blob: d843fc3fda1ead0b7708ed7164013ca603ae4322 [file] [log] [blame]
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
// fuseIntegerComparisons optimizes inequalities such as '1 <= x && x < 5',
// which can be optimized to 'unsigned(x-1) < 4'.
//
// Look for branch structure like:
//
// p
// |\
// | b
// |/ \
// s0 s1
//
// In our example, p has control '1 <= x', b has control 'x < 5',
// and s0 and s1 are the if and else results of the comparison.
//
// This will be optimized into:
//
// p
// \
// b
// / \
// s0 s1
//
// where b has the combined control value 'unsigned(x-1) < 4'.
// Later passes will then fuse p and b.
func fuseIntegerComparisons(b *Block) bool {
if len(b.Preds) != 1 {
return false
}
p := b.Preds[0].Block()
if b.Kind != BlockIf || p.Kind != BlockIf {
return false
}
// Don't merge control values if b is likely to be bypassed anyway.
if p.Likely == BranchLikely && p.Succs[0].Block() != b {
return false
}
if p.Likely == BranchUnlikely && p.Succs[1].Block() != b {
return false
}
// Check if the control values combine to make an integer inequality that
// can be further optimized later.
bc := b.Controls[0]
pc := p.Controls[0]
if !areMergeableInequalities(bc, pc) {
return false
}
// If the first (true) successors match then we have a disjunction (||).
// If the second (false) successors match then we have a conjunction (&&).
for i, op := range [2]Op{OpOrB, OpAndB} {
if p.Succs[i].Block() != b.Succs[i].Block() {
continue
}
// TODO(mundaym): should we also check the cost of executing b?
// Currently we might speculatively execute b even if b contains
// a lot of instructions. We could just check that len(b.Values)
// is lower than a fixed amount. Bear in mind however that the
// other optimization passes might yet reduce the cost of b
// significantly so we shouldn't be overly conservative.
if !canSpeculativelyExecute(b) {
return false
}
// Logically combine the control values for p and b.
v := b.NewValue0(bc.Pos, op, bc.Type)
v.AddArg(pc)
v.AddArg(bc)
// Set the combined control value as the control value for b.
b.SetControl(v)
// Modify p so that it jumps directly to b.
p.removeEdge(i)
p.Kind = BlockPlain
p.Likely = BranchUnknown
p.ResetControls()
return true
}
// TODO: could negate condition(s) to merge controls.
return false
}
// getConstIntArgIndex returns the index of the first argument that is a
// constant integer or -1 if no such argument exists.
func getConstIntArgIndex(v *Value) int {
for i, a := range v.Args {
switch a.Op {
case OpConst8, OpConst16, OpConst32, OpConst64:
return i
}
}
return -1
}
// isSignedInequality reports whether op represents the inequality < or ≤
// in the signed domain.
func isSignedInequality(v *Value) bool {
switch v.Op {
case OpLess64, OpLess32, OpLess16, OpLess8,
OpLeq64, OpLeq32, OpLeq16, OpLeq8:
return true
}
return false
}
// isUnsignedInequality reports whether op represents the inequality < or ≤
// in the unsigned domain.
func isUnsignedInequality(v *Value) bool {
switch v.Op {
case OpLess64U, OpLess32U, OpLess16U, OpLess8U,
OpLeq64U, OpLeq32U, OpLeq16U, OpLeq8U:
return true
}
return false
}
func areMergeableInequalities(x, y *Value) bool {
// We need both inequalities to be either in the signed or unsigned domain.
// TODO(mundaym): it would also be good to merge when we have an Eq op that
// could be transformed into a Less/Leq. For example in the unsigned
// domain 'x == 0 || 3 < x' is equivalent to 'x <= 0 || 3 < x'
inequalityChecks := [...]func(*Value) bool{
isSignedInequality,
isUnsignedInequality,
}
for _, f := range inequalityChecks {
if !f(x) || !f(y) {
continue
}
// Check that both inequalities are comparisons with constants.
xi := getConstIntArgIndex(x)
if xi < 0 {
return false
}
yi := getConstIntArgIndex(y)
if yi < 0 {
return false
}
// Check that the non-constant arguments to the inequalities
// are the same.
return x.Args[xi^1] == y.Args[yi^1]
}
return false
}