blob: 1fb15113614550d0653b08c4d4f00b5be84fc49b [file] [log] [blame]
// Derived from Inferno utils/6c/txt.c
// http://code.google.com/p/inferno-os/source/browse/utils/6c/txt.c
//
// Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved.
// Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
// Portions Copyright © 1997-1999 Vita Nuova Limited
// Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
// Portions Copyright © 2004,2006 Bruce Ellis
// Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
// Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
// Portions Copyright © 2009 The Go Authors. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#include <u.h>
#include <libc.h>
#include "gg.h"
#include "../../runtime/funcdata.h"
// TODO(rsc): Can make this bigger if we move
// the text segment up higher in 6l for all GOOS.
// At the same time, can raise StackBig in ../../runtime/stack.h.
vlong unmappedzero = 4096;
static int resvd[] =
{
REGZERO,
REGSP, // reserved for SP
// We need to preserve the C ABI TLS pointer because sigtramp
// may happen during C code and needs to access the g. C
// clobbers REGG, so if Go were to clobber REGTLS, sigtramp
// won't know which convention to use. By preserving REGTLS,
// we can just retrieve g from TLS when we aren't sure.
REGTLS,
// TODO(austin): Consolidate REGTLS and REGG?
REGG,
REGTMP, // REGTMP
FREGCVI,
FREGZERO,
FREGHALF,
FREGONE,
FREGTWO,
};
void
ginit(void)
{
int i;
for(i=0; i<nelem(reg); i++)
reg[i] = 1;
for(i=0; i<NREG+NFREG; i++)
reg[i] = 0;
for(i=0; i<nelem(resvd); i++)
reg[resvd[i] - REG_R0]++;
}
static uintptr regpc[nelem(reg)];
void
gclean(void)
{
int i;
for(i=0; i<nelem(resvd); i++)
reg[resvd[i] - REG_R0]--;
for(i=0; i<nelem(reg); i++)
if(reg[i])
yyerror("reg %R left allocated, %p\n", i+REG_R0, regpc[i]);
}
int
anyregalloc(void)
{
int i, j;
for(i=0; i<nelem(reg); i++) {
if(reg[i] == 0)
goto ok;
for(j=0; j<nelem(resvd); j++)
if(resvd[j] == i)
goto ok;
return 1;
ok:;
}
return 0;
}
/*
* allocate register of type t, leave in n.
* if o != N, o is desired fixed register.
* caller must regfree(n).
*/
void
regalloc(Node *n, Type *t, Node *o)
{
int i, et;
int fixfree, fltfree;
if(t == T)
fatal("regalloc: t nil");
et = simtype[t->etype];
if(debug['r']) {
fixfree = 0;
fltfree = 0;
for(i = REG_R0; i < REG_F31; i++)
if(reg[i - REG_R0] == 0) {
if(i < REG_F0)
fixfree++;
else
fltfree++;
}
print("regalloc fix %d flt %d free\n", fixfree, fltfree);
}
switch(et) {
case TINT8:
case TUINT8:
case TINT16:
case TUINT16:
case TINT32:
case TUINT32:
case TINT64:
case TUINT64:
case TPTR32:
case TPTR64:
case TBOOL:
if(o != N && o->op == OREGISTER) {
i = o->val.u.reg;
if(i >= REGMIN && i <= REGMAX)
goto out;
}
for(i=REGMIN; i<=REGMAX; i++)
if(reg[i - REG_R0] == 0) {
regpc[i - REG_R0] = (uintptr)getcallerpc(&n);
goto out;
}
flusherrors();
for(i=REG_R0; i<REG_R0+NREG; i++)
print("R%d %p\n", i, regpc[i - REG_R0]);
fatal("out of fixed registers");
case TFLOAT32:
case TFLOAT64:
if(o != N && o->op == OREGISTER) {
i = o->val.u.reg;
if(i >= FREGMIN && i <= FREGMAX)
goto out;
}
for(i=FREGMIN; i<=FREGMAX; i++)
if(reg[i - REG_R0] == 0) {
regpc[i - REG_R0] = (uintptr)getcallerpc(&n);
goto out;
}
flusherrors();
for(i=REG_F0; i<REG_F0+NREG; i++)
print("F%d %p\n", i, regpc[i - REG_R0]);
fatal("out of floating registers");
case TCOMPLEX64:
case TCOMPLEX128:
tempname(n, t);
return;
}
fatal("regalloc: unknown type %T", t);
return;
out:
reg[i - REG_R0]++;
nodreg(n, t, i);
}
void
regfree(Node *n)
{
int i;
if(n->op == ONAME)
return;
if(n->op != OREGISTER && n->op != OINDREG)
fatal("regfree: not a register");
i = n->val.u.reg - REG_R0;
if(i == REGSP - REG_R0)
return;
if(i < 0 || i >= nelem(reg))
fatal("regfree: reg out of range");
if(reg[i] <= 0)
fatal("regfree: reg not allocated");
reg[i]--;
if(reg[i] == 0)
regpc[i] = 0;
}
/*
* generate
* as $c, n
*/
void
ginscon(int as, vlong c, Node *n2)
{
Node n1, ntmp;
nodconst(&n1, types[TINT64], c);
if(as != AMOVD && (c < -BIG || c > BIG)) {
// cannot have more than 16-bit of immediate in ADD, etc.
// instead, MOV into register first.
regalloc(&ntmp, types[TINT64], N);
gins(AMOVD, &n1, &ntmp);
gins(as, &ntmp, n2);
regfree(&ntmp);
return;
}
gins(as, &n1, n2);
}
/*
* generate
* as n, $c (CMP/CMPU)
*/
void
ginscon2(int as, Node *n2, vlong c)
{
Node n1, ntmp;
nodconst(&n1, types[TINT64], c);
switch(as) {
default:
fatal("ginscon2");
case ACMP:
if(-BIG <= c && c <= BIG) {
gins(as, n2, &n1);
return;
}
break;
case ACMPU:
if(0 <= c && c <= 2*BIG) {
gins(as, n2, &n1);
return;
}
break;
}
// MOV n1 into register first
regalloc(&ntmp, types[TINT64], N);
gins(AMOVD, &n1, &ntmp);
gins(as, n2, &ntmp);
regfree(&ntmp);
}
#define CASE(a,b) (((a)<<16)|((b)<<0))
/*c2go int CASE(int, int); */
/*
* set up nodes representing 2^63
*/
Node bigi;
Node bigf;
void
bignodes(void)
{
static int did;
if(did)
return;
did = 1;
nodconst(&bigi, types[TUINT64], 1);
mpshiftfix(bigi.val.u.xval, 63);
bigf = bigi;
bigf.type = types[TFLOAT64];
bigf.val.ctype = CTFLT;
bigf.val.u.fval = mal(sizeof *bigf.val.u.fval);
mpmovefixflt(bigf.val.u.fval, bigi.val.u.xval);
}
/*
* generate move:
* t = f
* hard part is conversions.
*/
void
gmove(Node *f, Node *t)
{
int a, ft, tt;
Type *cvt;
Node r1, r2, r3, con;
Prog *p1, *p2;
if(debug['M'])
print("gmove %lN -> %lN\n", f, t);
ft = simsimtype(f->type);
tt = simsimtype(t->type);
cvt = t->type;
if(iscomplex[ft] || iscomplex[tt]) {
complexmove(f, t);
return;
}
// cannot have two memory operands
if(ismem(f) && ismem(t))
goto hard;
// convert constant to desired type
if(f->op == OLITERAL) {
switch(tt) {
default:
convconst(&con, t->type, &f->val);
break;
case TINT32:
case TINT16:
case TINT8:
convconst(&con, types[TINT64], &f->val);
regalloc(&r1, con.type, t);
gins(AMOVD, &con, &r1);
gmove(&r1, t);
regfree(&r1);
return;
case TUINT32:
case TUINT16:
case TUINT8:
convconst(&con, types[TUINT64], &f->val);
regalloc(&r1, con.type, t);
gins(AMOVD, &con, &r1);
gmove(&r1, t);
regfree(&r1);
return;
}
f = &con;
ft = tt; // so big switch will choose a simple mov
// constants can't move directly to memory.
if(ismem(t)) {
goto hard;
// float constants come from memory.
//if(isfloat[tt])
// goto hard;
// 64-bit immediates are also from memory.
//if(isint[tt])
// goto hard;
//// 64-bit immediates are really 32-bit sign-extended
//// unless moving into a register.
//if(isint[tt]) {
// if(mpcmpfixfix(con.val.u.xval, minintval[TINT32]) < 0)
// goto hard;
// if(mpcmpfixfix(con.val.u.xval, maxintval[TINT32]) > 0)
// goto hard;
//}
}
}
// value -> value copy, only one memory operand.
// figure out the instruction to use.
// break out of switch for one-instruction gins.
// goto rdst for "destination must be register".
// goto hard for "convert to cvt type first".
// otherwise handle and return.
switch(CASE(ft, tt)) {
default:
fatal("gmove %lT -> %lT", f->type, t->type);
/*
* integer copy and truncate
*/
case CASE(TINT8, TINT8): // same size
case CASE(TUINT8, TINT8):
case CASE(TINT16, TINT8): // truncate
case CASE(TUINT16, TINT8):
case CASE(TINT32, TINT8):
case CASE(TUINT32, TINT8):
case CASE(TINT64, TINT8):
case CASE(TUINT64, TINT8):
a = AMOVB;
break;
case CASE(TINT8, TUINT8): // same size
case CASE(TUINT8, TUINT8):
case CASE(TINT16, TUINT8): // truncate
case CASE(TUINT16, TUINT8):
case CASE(TINT32, TUINT8):
case CASE(TUINT32, TUINT8):
case CASE(TINT64, TUINT8):
case CASE(TUINT64, TUINT8):
a = AMOVBZ;
break;
case CASE(TINT16, TINT16): // same size
case CASE(TUINT16, TINT16):
case CASE(TINT32, TINT16): // truncate
case CASE(TUINT32, TINT16):
case CASE(TINT64, TINT16):
case CASE(TUINT64, TINT16):
a = AMOVH;
break;
case CASE(TINT16, TUINT16): // same size
case CASE(TUINT16, TUINT16):
case CASE(TINT32, TUINT16): // truncate
case CASE(TUINT32, TUINT16):
case CASE(TINT64, TUINT16):
case CASE(TUINT64, TUINT16):
a = AMOVHZ;
break;
case CASE(TINT32, TINT32): // same size
case CASE(TUINT32, TINT32):
case CASE(TINT64, TINT32): // truncate
case CASE(TUINT64, TINT32):
a = AMOVW;
break;
case CASE(TINT32, TUINT32): // same size
case CASE(TUINT32, TUINT32):
case CASE(TINT64, TUINT32):
case CASE(TUINT64, TUINT32):
a = AMOVWZ;
break;
case CASE(TINT64, TINT64): // same size
case CASE(TINT64, TUINT64):
case CASE(TUINT64, TINT64):
case CASE(TUINT64, TUINT64):
a = AMOVD;
break;
/*
* integer up-conversions
*/
case CASE(TINT8, TINT16): // sign extend int8
case CASE(TINT8, TUINT16):
case CASE(TINT8, TINT32):
case CASE(TINT8, TUINT32):
case CASE(TINT8, TINT64):
case CASE(TINT8, TUINT64):
a = AMOVB;
goto rdst;
case CASE(TUINT8, TINT16): // zero extend uint8
case CASE(TUINT8, TUINT16):
case CASE(TUINT8, TINT32):
case CASE(TUINT8, TUINT32):
case CASE(TUINT8, TINT64):
case CASE(TUINT8, TUINT64):
a = AMOVBZ;
goto rdst;
case CASE(TINT16, TINT32): // sign extend int16
case CASE(TINT16, TUINT32):
case CASE(TINT16, TINT64):
case CASE(TINT16, TUINT64):
a = AMOVH;
goto rdst;
case CASE(TUINT16, TINT32): // zero extend uint16
case CASE(TUINT16, TUINT32):
case CASE(TUINT16, TINT64):
case CASE(TUINT16, TUINT64):
a = AMOVHZ;
goto rdst;
case CASE(TINT32, TINT64): // sign extend int32
case CASE(TINT32, TUINT64):
a = AMOVW;
goto rdst;
case CASE(TUINT32, TINT64): // zero extend uint32
case CASE(TUINT32, TUINT64):
a = AMOVWZ;
goto rdst;
/*
* float to integer
*/
case CASE(TFLOAT32, TINT32):
case CASE(TFLOAT64, TINT32):
case CASE(TFLOAT32, TINT64):
case CASE(TFLOAT64, TINT64):
case CASE(TFLOAT32, TINT16):
case CASE(TFLOAT32, TINT8):
case CASE(TFLOAT32, TUINT16):
case CASE(TFLOAT32, TUINT8):
case CASE(TFLOAT64, TINT16):
case CASE(TFLOAT64, TINT8):
case CASE(TFLOAT64, TUINT16):
case CASE(TFLOAT64, TUINT8):
case CASE(TFLOAT32, TUINT32):
case CASE(TFLOAT64, TUINT32):
case CASE(TFLOAT32, TUINT64):
case CASE(TFLOAT64, TUINT64):
//warn("gmove: convert float to int not implemented: %N -> %N\n", f, t);
//return;
// algorithm is:
// if small enough, use native float64 -> int64 conversion.
// otherwise, subtract 2^63, convert, and add it back.
bignodes();
regalloc(&r1, types[ft], f);
gmove(f, &r1);
if(tt == TUINT64) {
regalloc(&r2, types[TFLOAT64], N);
gmove(&bigf, &r2);
gins(AFCMPU, &r1, &r2);
p1 = gbranch(optoas(OLT, types[TFLOAT64]), T, +1);
gins(AFSUB, &r2, &r1);
patch(p1, pc);
regfree(&r2);
}
regalloc(&r2, types[TFLOAT64], N);
regalloc(&r3, types[TINT64], t);
gins(AFCTIDZ, &r1, &r2);
p1 = gins(AFMOVD, &r2, N);
p1->to.type = TYPE_MEM;
p1->to.reg = REGSP;
p1->to.offset = -8;
p1 = gins(AMOVD, N, &r3);
p1->from.type = TYPE_MEM;
p1->from.reg = REGSP;
p1->from.offset = -8;
regfree(&r2);
regfree(&r1);
if(tt == TUINT64) {
p1 = gbranch(optoas(OLT, types[TFLOAT64]), T, +1); // use CR0 here again
nodreg(&r1, types[TINT64], REGTMP);
gins(AMOVD, &bigi, &r1);
gins(AADD, &r1, &r3);
patch(p1, pc);
}
gmove(&r3, t);
regfree(&r3);
return;
/*
* integer to float
*/
case CASE(TINT32, TFLOAT32):
case CASE(TINT32, TFLOAT64):
case CASE(TINT64, TFLOAT32):
case CASE(TINT64, TFLOAT64):
case CASE(TINT16, TFLOAT32):
case CASE(TINT16, TFLOAT64):
case CASE(TINT8, TFLOAT32):
case CASE(TINT8, TFLOAT64):
case CASE(TUINT16, TFLOAT32):
case CASE(TUINT16, TFLOAT64):
case CASE(TUINT8, TFLOAT32):
case CASE(TUINT8, TFLOAT64):
case CASE(TUINT32, TFLOAT32):
case CASE(TUINT32, TFLOAT64):
case CASE(TUINT64, TFLOAT32):
case CASE(TUINT64, TFLOAT64):
//warn("gmove: convert int to float not implemented: %N -> %N\n", f, t);
//return;
// algorithm is:
// if small enough, use native int64 -> uint64 conversion.
// otherwise, halve (rounding to odd?), convert, and double.
bignodes();
regalloc(&r1, types[TINT64], N);
gmove(f, &r1);
if(ft == TUINT64) {
nodreg(&r2, types[TUINT64], REGTMP);
gmove(&bigi, &r2);
gins(ACMPU, &r1, &r2);
p1 = gbranch(optoas(OLT, types[TUINT64]), T, +1);
p2 = gins(ASRD, N, &r1);
p2->from.type = TYPE_CONST;
p2->from.offset = 1;
patch(p1, pc);
}
regalloc(&r2, types[TFLOAT64], t);
p1 = gins(AMOVD, &r1, N);
p1->to.type = TYPE_MEM;
p1->to.reg = REGSP;
p1->to.offset = -8;
p1 = gins(AFMOVD, N, &r2);
p1->from.type = TYPE_MEM;
p1->from.reg = REGSP;
p1->from.offset = -8;
gins(AFCFID, &r2, &r2);
regfree(&r1);
if(ft == TUINT64) {
p1 = gbranch(optoas(OLT, types[TUINT64]), T, +1); // use CR0 here again
nodreg(&r1, types[TFLOAT64], FREGTWO);
gins(AFMUL, &r1, &r2);
patch(p1, pc);
}
gmove(&r2, t);
regfree(&r2);
return;
/*
* float to float
*/
case CASE(TFLOAT32, TFLOAT32):
a = AFMOVS;
break;
case CASE(TFLOAT64, TFLOAT64):
a = AFMOVD;
break;
case CASE(TFLOAT32, TFLOAT64):
a = AFMOVS;
goto rdst;
case CASE(TFLOAT64, TFLOAT32):
a = AFRSP;
goto rdst;
}
gins(a, f, t);
return;
rdst:
// requires register destination
regalloc(&r1, t->type, t);
gins(a, f, &r1);
gmove(&r1, t);
regfree(&r1);
return;
hard:
// requires register intermediate
regalloc(&r1, cvt, t);
gmove(f, &r1);
gmove(&r1, t);
regfree(&r1);
return;
}
/*
* generate one instruction:
* as f, t
*/
Prog*
gins(int as, Node *f, Node *t)
{
int32 w;
Prog *p;
Addr af, at;
// TODO(austin): Add self-move test like in 6g (but be careful
// of truncation moves)
memset(&af, 0, sizeof af);
memset(&at, 0, sizeof at);
if(f != N)
naddr(f, &af, 1);
if(t != N)
naddr(t, &at, 1);
p = prog(as);
if(f != N)
p->from = af;
if(t != N)
p->to = at;
if(debug['g'])
print("%P\n", p);
w = 0;
switch(as) {
case AMOVB:
case AMOVBU:
case AMOVBZ:
case AMOVBZU:
w = 1;
break;
case AMOVH:
case AMOVHU:
case AMOVHZ:
case AMOVHZU:
w = 2;
break;
case AMOVW:
case AMOVWU:
case AMOVWZ:
case AMOVWZU:
w = 4;
break;
case AMOVD:
case AMOVDU:
if(af.type == TYPE_CONST || af.type == TYPE_ADDR)
break;
w = 8;
break;
}
if(w != 0 && ((f != N && af.width < w) || (t != N && at.type != TYPE_REG && at.width > w))) {
dump("f", f);
dump("t", t);
fatal("bad width: %P (%d, %d)\n", p, af.width, at.width);
}
return p;
}
void
fixlargeoffset(Node *n)
{
Node a;
if(n == N)
return;
if(n->op != OINDREG)
return;
if(n->val.u.reg == REGSP) // stack offset cannot be large
return;
if(n->xoffset != (int32)n->xoffset) {
// TODO(minux): offset too large, move into R31 and add to R31 instead.
// this is used only in test/fixedbugs/issue6036.go.
fatal("offset too large: %N", n);
a = *n;
a.op = OREGISTER;
a.type = types[tptr];
a.xoffset = 0;
cgen_checknil(&a);
ginscon(optoas(OADD, types[tptr]), n->xoffset, &a);
n->xoffset = 0;
}
}
/*
* return Axxx for Oxxx on type t.
*/
int
optoas(int op, Type *t)
{
int a;
if(t == T)
fatal("optoas: t is nil");
a = AXXX;
switch(CASE(op, simtype[t->etype])) {
default:
fatal("optoas: no entry for op=%O type=%T", op, t);
break;
case CASE(OEQ, TBOOL):
case CASE(OEQ, TINT8):
case CASE(OEQ, TUINT8):
case CASE(OEQ, TINT16):
case CASE(OEQ, TUINT16):
case CASE(OEQ, TINT32):
case CASE(OEQ, TUINT32):
case CASE(OEQ, TINT64):
case CASE(OEQ, TUINT64):
case CASE(OEQ, TPTR32):
case CASE(OEQ, TPTR64):
case CASE(OEQ, TFLOAT32):
case CASE(OEQ, TFLOAT64):
a = ABEQ;
break;
case CASE(ONE, TBOOL):
case CASE(ONE, TINT8):
case CASE(ONE, TUINT8):
case CASE(ONE, TINT16):
case CASE(ONE, TUINT16):
case CASE(ONE, TINT32):
case CASE(ONE, TUINT32):
case CASE(ONE, TINT64):
case CASE(ONE, TUINT64):
case CASE(ONE, TPTR32):
case CASE(ONE, TPTR64):
case CASE(ONE, TFLOAT32):
case CASE(ONE, TFLOAT64):
a = ABNE;
break;
case CASE(OLT, TINT8): // ACMP
case CASE(OLT, TINT16):
case CASE(OLT, TINT32):
case CASE(OLT, TINT64):
case CASE(OLT, TUINT8): // ACMPU
case CASE(OLT, TUINT16):
case CASE(OLT, TUINT32):
case CASE(OLT, TUINT64):
case CASE(OLT, TFLOAT32): // AFCMPU
case CASE(OLT, TFLOAT64):
a = ABLT;
break;
case CASE(OLE, TINT8): // ACMP
case CASE(OLE, TINT16):
case CASE(OLE, TINT32):
case CASE(OLE, TINT64):
case CASE(OLE, TUINT8): // ACMPU
case CASE(OLE, TUINT16):
case CASE(OLE, TUINT32):
case CASE(OLE, TUINT64):
case CASE(OLE, TFLOAT32): // AFCMPU
case CASE(OLE, TFLOAT64):
a = ABLE;
break;
case CASE(OGT, TINT8):
case CASE(OGT, TINT16):
case CASE(OGT, TINT32):
case CASE(OGT, TINT64):
case CASE(OGT, TUINT8):
case CASE(OGT, TUINT16):
case CASE(OGT, TUINT32):
case CASE(OGT, TUINT64):
case CASE(OGT, TFLOAT32):
case CASE(OGT, TFLOAT64):
a = ABGT;
break;
case CASE(OGE, TINT8):
case CASE(OGE, TINT16):
case CASE(OGE, TINT32):
case CASE(OGE, TINT64):
case CASE(OGE, TUINT8):
case CASE(OGE, TUINT16):
case CASE(OGE, TUINT32):
case CASE(OGE, TUINT64):
case CASE(OGE, TFLOAT32):
case CASE(OGE, TFLOAT64):
a = ABGE;
break;
case CASE(OCMP, TBOOL):
case CASE(OCMP, TINT8):
case CASE(OCMP, TINT16):
case CASE(OCMP, TINT32):
case CASE(OCMP, TPTR32):
case CASE(OCMP, TINT64):
a = ACMP;
break;
case CASE(OCMP, TUINT8):
case CASE(OCMP, TUINT16):
case CASE(OCMP, TUINT32):
case CASE(OCMP, TUINT64):
case CASE(OCMP, TPTR64):
a = ACMPU;
break;
case CASE(OCMP, TFLOAT32):
case CASE(OCMP, TFLOAT64):
a = AFCMPU;
break;
case CASE(OAS, TBOOL):
case CASE(OAS, TINT8):
a = AMOVB;
break;
case CASE(OAS, TUINT8):
a = AMOVBZ;
break;
case CASE(OAS, TINT16):
a = AMOVH;
break;
case CASE(OAS, TUINT16):
a = AMOVHZ;
break;
case CASE(OAS, TINT32):
a = AMOVW;
break;
case CASE(OAS, TUINT32):
case CASE(OAS, TPTR32):
a = AMOVWZ;
break;
case CASE(OAS, TINT64):
case CASE(OAS, TUINT64):
case CASE(OAS, TPTR64):
a = AMOVD;
break;
case CASE(OAS, TFLOAT32):
a = AFMOVS;
break;
case CASE(OAS, TFLOAT64):
a = AFMOVD;
break;
case CASE(OADD, TINT8):
case CASE(OADD, TUINT8):
case CASE(OADD, TINT16):
case CASE(OADD, TUINT16):
case CASE(OADD, TINT32):
case CASE(OADD, TUINT32):
case CASE(OADD, TPTR32):
case CASE(OADD, TINT64):
case CASE(OADD, TUINT64):
case CASE(OADD, TPTR64):
a = AADD;
break;
case CASE(OADD, TFLOAT32):
a = AFADDS;
break;
case CASE(OADD, TFLOAT64):
a = AFADD;
break;
case CASE(OSUB, TINT8):
case CASE(OSUB, TUINT8):
case CASE(OSUB, TINT16):
case CASE(OSUB, TUINT16):
case CASE(OSUB, TINT32):
case CASE(OSUB, TUINT32):
case CASE(OSUB, TPTR32):
case CASE(OSUB, TINT64):
case CASE(OSUB, TUINT64):
case CASE(OSUB, TPTR64):
a = ASUB;
break;
case CASE(OSUB, TFLOAT32):
a = AFSUBS;
break;
case CASE(OSUB, TFLOAT64):
a = AFSUB;
break;
case CASE(OMINUS, TINT8):
case CASE(OMINUS, TUINT8):
case CASE(OMINUS, TINT16):
case CASE(OMINUS, TUINT16):
case CASE(OMINUS, TINT32):
case CASE(OMINUS, TUINT32):
case CASE(OMINUS, TPTR32):
case CASE(OMINUS, TINT64):
case CASE(OMINUS, TUINT64):
case CASE(OMINUS, TPTR64):
a = ANEG;
break;
case CASE(OAND, TINT8):
case CASE(OAND, TUINT8):
case CASE(OAND, TINT16):
case CASE(OAND, TUINT16):
case CASE(OAND, TINT32):
case CASE(OAND, TUINT32):
case CASE(OAND, TPTR32):
case CASE(OAND, TINT64):
case CASE(OAND, TUINT64):
case CASE(OAND, TPTR64):
a = AAND;
break;
case CASE(OOR, TINT8):
case CASE(OOR, TUINT8):
case CASE(OOR, TINT16):
case CASE(OOR, TUINT16):
case CASE(OOR, TINT32):
case CASE(OOR, TUINT32):
case CASE(OOR, TPTR32):
case CASE(OOR, TINT64):
case CASE(OOR, TUINT64):
case CASE(OOR, TPTR64):
a = AOR;
break;
case CASE(OXOR, TINT8):
case CASE(OXOR, TUINT8):
case CASE(OXOR, TINT16):
case CASE(OXOR, TUINT16):
case CASE(OXOR, TINT32):
case CASE(OXOR, TUINT32):
case CASE(OXOR, TPTR32):
case CASE(OXOR, TINT64):
case CASE(OXOR, TUINT64):
case CASE(OXOR, TPTR64):
a = AXOR;
break;
// TODO(minux): handle rotates
//case CASE(OLROT, TINT8):
//case CASE(OLROT, TUINT8):
//case CASE(OLROT, TINT16):
//case CASE(OLROT, TUINT16):
//case CASE(OLROT, TINT32):
//case CASE(OLROT, TUINT32):
//case CASE(OLROT, TPTR32):
//case CASE(OLROT, TINT64):
//case CASE(OLROT, TUINT64):
//case CASE(OLROT, TPTR64):
// a = 0//???; RLDC?
// break;
case CASE(OLSH, TINT8):
case CASE(OLSH, TUINT8):
case CASE(OLSH, TINT16):
case CASE(OLSH, TUINT16):
case CASE(OLSH, TINT32):
case CASE(OLSH, TUINT32):
case CASE(OLSH, TPTR32):
case CASE(OLSH, TINT64):
case CASE(OLSH, TUINT64):
case CASE(OLSH, TPTR64):
a = ASLD;
break;
case CASE(ORSH, TUINT8):
case CASE(ORSH, TUINT16):
case CASE(ORSH, TUINT32):
case CASE(ORSH, TPTR32):
case CASE(ORSH, TUINT64):
case CASE(ORSH, TPTR64):
a = ASRD;
break;
case CASE(ORSH, TINT8):
case CASE(ORSH, TINT16):
case CASE(ORSH, TINT32):
case CASE(ORSH, TINT64):
a = ASRAD;
break;
// TODO(minux): handle rotates
//case CASE(ORROTC, TINT8):
//case CASE(ORROTC, TUINT8):
//case CASE(ORROTC, TINT16):
//case CASE(ORROTC, TUINT16):
//case CASE(ORROTC, TINT32):
//case CASE(ORROTC, TUINT32):
//case CASE(ORROTC, TINT64):
//case CASE(ORROTC, TUINT64):
// a = 0//??? RLDC??
// break;
case CASE(OHMUL, TINT64):
a = AMULHD;
break;
case CASE(OHMUL, TUINT64):
case CASE(OHMUL, TPTR64):
a = AMULHDU;
break;
case CASE(OMUL, TINT8):
case CASE(OMUL, TINT16):
case CASE(OMUL, TINT32):
case CASE(OMUL, TINT64):
a = AMULLD;
break;
case CASE(OMUL, TUINT8):
case CASE(OMUL, TUINT16):
case CASE(OMUL, TUINT32):
case CASE(OMUL, TPTR32):
// don't use word multiply, the high 32-bit are undefined.
// fallthrough
case CASE(OMUL, TUINT64):
case CASE(OMUL, TPTR64):
a = AMULLD; // for 64-bit multiplies, signedness doesn't matter.
break;
case CASE(OMUL, TFLOAT32):
a = AFMULS;
break;
case CASE(OMUL, TFLOAT64):
a = AFMUL;
break;
case CASE(ODIV, TINT8):
case CASE(ODIV, TINT16):
case CASE(ODIV, TINT32):
case CASE(ODIV, TINT64):
a = ADIVD;
break;
case CASE(ODIV, TUINT8):
case CASE(ODIV, TUINT16):
case CASE(ODIV, TUINT32):
case CASE(ODIV, TPTR32):
case CASE(ODIV, TUINT64):
case CASE(ODIV, TPTR64):
a = ADIVDU;
break;
case CASE(ODIV, TFLOAT32):
a = AFDIVS;
break;
case CASE(ODIV, TFLOAT64):
a = AFDIV;
break;
}
return a;
}
enum
{
ODynam = 1<<0,
OAddable = 1<<1,
};
int
xgen(Node *n, Node *a, int o)
{
// TODO(minux)
USED(n); USED(a); USED(o);
return -1;
}
void
sudoclean(void)
{
return;
}
/*
* generate code to compute address of n,
* a reference to a (perhaps nested) field inside
* an array or struct.
* return 0 on failure, 1 on success.
* on success, leaves usable address in a.
*
* caller is responsible for calling sudoclean
* after successful sudoaddable,
* to release the register used for a.
*/
int
sudoaddable(int as, Node *n, Addr *a)
{
// TODO(minux)
USED(as); USED(n);
memset(a, 0, sizeof *a);
return 0;
}