z.dat <- finis;
+ Z.dat <- finis
}
}
- }();
- return Z;
+ }()
+ return Z
}
// Multiply a power series by a constant
func Cmul(c rat,U PS) PS {
- Z := mkPS();
+ Z := mkPS()
go func() {
- done := false;
+ done := false
for !done {
- <-Z.req;
- u := get(U);
+ <-Z.req
+ u := get(U)
if end(u) != 0 {
done = true
} else {
Z.dat <- mul(c,u)
}
}
- Z.dat <- finis;
- }();
- return Z;
+ Z.dat <- finis
+ }()
+ return Z
}
// Subtract
func Sub(U, V PS) PS {
- return Add(U, Cmul(neg(one), V));
+ return Add(U, Cmul(neg(one), V))
}
// Multiply a power series by the monomial x^n
func Monmul(U PS, n int) PS {
- Z := mkPS();
+ Z := mkPS()
go func() {
for ; n>0; n-- { put(zero,Z) }
- copy(U,Z);
- }();
- return Z;
+ copy(U,Z)
+ }()
+ return Z
}
// Multiply by x
func Xmul(U PS) PS {
- return Monmul(U,1);
+ return Monmul(U,1)
}
func Rep(c rat) PS {
- Z := mkPS();
- go repeat(c,Z);
- return Z;
+ Z := mkPS()
+ go repeat(c,Z)
+ return Z
}
// Monomial c*x^n
func Mon(c rat, n int) PS {
- Z:=mkPS();
+ Z:=mkPS()
go func() {
if(c.num!=0) {
for ; n>0; n=n-1 { put(zero,Z) }
- put(c,Z);
+ put(c,Z)
}
- put(finis,Z);
- }();
- return Z;
+ put(finis,Z)
+ }()
+ return Z
}
func Shift(c rat, U PS) PS {
- Z := mkPS();
+ Z := mkPS()
go func() {
- put(c,Z);
- copy(U,Z);
- }();
- return Z;
+ put(c,Z)
+ copy(U,Z)
+ }()
+ return Z
}
// simple pole at 1: 1/(1-x) = 1 1 1 1 1 ...
@@ -419,17 +418,17 @@
/*
func Poly(a []rat) PS {
- Z:=mkPS();
+ Z:=mkPS()
begin func(a []rat, Z PS) {
- j:=0;
- done:=0;
+ j:=0
+ done:=0
for j=len(a); !done&&j>0; j=j-1)
- if(a[j-1].num!=0) done=1;
- i:=0;
- for(; i<j; i=i+1) put(a[i],Z);
- put(finis,Z);
- }();
- return Z;
+ if(a[j-1].num!=0) done=1
+ i:=0
+ for(; i<j; i=i+1) put(a[i],Z)
+ put(finis,Z)
+ }()
+ return Z
}
*/
@@ -439,82 +438,82 @@
// then UV = u*v + x*(u*VV+v*UU) + x*x*UU*VV
func Mul(U, V PS) PS {
- Z:=mkPS();
+ Z:=mkPS()
go func() {
- <-Z.req;
- uv := get2(U,V);
+ <-Z.req
+ uv := get2(U,V)
if end(uv[0])!=0 || end(uv[1]) != 0 {
- Z.dat <- finis;
+ Z.dat <- finis
} else {
- Z.dat <- mul(uv[0],uv[1]);
- UU := Split(U);
- VV := Split(V);
- W := Add(Cmul(uv[0],VV[0]),Cmul(uv[1],UU[0]));
- <-Z.req;
- Z.dat <- get(W);
- copy(Add(W,Mul(UU[1],VV[1])),Z);
+ Z.dat <- mul(uv[0],uv[1])
+ UU := Split(U)
+ VV := Split(V)
+ W := Add(Cmul(uv[0],VV[0]),Cmul(uv[1],UU[0]))
+ <-Z.req
+ Z.dat <- get(W)
+ copy(Add(W,Mul(UU[1],VV[1])),Z)
}
- }();
- return Z;
+ }()
+ return Z
}
// Differentiate
func Diff(U PS) PS {
- Z:=mkPS();
+ Z:=mkPS()
go func() {
- <-Z.req;
- u := get(U);
+ <-Z.req
+ u := get(U)
if end(u) == 0 {
- done:=false;
+ done:=false
for i:=1; !done; i++ {
- u = get(U);
+ u = get(U)
if end(u) != 0 {
done = true
} else {
- Z.dat <- mul(itor(int64(i)),u);
- <-Z.req;
+ Z.dat <- mul(itor(int64(i)),u)
+ <-Z.req
}
}
}
- Z.dat <- finis;
- }();
- return Z;
+ Z.dat <- finis
+ }()
+ return Z
}
// Integrate, with const of integration
func Integ(c rat,U PS) PS {
- Z:=mkPS();
+ Z:=mkPS()
go func() {
- put(c,Z);
- done:=false;
+ put(c,Z)
+ done:=false
for i:=1; !done; i++ {
- <-Z.req;
- u := get(U);
+ <-Z.req
+ u := get(U)
if end(u) != 0 { done= true }
- Z.dat <- mul(i2tor(1,int64(i)),u);
+ Z.dat <- mul(i2tor(1,int64(i)),u)
}
- Z.dat <- finis;
- }();
- return Z;
+ Z.dat <- finis
+ }()
+ return Z
}
// Binomial theorem (1+x)^c
func Binom(c rat) PS {
- Z:=mkPS();
+ Z:=mkPS()
go func() {
- n := 1;
- t := itor(1);
+ n := 1
+ t := itor(1)
for c.num!=0 {
- put(t,Z);
- t = mul(mul(t,c),i2tor(1,int64(n)));
- c = sub(c,one);
- n++;
+ put(t,Z)
+ t = mul(mul(t,c),i2tor(1,int64(n)))
+ c = sub(c,one)
+ n++
}
- put(finis,Z);
- }();
- return Z;
+ put(finis,Z)
+ }()
+ return Z
}
// Reciprocal of a power series
@@ -523,19 +522,19 @@
// (u+x*UU)*(z+x*ZZ) = 1
// z = 1/u
// u*ZZ + z*UU +x*UU*ZZ = 0
-// ZZ = -UU*(z+x*ZZ)/u;
+// ZZ = -UU*(z+x*ZZ)/u
func Recip(U PS) PS {
- Z:=mkPS();
+ Z:=mkPS()
go func() {
- ZZ:=mkPS2();
- <-Z.req;
- z := inv(get(U));
- Z.dat <- z;
- split(Mul(Cmul(neg(z),U),Shift(z,ZZ[0])),ZZ);
- copy(ZZ[1],Z);
- }();
- return Z;
+ ZZ:=mkPS2()
+ <-Z.req
+ z := inv(get(U))
+ Z.dat <- z
+ split(Mul(Cmul(neg(z),U),Shift(z,ZZ[0])),ZZ)
+ copy(ZZ[1],Z)
+ }()
+ return Z
}
// Exponential of a power series with constant term 0
@@ -546,9 +545,9 @@
// integrate to get Z
func Exp(U PS) PS {
- ZZ := mkPS2();
- split(Integ(one,Mul(ZZ[0],Diff(U))),ZZ);
- return ZZ[1];
+ ZZ := mkPS2()
+ split(Integ(one,Mul(ZZ[0],Diff(U))),ZZ)
+ return ZZ[1]
}
// Substitute V for x in U, where the leading term of V is zero
@@ -558,69 +557,69 @@
// bug: a nonzero constant term is ignored
func Subst(U, V PS) PS {
- Z:= mkPS();
+ Z:= mkPS()
go func() {
- VV := Split(V);
- <-Z.req;
- u := get(U);
- Z.dat <- u;
+ VV := Split(V)
+ <-Z.req
+ u := get(U)
+ Z.dat <- u
if end(u) == 0 {
if end(get(VV[0])) != 0 {
- put(finis,Z);
+ put(finis,Z)
} else {
- copy(Mul(VV[0],Subst(U,VV[1])),Z);
+ copy(Mul(VV[0],Subst(U,VV[1])),Z)
}
}
- }();
- return Z;
+ }()
+ return Z
}
// Monomial Substition: U(c x^n)
// Each Ui is multiplied by c^i and followed by n-1 zeros
func MonSubst(U PS, c0 rat, n int) PS {
- Z:= mkPS();
+ Z:= mkPS()
go func() {
- c := one;
+ c := one
for {
- <-Z.req;
- u := get(U);
- Z.dat <- mul(u, c);
- c = mul(c, c0);
+ <-Z.req
+ u := get(U)
+ Z.dat <- mul(u, c)
+ c = mul(c, c0)
if end(u) != 0 {
- Z.dat <- finis;
- break;
+ Z.dat <- finis
+ break
}
for i := 1; i < n; i++ {
- <-Z.req;
- Z.dat <- zero;
+ <-Z.req
+ Z.dat <- zero
}
}
- }();
- return Z;
+ }()
+ return Z
}
func Init() {
- chnameserial = -1;
- seqno = 0;
- chnames = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
- zero = itor(0);
- one = itor(1);
- finis = i2tor(1,0);
- Ones = Rep(one);
- Twos = Rep(itor(2));
+ chnameserial = -1
+ seqno = 0
+ chnames = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
+ zero = itor(0)
+ one = itor(1)
+ finis = i2tor(1,0)
+ Ones = Rep(one)
+ Twos = Rep(itor(2))
}
func check(U PS, c rat, count int, str string) {
for i := 0; i < count; i++ {
- r := get(U);
+ r := get(U)
if !r.eq(c) {
- print("got: ");
- r.pr();
- print("should get ");
- c.pr();
- print("\n");
+ print("got: ")
+ r.pr()
+ print("should get ")
+ c.pr()
+ print("\n")
panic(str)
}
}
@@ -629,82 +628,82 @@
const N=10
func checka(U PS, a []rat, str string) {
for i := 0; i < N; i++ {
- check(U, a[i], 1, str);
+ check(U, a[i], 1, str)
}
}
func main() {
- Init();
+ Init()
if len(os.Args) > 1 { // print
- print("Ones: "); printn(Ones, 10);
- print("Twos: "); printn(Twos, 10);
- print("Add: "); printn(Add(Ones, Twos), 10);
- print("Diff: "); printn(Diff(Ones), 10);
- print("Integ: "); printn(Integ(zero, Ones), 10);
- print("CMul: "); printn(Cmul(neg(one), Ones), 10);
- print("Sub: "); printn(Sub(Ones, Twos), 10);
- print("Mul: "); printn(Mul(Ones, Ones), 10);
- print("Exp: "); printn(Exp(Ones), 15);
- print("MonSubst: "); printn(MonSubst(Ones, neg(one), 2), 10);
- print("ATan: "); printn(Integ(zero, MonSubst(Ones, neg(one), 2)), 10);
+ print("Ones: "); printn(Ones, 10)
+ print("Twos: "); printn(Twos, 10)
+ print("Add: "); printn(Add(Ones, Twos), 10)
+ print("Diff: "); printn(Diff(Ones), 10)
+ print("Integ: "); printn(Integ(zero, Ones), 10)
+ print("CMul: "); printn(Cmul(neg(one), Ones), 10)
+ print("Sub: "); printn(Sub(Ones, Twos), 10)
+ print("Mul: "); printn(Mul(Ones, Ones), 10)
+ print("Exp: "); printn(Exp(Ones), 15)
+ print("MonSubst: "); printn(MonSubst(Ones, neg(one), 2), 10)
+ print("ATan: "); printn(Integ(zero, MonSubst(Ones, neg(one), 2)), 10)
} else { // test
- check(Ones, one, 5, "Ones");
- check(Add(Ones, Ones), itor(2), 0, "Add Ones Ones"); // 1 1 1 1 1
- check(Add(Ones, Twos), itor(3), 0, "Add Ones Twos"); // 3 3 3 3 3
- a := make([]rat, N);
- d := Diff(Ones);
+ check(Ones, one, 5, "Ones")
+ check(Add(Ones, Ones), itor(2), 0, "Add Ones Ones") // 1 1 1 1 1
+ check(Add(Ones, Twos), itor(3), 0, "Add Ones Twos") // 3 3 3 3 3
+ a := make([]rat, N)
+ d := Diff(Ones)
for i:=0; i < N; i++ {
a[i] = itor(int64(i+1))
}
- checka(d, a, "Diff"); // 1 2 3 4 5
- in := Integ(zero, Ones);
- a[0] = zero; // integration constant
+ checka(d, a, "Diff") // 1 2 3 4 5
+ in := Integ(zero, Ones)
+ a[0] = zero // integration constant
for i:=1; i < N; i++ {
a[i] = i2tor(1, int64(i))
}
- checka(in, a, "Integ"); // 0 1 1/2 1/3 1/4 1/5
- check(Cmul(neg(one), Twos), itor(-2), 10, "CMul"); // -1 -1 -1 -1 -1
- check(Sub(Ones, Twos), itor(-1), 0, "Sub Ones Twos"); // -1 -1 -1 -1 -1
- m := Mul(Ones, Ones);
+ checka(in, a, "Integ") // 0 1 1/2 1/3 1/4 1/5
+ check(Cmul(neg(one), Twos), itor(-2), 10, "CMul") // -1 -1 -1 -1 -1
+ check(Sub(Ones, Twos), itor(-1), 0, "Sub Ones Twos") // -1 -1 -1 -1 -1
+ m := Mul(Ones, Ones)
for i:=0; i < N; i++ {
a[i] = itor(int64(i+1))
}
- checka(m, a, "Mul"); // 1 2 3 4 5
- e := Exp(Ones);
- a[0] = itor(1);
- a[1] = itor(1);
- a[2] = i2tor(3,2);
- a[3] = i2tor(13,6);
- a[4] = i2tor(73,24);
- a[5] = i2tor(167,40);
- a[6] = i2tor(4051,720);
- a[7] = i2tor(37633,5040);
- a[8] = i2tor(43817,4480);
- a[9] = i2tor(4596553,362880);
- checka(e, a, "Exp"); // 1 1 3/2 13/6 73/24
- at := Integ(zero, MonSubst(Ones, neg(one), 2));
+ checka(m, a, "Mul") // 1 2 3 4 5
+ e := Exp(Ones)
+ a[0] = itor(1)
+ a[1] = itor(1)
+ a[2] = i2tor(3,2)
+ a[3] = i2tor(13,6)
+ a[4] = i2tor(73,24)
+ a[5] = i2tor(167,40)
+ a[6] = i2tor(4051,720)
+ a[7] = i2tor(37633,5040)
+ a[8] = i2tor(43817,4480)
+ a[9] = i2tor(4596553,362880)
+ checka(e, a, "Exp") // 1 1 3/2 13/6 73/24
+ at := Integ(zero, MonSubst(Ones, neg(one), 2))
for c, i := 1, 0; i < N; i++ {
if i%2 == 0 {
a[i] = zero
} else {
- a[i] = i2tor(int64(c), int64(i));
+ a[i] = i2tor(int64(c), int64(i))
c *= -1
}
}
- checka(at, a, "ATan"); // 0 -1 0 -1/3 0 -1/5
+ checka(at, a, "ATan") // 0 -1 0 -1/3 0 -1/5
/*
- t := Revert(Integ(zero, MonSubst(Ones, neg(one), 2)));
- a[0] = zero;
- a[1] = itor(1);
- a[2] = zero;
- a[3] = i2tor(1,3);
- a[4] = zero;
- a[5] = i2tor(2,15);
- a[6] = zero;
- a[7] = i2tor(17,315);
- a[8] = zero;
- a[9] = i2tor(62,2835);
- checka(t, a, "Tan"); // 0 1 0 1/3 0 2/15
+ t := Revert(Integ(zero, MonSubst(Ones, neg(one), 2)))
+ a[0] = zero
+ a[1] = itor(1)
+ a[2] = zero
+ a[3] = i2tor(1,3)
+ a[4] = zero
+ a[5] = i2tor(2,15)
+ a[6] = zero
+ a[7] = i2tor(17,315)
+ a[8] = zero
+ a[9] = i2tor(62,2835)
+ checka(t, a, "Tan") // 0 1 0 1/3 0 2/15
*/
}
}
diff --git a/test/chan/powser2.go b/test/chan/powser2.go
index 0c523ac..bc32927 100644
--- a/test/chan/powser2.go
+++ b/test/chan/powser2.go
@@ -19,12 +19,12 @@
import "os"
type rat struct {
- num, den int64; // numerator, denominator
+ num, den int64 // numerator, denominator
}
type item interface {
- pr();
- eq(c item) bool;
+ pr()
+ eq(c item) bool
}
func (u *rat) pr(){
@@ -37,14 +37,14 @@
}
func (u *rat) eq(c item) bool {
- c1 := c.(*rat);
+ c1 := c.(*rat)
return u.num == c1.num && u.den == c1.den
}
type dch struct {
- req chan int;
- dat chan item;
- nam int;
+ req chan int
+ dat chan item
+ nam int
}
type dch2 [2] *dch
@@ -54,20 +54,20 @@
var seqno int
func mkdch() *dch {
- c := chnameserial % len(chnames);
- chnameserial++;
- d := new(dch);
- d.req = make(chan int);
- d.dat = make(chan item);
- d.nam = c;
- return d;
+ c := chnameserial % len(chnames)
+ chnameserial++
+ d := new(dch)
+ d.req = make(chan int)
+ d.dat = make(chan item)
+ d.nam = c
+ return d
}
func mkdch2() *dch2 {
- d2 := new(dch2);
- d2[0] = mkdch();
- d2[1] = mkdch();
- return d2;
+ d2 := new(dch2)
+ d2[0] = mkdch()
+ d2[1] = mkdch()
+ return d2
}
// split reads a single demand channel and replicates its
@@ -85,98 +85,97 @@
// generation to begin servicing out[1].
func dosplit(in *dch, out *dch2, wait chan int ){
- var t *dch;
- both := false; // do not service both channels
+ both := false // do not service both channels
select {
case <-out[0].req:
- ;
+
case <-wait:
- both = true;
+ both = true
select {
case <-out[0].req:
- ;
+
case <-out[1].req:
- t=out[0]; out[0]=out[1]; out[1]=t;
+ out[0],out[1] = out[1], out[0]
}
}
- seqno++;
- in.req <- seqno;
- release := make(chan int);
- go dosplit(in, out, release);
- dat := <-in.dat;
- out[0].dat <- dat;
+ seqno++
+ in.req <- seqno
+ release := make(chan int)
+ go dosplit(in, out, release)
+ dat := <-in.dat
+ out[0].dat <- dat
if !both {
<-wait
}
- <-out[1].req;
- out[1].dat <- dat;
- release <- 0;
+ <-out[1].req
+ out[1].dat <- dat
+ release <- 0
}
func split(in *dch, out *dch2){
- release := make(chan int);
- go dosplit(in, out, release);
- release <- 0;
+ release := make(chan int)
+ go dosplit(in, out, release)
+ release <- 0
}
func put(dat item, out *dch){
- <-out.req;
- out.dat <- dat;
+ <-out.req
+ out.dat <- dat
}
func get(in *dch) *rat {
- seqno++;
- in.req <- seqno;
- return (<-in.dat).(*rat);
+ seqno++
+ in.req <- seqno
+ return (<-in.dat).(*rat)
}
// Get one item from each of n demand channels
func getn(in []*dch) []item {
- n:=len(in);
- if n != 2 { panic("bad n in getn") };
- req := make([] chan int, 2);
- dat := make([] chan item, 2);
- out := make([]item, 2);
- var i int;
- var it item;
+ n:=len(in)
+ if n != 2 { panic("bad n in getn") }
+ req := make([] chan int, 2)
+ dat := make([] chan item, 2)
+ out := make([]item, 2)
+ var i int
+ var it item
for i=0; i<n; i++ {
- req[i] = in[i].req;
- dat[i] = nil;
+ req[i] = in[i].req
+ dat[i] = nil
}
for n=2*n; n>0; n-- {
- seqno++;
+ seqno++
select{
case req[0] <- seqno:
- dat[0] = in[0].dat;
- req[0] = nil;
+ dat[0] = in[0].dat
+ req[0] = nil
case req[1] <- seqno:
- dat[1] = in[1].dat;
- req[1] = nil;
+ dat[1] = in[1].dat
+ req[1] = nil
case it = <-dat[0]:
- out[0] = it;
- dat[0] = nil;
+ out[0] = it
+ dat[0] = nil
case it = <-dat[1]:
- out[1] = it;
- dat[1] = nil;
+ out[1] = it
+ dat[1] = nil
}
}
- return out;
+ return out
}
// Get one item from each of 2 demand channels
func get2(in0 *dch, in1 *dch) []item {
- return getn([]*dch{in0, in1});
+ return getn([]*dch{in0, in1})
}
func copy(in *dch, out *dch){
for {
- <-out.req;
- out.dat <- get(in);
+ <-out.req
+ out.dat <- get(in)
}
}
@@ -186,8 +185,8 @@
}
}
-type PS *dch; // power series
-type PS2 *[2] PS; // pair of power series
+type PS *dch // power series
+type PS2 *[2] PS // pair of power series
var Ones PS
var Twos PS
@@ -217,29 +216,29 @@
// Make a rational from two ints and from one int
func i2tor(u, v int64) *rat{
- g := gcd(u,v);
- r := new(rat);
+ g := gcd(u,v)
+ r := new(rat)
if v > 0 {
- r.num = u/g;
- r.den = v/g;
+ r.num = u/g
+ r.den = v/g
} else {
- r.num = -u/g;
- r.den = -v/g;
+ r.num = -u/g
+ r.den = -v/g
}
- return r;
+ return r
}
func itor(u int64) *rat{
- return i2tor(u, 1);
+ return i2tor(u, 1)
}
-var zero *rat;
-var one *rat;
+var zero *rat
+var one *rat
// End mark and end test
-var finis *rat;
+var finis *rat
func end(u *rat) int64 {
if u.den==0 { return 1 }
@@ -249,72 +248,72 @@
// Operations on rationals
func add(u, v *rat) *rat {
- g := gcd(u.den,v.den);
- return i2tor(u.num*(v.den/g)+v.num*(u.den/g),u.den*(v.den/g));
+ g := gcd(u.den,v.den)
+ return i2tor(u.num*(v.den/g)+v.num*(u.den/g),u.den*(v.den/g))
}
func mul(u, v *rat) *rat{
- g1 := gcd(u.num,v.den);
- g2 := gcd(u.den,v.num);
- r := new(rat);
- r.num =(u.num/g1)*(v.num/g2);
- r.den = (u.den/g2)*(v.den/g1);
- return r;
+ g1 := gcd(u.num,v.den)
+ g2 := gcd(u.den,v.num)
+ r := new(rat)
+ r.num =(u.num/g1)*(v.num/g2)
+ r.den = (u.den/g2)*(v.den/g1)
+ return r
}
func neg(u *rat) *rat{
- return i2tor(-u.num, u.den);
+ return i2tor(-u.num, u.den)
}
func sub(u, v *rat) *rat{
- return add(u, neg(v));
+ return add(u, neg(v))
}
func inv(u *rat) *rat{ // invert a rat
if u.num == 0 { panic("zero divide in inv") }
- return i2tor(u.den, u.num);
+ return i2tor(u.den, u.num)
}
// print eval in floating point of PS at x=c to n terms
func Evaln(c *rat, U PS, n int) {
- xn := float64(1);
- x := float64(c.num)/float64(c.den);
- val := float64(0);
+ xn := float64(1)
+ x := float64(c.num)/float64(c.den)
+ val := float64(0)
for i:=0; i<n; i++ {
- u := get(U);
+ u := get(U)
if end(u) != 0 {
- break;
+ break
}
- val = val + x * float64(u.num)/float64(u.den);
- xn = xn*x;
+ val = val + x * float64(u.num)/float64(u.den)
+ xn = xn*x
}
- print(val, "\n");
+ print(val, "\n")
}
// Print n terms of a power series
func Printn(U PS, n int){
- done := false;
+ done := false
for ; !done && n>0; n-- {
- u := get(U);
+ u := get(U)
if end(u) != 0 {
done = true
} else {
u.pr()
}
}
- print(("\n"));
+ print(("\n"))
}
func Print(U PS){
- Printn(U,1000000000);
+ Printn(U,1000000000)
}
// Evaluate n terms of power series U at x=c
func eval(c *rat, U PS, n int) *rat{
if n==0 { return zero }
- y := get(U);
+ y := get(U)
if end(y) != 0 { return zero }
- return add(y,mul(c,eval(c,U,n-1)));
+ return add(y,mul(c,eval(c,U,n-1)))
}
// Power-series constructors return channels on which power
@@ -324,105 +323,105 @@
// Make a pair of power series identical to a given power series
func Split(U PS) *dch2{
- UU := mkdch2();
- go split(U,UU);
- return UU;
+ UU := mkdch2()
+ go split(U,UU)
+ return UU
}
// Add two power series
func Add(U, V PS) PS{
- Z := mkPS();
+ Z := mkPS()
go func(U, V, Z PS){
- var uv [] item;
+ var uv [] item
for {
- <-Z.req;
- uv = get2(U,V);
+ <-Z.req
+ uv = get2(U,V)
switch end(uv[0].(*rat))+2*end(uv[1].(*rat)) {
case 0:
- Z.dat <- add(uv[0].(*rat), uv[1].(*rat));
+ Z.dat <- add(uv[0].(*rat), uv[1].(*rat))
case 1:
- Z.dat <- uv[1];
- copy(V,Z);
+ Z.dat <- uv[1]
+ copy(V,Z)
case 2:
- Z.dat <- uv[0];
- copy(U,Z);
+ Z.dat <- uv[0]
+ copy(U,Z)
case 3:
- Z.dat <- finis;
+ Z.dat <- finis
}
}
- }(U, V, Z);
- return Z;
+ }(U, V, Z)
+ return Z
}
// Multiply a power series by a constant
func Cmul(c *rat,U PS) PS{
- Z := mkPS();
+ Z := mkPS()
go func(c *rat, U, Z PS){
- done := false;
+ done := false
for !done {
- <-Z.req;
- u := get(U);
+ <-Z.req
+ u := get(U)
if end(u) != 0 {
done = true
} else {
Z.dat <- mul(c,u)
}
}
- Z.dat <- finis;
- }(c, U, Z);
- return Z;
+ Z.dat <- finis
+ }(c, U, Z)
+ return Z
}
// Subtract
func Sub(U, V PS) PS{
- return Add(U, Cmul(neg(one), V));
+ return Add(U, Cmul(neg(one), V))
}
// Multiply a power series by the monomial x^n
func Monmul(U PS, n int) PS{
- Z := mkPS();
+ Z := mkPS()
go func(n int, U PS, Z PS){
for ; n>0; n-- { put(zero,Z) }
- copy(U,Z);
- }(n, U, Z);
- return Z;
+ copy(U,Z)
+ }(n, U, Z)
+ return Z
}
// Multiply by x
func Xmul(U PS) PS{
- return Monmul(U,1);
+ return Monmul(U,1)
}
func Rep(c *rat) PS{
- Z := mkPS();
- go repeat(c,Z);
- return Z;
+ Z := mkPS()
+ go repeat(c,Z)
+ return Z
}
// Monomial c*x^n
func Mon(c *rat, n int) PS{
- Z:=mkPS();
+ Z:=mkPS()
go func(c *rat, n int, Z PS){
if(c.num!=0) {
for ; n>0; n=n-1 { put(zero,Z) }
- put(c,Z);
+ put(c,Z)
}
- put(finis,Z);
- }(c, n, Z);
- return Z;
+ put(finis,Z)
+ }(c, n, Z)
+ return Z
}
func Shift(c *rat, U PS) PS{
- Z := mkPS();
+ Z := mkPS()
go func(c *rat, U, Z PS){
- put(c,Z);
- copy(U,Z);
- }(c, U, Z);
- return Z;
+ put(c,Z)
+ copy(U,Z)
+ }(c, U, Z)
+ return Z
}
// simple pole at 1: 1/(1-x) = 1 1 1 1 1 ...
@@ -432,17 +431,17 @@
/*
func Poly(a [] *rat) PS{
- Z:=mkPS();
+ Z:=mkPS()
begin func(a [] *rat, Z PS){
- j:=0;
- done:=0;
+ j:=0
+ done:=0
for j=len(a); !done&&j>0; j=j-1)
- if(a[j-1].num!=0) done=1;
- i:=0;
- for(; i<j; i=i+1) put(a[i],Z);
- put(finis,Z);
- }();
- return Z;
+ if(a[j-1].num!=0) done=1
+ i:=0
+ for(; i<j; i=i+1) put(a[i],Z)
+ put(finis,Z)
+ }()
+ return Z
}
*/
@@ -452,82 +451,82 @@
// then UV = u*v + x*(u*VV+v*UU) + x*x*UU*VV
func Mul(U, V PS) PS{
- Z:=mkPS();
+ Z:=mkPS()
go func(U, V, Z PS){
- <-Z.req;
- uv := get2(U,V);
+ <-Z.req
+ uv := get2(U,V)
if end(uv[0].(*rat))!=0 || end(uv[1].(*rat)) != 0 {
- Z.dat <- finis;
+ Z.dat <- finis
} else {
- Z.dat <- mul(uv[0].(*rat),uv[1].(*rat));
- UU := Split(U);
- VV := Split(V);
- W := Add(Cmul(uv[0].(*rat),VV[0]),Cmul(uv[1].(*rat),UU[0]));
- <-Z.req;
- Z.dat <- get(W);
- copy(Add(W,Mul(UU[1],VV[1])),Z);
+ Z.dat <- mul(uv[0].(*rat),uv[1].(*rat))
+ UU := Split(U)
+ VV := Split(V)
+ W := Add(Cmul(uv[0].(*rat),VV[0]),Cmul(uv[1].(*rat),UU[0]))
+ <-Z.req
+ Z.dat <- get(W)
+ copy(Add(W,Mul(UU[1],VV[1])),Z)
}
- }(U, V, Z);
- return Z;
+ }(U, V, Z)
+ return Z
}
// Differentiate
func Diff(U PS) PS{
- Z:=mkPS();
+ Z:=mkPS()
go func(U, Z PS){
- <-Z.req;
- u := get(U);
+ <-Z.req
+ u := get(U)
if end(u) == 0 {
- done:=false;
+ done:=false
for i:=1; !done; i++ {
- u = get(U);
+ u = get(U)
if end(u) != 0 {
done=true
} else {
- Z.dat <- mul(itor(int64(i)),u);
- <-Z.req;
+ Z.dat <- mul(itor(int64(i)),u)
+ <-Z.req
}
}
}
- Z.dat <- finis;
- }(U, Z);
- return Z;
+ Z.dat <- finis
+ }(U, Z)
+ return Z
}
// Integrate, with const of integration
func Integ(c *rat,U PS) PS{
- Z:=mkPS();
+ Z:=mkPS()
go func(c *rat, U, Z PS){
- put(c,Z);
- done:=false;
+ put(c,Z)
+ done:=false
for i:=1; !done; i++ {
- <-Z.req;
- u := get(U);
+ <-Z.req
+ u := get(U)
if end(u) != 0 { done= true }
- Z.dat <- mul(i2tor(1,int64(i)),u);
+ Z.dat <- mul(i2tor(1,int64(i)),u)
}
- Z.dat <- finis;
- }(c, U, Z);
- return Z;
+ Z.dat <- finis
+ }(c, U, Z)
+ return Z
}
// Binomial theorem (1+x)^c
func Binom(c *rat) PS{
- Z:=mkPS();
+ Z:=mkPS()
go func(c *rat, Z PS){
- n := 1;
- t := itor(1);
+ n := 1
+ t := itor(1)
for c.num!=0 {
- put(t,Z);
- t = mul(mul(t,c),i2tor(1,int64(n)));
- c = sub(c,one);
- n++;
+ put(t,Z)
+ t = mul(mul(t,c),i2tor(1,int64(n)))
+ c = sub(c,one)
+ n++
}
- put(finis,Z);
- }(c, Z);
- return Z;
+ put(finis,Z)
+ }(c, Z)
+ return Z
}
// Reciprocal of a power series
@@ -536,19 +535,19 @@
// (u+x*UU)*(z+x*ZZ) = 1
// z = 1/u
// u*ZZ + z*UU +x*UU*ZZ = 0
-// ZZ = -UU*(z+x*ZZ)/u;
+// ZZ = -UU*(z+x*ZZ)/u
func Recip(U PS) PS{
- Z:=mkPS();
+ Z:=mkPS()
go func(U, Z PS){
- ZZ:=mkPS2();
- <-Z.req;
- z := inv(get(U));
- Z.dat <- z;
- split(Mul(Cmul(neg(z),U),Shift(z,ZZ[0])),ZZ);
- copy(ZZ[1],Z);
- }(U, Z);
- return Z;
+ ZZ:=mkPS2()
+ <-Z.req
+ z := inv(get(U))
+ Z.dat <- z
+ split(Mul(Cmul(neg(z),U),Shift(z,ZZ[0])),ZZ)
+ copy(ZZ[1],Z)
+ }(U, Z)
+ return Z
}
// Exponential of a power series with constant term 0
@@ -559,9 +558,9 @@
// integrate to get Z
func Exp(U PS) PS{
- ZZ := mkPS2();
- split(Integ(one,Mul(ZZ[0],Diff(U))),ZZ);
- return ZZ[1];
+ ZZ := mkPS2()
+ split(Integ(one,Mul(ZZ[0],Diff(U))),ZZ)
+ return ZZ[1]
}
// Substitute V for x in U, where the leading term of V is zero
@@ -571,69 +570,69 @@
// bug: a nonzero constant term is ignored
func Subst(U, V PS) PS {
- Z:= mkPS();
+ Z:= mkPS()
go func(U, V, Z PS) {
- VV := Split(V);
- <-Z.req;
- u := get(U);
- Z.dat <- u;
+ VV := Split(V)
+ <-Z.req
+ u := get(U)
+ Z.dat <- u
if end(u) == 0 {
if end(get(VV[0])) != 0 {
- put(finis,Z);
+ put(finis,Z)
} else {
- copy(Mul(VV[0],Subst(U,VV[1])),Z);
+ copy(Mul(VV[0],Subst(U,VV[1])),Z)
}
}
- }(U, V, Z);
- return Z;
+ }(U, V, Z)
+ return Z
}
// Monomial Substition: U(c x^n)
// Each Ui is multiplied by c^i and followed by n-1 zeros
func MonSubst(U PS, c0 *rat, n int) PS {
- Z:= mkPS();
+ Z:= mkPS()
go func(U, Z PS, c0 *rat, n int) {
- c := one;
+ c := one
for {
- <-Z.req;
- u := get(U);
- Z.dat <- mul(u, c);
- c = mul(c, c0);
+ <-Z.req
+ u := get(U)
+ Z.dat <- mul(u, c)
+ c = mul(c, c0)
if end(u) != 0 {
- Z.dat <- finis;
- break;
+ Z.dat <- finis
+ break
}
for i := 1; i < n; i++ {
- <-Z.req;
- Z.dat <- zero;
+ <-Z.req
+ Z.dat <- zero
}
}
- }(U, Z, c0, n);
- return Z;
+ }(U, Z, c0, n)
+ return Z
}
func Init() {
- chnameserial = -1;
- seqno = 0;
- chnames = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
- zero = itor(0);
- one = itor(1);
- finis = i2tor(1,0);
- Ones = Rep(one);
- Twos = Rep(itor(2));
+ chnameserial = -1
+ seqno = 0
+ chnames = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
+ zero = itor(0)
+ one = itor(1)
+ finis = i2tor(1,0)
+ Ones = Rep(one)
+ Twos = Rep(itor(2))
}
func check(U PS, c *rat, count int, str string) {
for i := 0; i < count; i++ {
- r := get(U);
+ r := get(U)
if !r.eq(c) {
- print("got: ");
- r.pr();
- print("should get ");
- c.pr();
- print("\n");
+ print("got: ")
+ r.pr()
+ print("should get ")
+ c.pr()
+ print("\n")
panic(str)
}
}
@@ -642,82 +641,82 @@
const N=10
func checka(U PS, a []*rat, str string) {
for i := 0; i < N; i++ {
- check(U, a[i], 1, str);
+ check(U, a[i], 1, str)
}
}
func main() {
- Init();
+ Init()
if len(os.Args) > 1 { // print
- print("Ones: "); Printn(Ones, 10);
- print("Twos: "); Printn(Twos, 10);
- print("Add: "); Printn(Add(Ones, Twos), 10);
- print("Diff: "); Printn(Diff(Ones), 10);
- print("Integ: "); Printn(Integ(zero, Ones), 10);
- print("CMul: "); Printn(Cmul(neg(one), Ones), 10);
- print("Sub: "); Printn(Sub(Ones, Twos), 10);
- print("Mul: "); Printn(Mul(Ones, Ones), 10);
- print("Exp: "); Printn(Exp(Ones), 15);
- print("MonSubst: "); Printn(MonSubst(Ones, neg(one), 2), 10);
- print("ATan: "); Printn(Integ(zero, MonSubst(Ones, neg(one), 2)), 10);
+ print("Ones: "); Printn(Ones, 10)
+ print("Twos: "); Printn(Twos, 10)
+ print("Add: "); Printn(Add(Ones, Twos), 10)
+ print("Diff: "); Printn(Diff(Ones), 10)
+ print("Integ: "); Printn(Integ(zero, Ones), 10)
+ print("CMul: "); Printn(Cmul(neg(one), Ones), 10)
+ print("Sub: "); Printn(Sub(Ones, Twos), 10)
+ print("Mul: "); Printn(Mul(Ones, Ones), 10)
+ print("Exp: "); Printn(Exp(Ones), 15)
+ print("MonSubst: "); Printn(MonSubst(Ones, neg(one), 2), 10)
+ print("ATan: "); Printn(Integ(zero, MonSubst(Ones, neg(one), 2)), 10)
} else { // test
- check(Ones, one, 5, "Ones");
- check(Add(Ones, Ones), itor(2), 0, "Add Ones Ones"); // 1 1 1 1 1
- check(Add(Ones, Twos), itor(3), 0, "Add Ones Twos"); // 3 3 3 3 3
- a := make([]*rat, N);
- d := Diff(Ones);
+ check(Ones, one, 5, "Ones")
+ check(Add(Ones, Ones), itor(2), 0, "Add Ones Ones") // 1 1 1 1 1
+ check(Add(Ones, Twos), itor(3), 0, "Add Ones Twos") // 3 3 3 3 3
+ a := make([]*rat, N)
+ d := Diff(Ones)
for i:=0; i < N; i++ {
a[i] = itor(int64(i+1))
}
- checka(d, a, "Diff"); // 1 2 3 4 5
- in := Integ(zero, Ones);
- a[0] = zero; // integration constant
+ checka(d, a, "Diff") // 1 2 3 4 5
+ in := Integ(zero, Ones)
+ a[0] = zero // integration constant
for i:=1; i < N; i++ {
a[i] = i2tor(1, int64(i))
}
- checka(in, a, "Integ"); // 0 1 1/2 1/3 1/4 1/5
- check(Cmul(neg(one), Twos), itor(-2), 10, "CMul"); // -1 -1 -1 -1 -1
- check(Sub(Ones, Twos), itor(-1), 0, "Sub Ones Twos"); // -1 -1 -1 -1 -1
- m := Mul(Ones, Ones);
+ checka(in, a, "Integ") // 0 1 1/2 1/3 1/4 1/5
+ check(Cmul(neg(one), Twos), itor(-2), 10, "CMul") // -1 -1 -1 -1 -1
+ check(Sub(Ones, Twos), itor(-1), 0, "Sub Ones Twos") // -1 -1 -1 -1 -1
+ m := Mul(Ones, Ones)
for i:=0; i < N; i++ {
a[i] = itor(int64(i+1))
}
- checka(m, a, "Mul"); // 1 2 3 4 5
- e := Exp(Ones);
- a[0] = itor(1);
- a[1] = itor(1);
- a[2] = i2tor(3,2);
- a[3] = i2tor(13,6);
- a[4] = i2tor(73,24);
- a[5] = i2tor(167,40);
- a[6] = i2tor(4051,720);
- a[7] = i2tor(37633,5040);
- a[8] = i2tor(43817,4480);
- a[9] = i2tor(4596553,362880);
- checka(e, a, "Exp"); // 1 1 3/2 13/6 73/24
- at := Integ(zero, MonSubst(Ones, neg(one), 2));
+ checka(m, a, "Mul") // 1 2 3 4 5
+ e := Exp(Ones)
+ a[0] = itor(1)
+ a[1] = itor(1)
+ a[2] = i2tor(3,2)
+ a[3] = i2tor(13,6)
+ a[4] = i2tor(73,24)
+ a[5] = i2tor(167,40)
+ a[6] = i2tor(4051,720)
+ a[7] = i2tor(37633,5040)
+ a[8] = i2tor(43817,4480)
+ a[9] = i2tor(4596553,362880)
+ checka(e, a, "Exp") // 1 1 3/2 13/6 73/24
+ at := Integ(zero, MonSubst(Ones, neg(one), 2))
for c, i := 1, 0; i < N; i++ {
if i%2 == 0 {
a[i] = zero
} else {
- a[i] = i2tor(int64(c), int64(i));
+ a[i] = i2tor(int64(c), int64(i))
c *= -1
}
}
checka(at, a, "ATan"); // 0 -1 0 -1/3 0 -1/5
/*
- t := Revert(Integ(zero, MonSubst(Ones, neg(one), 2)));
- a[0] = zero;
- a[1] = itor(1);
- a[2] = zero;
- a[3] = i2tor(1,3);
- a[4] = zero;
- a[5] = i2tor(2,15);
- a[6] = zero;
- a[7] = i2tor(17,315);
- a[8] = zero;
- a[9] = i2tor(62,2835);
- checka(t, a, "Tan"); // 0 1 0 1/3 0 2/15
+ t := Revert(Integ(zero, MonSubst(Ones, neg(one), 2)))
+ a[0] = zero
+ a[1] = itor(1)
+ a[2] = zero
+ a[3] = i2tor(1,3)
+ a[4] = zero
+ a[5] = i2tor(2,15)
+ a[6] = zero
+ a[7] = i2tor(17,315)
+ a[8] = zero
+ a[9] = i2tor(62,2835)
+ checka(t, a, "Tan") // 0 1 0 1/3 0 2/15
*/
}
}