| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| // |
| // The inlining facility makes 2 passes: first caninl determines which |
| // functions are suitable for inlining, and for those that are it |
| // saves a copy of the body. Then inlcalls walks each function body to |
| // expand calls to inlinable functions. |
| // |
| // The debug['l'] flag controls the agressiveness. Note that main() swaps level 0 and 1, |
| // making 1 the default and -l disable. -ll and more is useful to flush out bugs. |
| // These additional levels (beyond -l) may be buggy and are not supported. |
| // 0: disabled |
| // 1: 40-nodes leaf functions, oneliners, lazy typechecking (default) |
| // 2: early typechecking of all imported bodies |
| // 3: allow variadic functions |
| // 4: allow non-leaf functions , (breaks runtime.Caller) |
| // 5: transitive inlining |
| // |
| // At some point this may get another default and become switch-offable with -N. |
| // |
| // The debug['m'] flag enables diagnostic output. a single -m is useful for verifying |
| // which calls get inlined or not, more is for debugging, and may go away at any point. |
| // |
| // TODO: |
| // - inline functions with ... args |
| // - handle T.meth(f()) with func f() (t T, arg, arg, ) |
| |
| package gc |
| |
| import ( |
| "cmd/internal/obj" |
| "fmt" |
| ) |
| |
| // Used by caninl. |
| |
| // Used by inlcalls |
| |
| // Used during inlsubst[list] |
| var inlfn *Node // function currently being inlined |
| |
| var inlretlabel *Node // target of the goto substituted in place of a return |
| |
| var inlretvars *NodeList // temp out variables |
| |
| // Get the function's package. For ordinary functions it's on the ->sym, but for imported methods |
| // the ->sym can be re-used in the local package, so peel it off the receiver's type. |
| func fnpkg(fn *Node) *Pkg { |
| if fn.Type.Thistuple != 0 { |
| // method |
| rcvr := getthisx(fn.Type).Type.Type |
| |
| if Isptr[rcvr.Etype] != 0 { |
| rcvr = rcvr.Type |
| } |
| if rcvr.Sym == nil { |
| Fatal("receiver with no sym: [%v] %v (%v)", Sconv(fn.Sym, 0), Nconv(fn, obj.FmtLong), Tconv(rcvr, 0)) |
| } |
| return rcvr.Sym.Pkg |
| } |
| |
| // non-method |
| return fn.Sym.Pkg |
| } |
| |
| // Lazy typechecking of imported bodies. For local functions, caninl will set ->typecheck |
| // because they're a copy of an already checked body. |
| func typecheckinl(fn *Node) { |
| lno := int(setlineno(fn)) |
| |
| // typecheckinl is only for imported functions; |
| // their bodies may refer to unsafe as long as the package |
| // was marked safe during import (which was checked then). |
| // the ->inl of a local function has been typechecked before caninl copied it. |
| pkg := fnpkg(fn) |
| |
| if pkg == localpkg || pkg == nil { |
| return // typecheckinl on local function |
| } |
| |
| if Debug['m'] > 2 { |
| fmt.Printf("typecheck import [%v] %v { %v }\n", Sconv(fn.Sym, 0), Nconv(fn, obj.FmtLong), Hconv(fn.Inl, obj.FmtSharp)) |
| } |
| |
| save_safemode := safemode |
| safemode = 0 |
| |
| savefn := Curfn |
| Curfn = fn |
| typechecklist(fn.Inl, Etop) |
| Curfn = savefn |
| |
| safemode = save_safemode |
| |
| lineno = int32(lno) |
| } |
| |
| // Caninl determines whether fn is inlineable. |
| // If so, caninl saves fn->nbody in fn->inl and substitutes it with a copy. |
| // fn and ->nbody will already have been typechecked. |
| func caninl(fn *Node) { |
| if fn.Op != ODCLFUNC { |
| Fatal("caninl %v", Nconv(fn, 0)) |
| } |
| if fn.Nname == nil { |
| Fatal("caninl no nname %v", Nconv(fn, obj.FmtSign)) |
| } |
| |
| // If fn has no body (is defined outside of Go), cannot inline it. |
| if fn.Nbody == nil { |
| return |
| } |
| |
| if fn.Typecheck == 0 { |
| Fatal("caninl on non-typechecked function %v", Nconv(fn, 0)) |
| } |
| |
| // can't handle ... args yet |
| if Debug['l'] < 3 { |
| for t := fn.Type.Type.Down.Down.Type; t != nil; t = t.Down { |
| if t.Isddd != 0 { |
| return |
| } |
| } |
| } |
| |
| budget := 40 // allowed hairyness |
| if ishairylist(fn.Nbody, &budget) { |
| return |
| } |
| |
| savefn := Curfn |
| Curfn = fn |
| |
| fn.Nname.Inl = fn.Nbody |
| fn.Nbody = inlcopylist(fn.Nname.Inl) |
| fn.Nname.Inldcl = inlcopylist(fn.Nname.Defn.Dcl) |
| |
| // hack, TODO, check for better way to link method nodes back to the thing with the ->inl |
| // this is so export can find the body of a method |
| fn.Type.Nname = fn.Nname |
| |
| if Debug['m'] > 1 { |
| fmt.Printf("%v: can inline %v as: %v { %v }\n", fn.Line(), Nconv(fn.Nname, obj.FmtSharp), Tconv(fn.Type, obj.FmtSharp), Hconv(fn.Nname.Inl, obj.FmtSharp)) |
| } else if Debug['m'] != 0 { |
| fmt.Printf("%v: can inline %v\n", fn.Line(), Nconv(fn.Nname, 0)) |
| } |
| |
| Curfn = savefn |
| } |
| |
| // Look for anything we want to punt on. |
| func ishairylist(ll *NodeList, budget *int) bool { |
| for ; ll != nil; ll = ll.Next { |
| if ishairy(ll.N, budget) { |
| return true |
| } |
| } |
| return false |
| } |
| |
| func ishairy(n *Node, budget *int) bool { |
| if n == nil { |
| return false |
| } |
| |
| // Things that are too hairy, irrespective of the budget |
| switch n.Op { |
| case OCALL, |
| OCALLFUNC, |
| OCALLINTER, |
| OCALLMETH, |
| OPANIC, |
| ORECOVER: |
| if Debug['l'] < 4 { |
| return true |
| } |
| |
| case OCLOSURE, |
| OCALLPART, |
| ORANGE, |
| OFOR, |
| OSELECT, |
| OSWITCH, |
| OPROC, |
| ODEFER, |
| ODCLTYPE, // can't print yet |
| ODCLCONST, // can't print yet |
| ORETJMP: |
| return true |
| } |
| |
| (*budget)-- |
| |
| return *budget < 0 || ishairy(n.Left, budget) || ishairy(n.Right, budget) || ishairylist(n.List, budget) || ishairylist(n.Rlist, budget) || ishairylist(n.Ninit, budget) || ishairy(n.Ntest, budget) || ishairy(n.Nincr, budget) || ishairylist(n.Nbody, budget) || ishairylist(n.Nelse, budget) |
| } |
| |
| // Inlcopy and inlcopylist recursively copy the body of a function. |
| // Any name-like node of non-local class is marked for re-export by adding it to |
| // the exportlist. |
| func inlcopylist(ll *NodeList) *NodeList { |
| l := (*NodeList)(nil) |
| for ; ll != nil; ll = ll.Next { |
| l = list(l, inlcopy(ll.N)) |
| } |
| return l |
| } |
| |
| func inlcopy(n *Node) *Node { |
| if n == nil { |
| return nil |
| } |
| |
| switch n.Op { |
| case ONAME, |
| OTYPE, |
| OLITERAL: |
| return n |
| } |
| |
| m := Nod(OXXX, nil, nil) |
| *m = *n |
| m.Inl = nil |
| m.Left = inlcopy(n.Left) |
| m.Right = inlcopy(n.Right) |
| m.List = inlcopylist(n.List) |
| m.Rlist = inlcopylist(n.Rlist) |
| m.Ninit = inlcopylist(n.Ninit) |
| m.Ntest = inlcopy(n.Ntest) |
| m.Nincr = inlcopy(n.Nincr) |
| m.Nbody = inlcopylist(n.Nbody) |
| m.Nelse = inlcopylist(n.Nelse) |
| |
| return m |
| } |
| |
| // Inlcalls/nodelist/node walks fn's statements and expressions and substitutes any |
| // calls made to inlineable functions. This is the external entry point. |
| func inlcalls(fn *Node) { |
| savefn := Curfn |
| Curfn = fn |
| inlnode(&fn) |
| if fn != Curfn { |
| Fatal("inlnode replaced curfn") |
| } |
| Curfn = savefn |
| } |
| |
| // Turn an OINLCALL into a statement. |
| func inlconv2stmt(n *Node) { |
| n.Op = OBLOCK |
| |
| // n->ninit stays |
| n.List = n.Nbody |
| |
| n.Nbody = nil |
| n.Rlist = nil |
| } |
| |
| // Turn an OINLCALL into a single valued expression. |
| func inlconv2expr(np **Node) { |
| n := *np |
| r := n.Rlist.N |
| addinit(&r, concat(n.Ninit, n.Nbody)) |
| *np = r |
| } |
| |
| // Turn the rlist (with the return values) of the OINLCALL in |
| // n into an expression list lumping the ninit and body |
| // containing the inlined statements on the first list element so |
| // order will be preserved Used in return, oas2func and call |
| // statements. |
| func inlconv2list(n *Node) *NodeList { |
| if n.Op != OINLCALL || n.Rlist == nil { |
| Fatal("inlconv2list %v\n", Nconv(n, obj.FmtSign)) |
| } |
| |
| l := n.Rlist |
| addinit(&l.N, concat(n.Ninit, n.Nbody)) |
| return l |
| } |
| |
| func inlnodelist(l *NodeList) { |
| for ; l != nil; l = l.Next { |
| inlnode(&l.N) |
| } |
| } |
| |
| // inlnode recurses over the tree to find inlineable calls, which will |
| // be turned into OINLCALLs by mkinlcall. When the recursion comes |
| // back up will examine left, right, list, rlist, ninit, ntest, nincr, |
| // nbody and nelse and use one of the 4 inlconv/glue functions above |
| // to turn the OINLCALL into an expression, a statement, or patch it |
| // in to this nodes list or rlist as appropriate. |
| // NOTE it makes no sense to pass the glue functions down the |
| // recursion to the level where the OINLCALL gets created because they |
| // have to edit /this/ n, so you'd have to push that one down as well, |
| // but then you may as well do it here. so this is cleaner and |
| // shorter and less complicated. |
| func inlnode(np **Node) { |
| if *np == nil { |
| return |
| } |
| |
| n := *np |
| |
| switch n.Op { |
| // inhibit inlining of their argument |
| case ODEFER, |
| OPROC: |
| switch n.Left.Op { |
| case OCALLFUNC, |
| OCALLMETH: |
| n.Left.Etype = n.Op |
| } |
| fallthrough |
| |
| // TODO do them here (or earlier), |
| // so escape analysis can avoid more heapmoves. |
| case OCLOSURE: |
| return |
| } |
| |
| lno := int(setlineno(n)) |
| |
| inlnodelist(n.Ninit) |
| for l := n.Ninit; l != nil; l = l.Next { |
| if l.N.Op == OINLCALL { |
| inlconv2stmt(l.N) |
| } |
| } |
| |
| inlnode(&n.Left) |
| if n.Left != nil && n.Left.Op == OINLCALL { |
| inlconv2expr(&n.Left) |
| } |
| |
| inlnode(&n.Right) |
| if n.Right != nil && n.Right.Op == OINLCALL { |
| inlconv2expr(&n.Right) |
| } |
| |
| inlnodelist(n.List) |
| switch n.Op { |
| case OBLOCK: |
| for l := n.List; l != nil; l = l.Next { |
| if l.N.Op == OINLCALL { |
| inlconv2stmt(l.N) |
| } |
| } |
| |
| // if we just replaced arg in f(arg()) or return arg with an inlined call |
| // and arg returns multiple values, glue as list |
| case ORETURN, |
| OCALLFUNC, |
| OCALLMETH, |
| OCALLINTER, |
| OAPPEND, |
| OCOMPLEX: |
| if count(n.List) == 1 && n.List.N.Op == OINLCALL && count(n.List.N.Rlist) > 1 { |
| n.List = inlconv2list(n.List.N) |
| break |
| } |
| fallthrough |
| |
| // fallthrough |
| default: |
| for l := n.List; l != nil; l = l.Next { |
| if l.N.Op == OINLCALL { |
| inlconv2expr(&l.N) |
| } |
| } |
| } |
| |
| inlnodelist(n.Rlist) |
| switch n.Op { |
| case OAS2FUNC: |
| if n.Rlist.N.Op == OINLCALL { |
| n.Rlist = inlconv2list(n.Rlist.N) |
| n.Op = OAS2 |
| n.Typecheck = 0 |
| typecheck(np, Etop) |
| break |
| } |
| fallthrough |
| |
| // fallthrough |
| default: |
| for l := n.Rlist; l != nil; l = l.Next { |
| if l.N.Op == OINLCALL { |
| inlconv2expr(&l.N) |
| } |
| } |
| } |
| |
| inlnode(&n.Ntest) |
| if n.Ntest != nil && n.Ntest.Op == OINLCALL { |
| inlconv2expr(&n.Ntest) |
| } |
| |
| inlnode(&n.Nincr) |
| if n.Nincr != nil && n.Nincr.Op == OINLCALL { |
| inlconv2stmt(n.Nincr) |
| } |
| |
| inlnodelist(n.Nbody) |
| for l := n.Nbody; l != nil; l = l.Next { |
| if l.N.Op == OINLCALL { |
| inlconv2stmt(l.N) |
| } |
| } |
| |
| inlnodelist(n.Nelse) |
| for l := n.Nelse; l != nil; l = l.Next { |
| if l.N.Op == OINLCALL { |
| inlconv2stmt(l.N) |
| } |
| } |
| |
| // with all the branches out of the way, it is now time to |
| // transmogrify this node itself unless inhibited by the |
| // switch at the top of this function. |
| switch n.Op { |
| case OCALLFUNC, |
| OCALLMETH: |
| if n.Etype == OPROC || n.Etype == ODEFER { |
| return |
| } |
| } |
| |
| switch n.Op { |
| case OCALLFUNC: |
| if Debug['m'] > 3 { |
| fmt.Printf("%v:call to func %v\n", n.Line(), Nconv(n.Left, obj.FmtSign)) |
| } |
| if n.Left.Inl != nil { // normal case |
| mkinlcall(np, n.Left, int(n.Isddd)) |
| } else if n.Left.Op == ONAME && n.Left.Left != nil && n.Left.Left.Op == OTYPE && n.Left.Right != nil && n.Left.Right.Op == ONAME { // methods called as functions |
| if n.Left.Sym.Def != nil { |
| mkinlcall(np, n.Left.Sym.Def, int(n.Isddd)) |
| } |
| } |
| |
| case OCALLMETH: |
| if Debug['m'] > 3 { |
| fmt.Printf("%v:call to meth %v\n", n.Line(), Nconv(n.Left.Right, obj.FmtLong)) |
| } |
| |
| // typecheck should have resolved ODOTMETH->type, whose nname points to the actual function. |
| if n.Left.Type == nil { |
| Fatal("no function type for [%p] %v\n", n.Left, Nconv(n.Left, obj.FmtSign)) |
| } |
| |
| if n.Left.Type.Nname == nil { |
| Fatal("no function definition for [%p] %v\n", n.Left.Type, Tconv(n.Left.Type, obj.FmtSign)) |
| } |
| |
| mkinlcall(np, n.Left.Type.Nname, int(n.Isddd)) |
| } |
| |
| lineno = int32(lno) |
| } |
| |
| func mkinlcall(np **Node, fn *Node, isddd int) { |
| save_safemode := safemode |
| |
| // imported functions may refer to unsafe as long as the |
| // package was marked safe during import (already checked). |
| pkg := fnpkg(fn) |
| |
| if pkg != localpkg && pkg != nil { |
| safemode = 0 |
| } |
| mkinlcall1(np, fn, isddd) |
| safemode = save_safemode |
| } |
| |
| func tinlvar(t *Type) *Node { |
| if t.Nname != nil && !isblank(t.Nname) { |
| if t.Nname.Inlvar == nil { |
| Fatal("missing inlvar for %v\n", Nconv(t.Nname, 0)) |
| } |
| return t.Nname.Inlvar |
| } |
| |
| typecheck(&nblank, Erv|Easgn) |
| return nblank |
| } |
| |
| var inlgen int |
| |
| // if *np is a call, and fn is a function with an inlinable body, substitute *np with an OINLCALL. |
| // On return ninit has the parameter assignments, the nbody is the |
| // inlined function body and list, rlist contain the input, output |
| // parameters. |
| func mkinlcall1(np **Node, fn *Node, isddd int) { |
| // For variadic fn. |
| if fn.Inl == nil { |
| return |
| } |
| |
| if fn == Curfn || fn.Defn == Curfn { |
| return |
| } |
| |
| if Debug['l'] < 2 { |
| typecheckinl(fn) |
| } |
| |
| n := *np |
| |
| // Bingo, we have a function node, and it has an inlineable body |
| if Debug['m'] > 1 { |
| fmt.Printf("%v: inlining call to %v %v { %v }\n", n.Line(), Sconv(fn.Sym, 0), Tconv(fn.Type, obj.FmtSharp), Hconv(fn.Inl, obj.FmtSharp)) |
| } else if Debug['m'] != 0 { |
| fmt.Printf("%v: inlining call to %v\n", n.Line(), Nconv(fn, 0)) |
| } |
| |
| if Debug['m'] > 2 { |
| fmt.Printf("%v: Before inlining: %v\n", n.Line(), Nconv(n, obj.FmtSign)) |
| } |
| |
| saveinlfn := inlfn |
| inlfn = fn |
| |
| ninit := n.Ninit |
| |
| //dumplist("ninit pre", ninit); |
| |
| var dcl *NodeList |
| if fn.Defn != nil { // local function |
| dcl = fn.Inldcl // imported function |
| } else { |
| dcl = fn.Dcl |
| } |
| |
| inlretvars = nil |
| i := 0 |
| |
| // Make temp names to use instead of the originals |
| for ll := dcl; ll != nil; ll = ll.Next { |
| if ll.N.Class == PPARAMOUT { // return values handled below. |
| continue |
| } |
| if ll.N.Op == ONAME { |
| ll.N.Inlvar = inlvar(ll.N) |
| |
| // Typecheck because inlvar is not necessarily a function parameter. |
| typecheck(&ll.N.Inlvar, Erv) |
| |
| if ll.N.Class&^PHEAP != PAUTO { |
| ninit = list(ninit, Nod(ODCL, ll.N.Inlvar, nil)) // otherwise gen won't emit the allocations for heapallocs |
| } |
| } |
| } |
| |
| // temporaries for return values. |
| var m *Node |
| for t := getoutargx(fn.Type).Type; t != nil; t = t.Down { |
| if t != nil && t.Nname != nil && !isblank(t.Nname) { |
| m = inlvar(t.Nname) |
| typecheck(&m, Erv) |
| t.Nname.Inlvar = m |
| } else { |
| // anonymous return values, synthesize names for use in assignment that replaces return |
| m = retvar(t, i) |
| i++ |
| } |
| |
| ninit = list(ninit, Nod(ODCL, m, nil)) |
| inlretvars = list(inlretvars, m) |
| } |
| |
| // assign receiver. |
| var as *Node |
| if fn.Type.Thistuple != 0 && n.Left.Op == ODOTMETH { |
| // method call with a receiver. |
| t := getthisx(fn.Type).Type |
| |
| if t != nil && t.Nname != nil && !isblank(t.Nname) && t.Nname.Inlvar == nil { |
| Fatal("missing inlvar for %v\n", Nconv(t.Nname, 0)) |
| } |
| if n.Left.Left == nil { |
| Fatal("method call without receiver: %v", Nconv(n, obj.FmtSign)) |
| } |
| if t == nil { |
| Fatal("method call unknown receiver type: %v", Nconv(n, obj.FmtSign)) |
| } |
| as = Nod(OAS, tinlvar(t), n.Left.Left) |
| if as != nil { |
| typecheck(&as, Etop) |
| ninit = list(ninit, as) |
| } |
| } |
| |
| // check if inlined function is variadic. |
| variadic := false |
| |
| varargtype := (*Type)(nil) |
| varargcount := 0 |
| for t := fn.Type.Type.Down.Down.Type; t != nil; t = t.Down { |
| if t.Isddd != 0 { |
| variadic = true |
| varargtype = t.Type |
| } |
| } |
| |
| // but if argument is dotted too forget about variadicity. |
| if variadic && isddd != 0 { |
| variadic = false |
| } |
| |
| // check if argument is actually a returned tuple from call. |
| multiret := 0 |
| |
| if n.List != nil && n.List.Next == nil { |
| switch n.List.N.Op { |
| case OCALL, |
| OCALLFUNC, |
| OCALLINTER, |
| OCALLMETH: |
| if n.List.N.Left.Type.Outtuple > 1 { |
| multiret = n.List.N.Left.Type.Outtuple - 1 |
| } |
| } |
| } |
| |
| if variadic { |
| varargcount = count(n.List) + multiret |
| if n.Left.Op != ODOTMETH { |
| varargcount -= fn.Type.Thistuple |
| } |
| varargcount -= fn.Type.Intuple - 1 |
| } |
| |
| // assign arguments to the parameters' temp names |
| as = Nod(OAS2, nil, nil) |
| |
| as.Rlist = n.List |
| ll := n.List |
| |
| // TODO: if len(nlist) == 1 but multiple args, check that n->list->n is a call? |
| if fn.Type.Thistuple != 0 && n.Left.Op != ODOTMETH { |
| // non-method call to method |
| if n.List == nil { |
| Fatal("non-method call to method without first arg: %v", Nconv(n, obj.FmtSign)) |
| } |
| |
| // append receiver inlvar to LHS. |
| t := getthisx(fn.Type).Type |
| |
| if t != nil && t.Nname != nil && !isblank(t.Nname) && t.Nname.Inlvar == nil { |
| Fatal("missing inlvar for %v\n", Nconv(t.Nname, 0)) |
| } |
| if t == nil { |
| Fatal("method call unknown receiver type: %v", Nconv(n, obj.FmtSign)) |
| } |
| as.List = list(as.List, tinlvar(t)) |
| ll = ll.Next // track argument count. |
| } |
| |
| // append ordinary arguments to LHS. |
| chkargcount := n.List != nil && n.List.Next != nil |
| |
| vararg := (*Node)(nil) // the slice argument to a variadic call |
| varargs := (*NodeList)(nil) // the list of LHS names to put in vararg. |
| if !chkargcount { |
| // 0 or 1 expression on RHS. |
| var i int |
| for t := getinargx(fn.Type).Type; t != nil; t = t.Down { |
| if variadic && t.Isddd != 0 { |
| vararg = tinlvar(t) |
| for i = 0; i < varargcount && ll != nil; i++ { |
| m = argvar(varargtype, i) |
| varargs = list(varargs, m) |
| as.List = list(as.List, m) |
| } |
| |
| break |
| } |
| |
| as.List = list(as.List, tinlvar(t)) |
| } |
| } else { |
| // match arguments except final variadic (unless the call is dotted itself) |
| var t *Type |
| for t = getinargx(fn.Type).Type; t != nil; { |
| if ll == nil { |
| break |
| } |
| if variadic && t.Isddd != 0 { |
| break |
| } |
| as.List = list(as.List, tinlvar(t)) |
| t = t.Down |
| ll = ll.Next |
| } |
| |
| // match varargcount arguments with variadic parameters. |
| if variadic && t != nil && t.Isddd != 0 { |
| vararg = tinlvar(t) |
| var i int |
| for i = 0; i < varargcount && ll != nil; i++ { |
| m = argvar(varargtype, i) |
| varargs = list(varargs, m) |
| as.List = list(as.List, m) |
| ll = ll.Next |
| } |
| |
| if i == varargcount { |
| t = t.Down |
| } |
| } |
| |
| if ll != nil || t != nil { |
| Fatal("arg count mismatch: %v vs %v\n", Tconv(getinargx(fn.Type), obj.FmtSharp), Hconv(n.List, obj.FmtComma)) |
| } |
| } |
| |
| if as.Rlist != nil { |
| typecheck(&as, Etop) |
| ninit = list(ninit, as) |
| } |
| |
| // turn the variadic args into a slice. |
| if variadic { |
| as = Nod(OAS, vararg, nil) |
| if varargcount == 0 { |
| as.Right = nodnil() |
| as.Right.Type = varargtype |
| } else { |
| vararrtype := typ(TARRAY) |
| vararrtype.Type = varargtype.Type |
| vararrtype.Bound = int64(varargcount) |
| |
| as.Right = Nod(OCOMPLIT, nil, typenod(varargtype)) |
| as.Right.List = varargs |
| as.Right = Nod(OSLICE, as.Right, Nod(OKEY, nil, nil)) |
| } |
| |
| typecheck(&as, Etop) |
| ninit = list(ninit, as) |
| } |
| |
| // zero the outparams |
| for ll := inlretvars; ll != nil; ll = ll.Next { |
| as = Nod(OAS, ll.N, nil) |
| typecheck(&as, Etop) |
| ninit = list(ninit, as) |
| } |
| |
| inlretlabel = newlabel_inl() |
| inlgen++ |
| body := inlsubstlist(fn.Inl) |
| |
| body = list(body, Nod(OGOTO, inlretlabel, nil)) // avoid 'not used' when function doesnt have return |
| body = list(body, Nod(OLABEL, inlretlabel, nil)) |
| |
| typechecklist(body, Etop) |
| |
| //dumplist("ninit post", ninit); |
| |
| call := Nod(OINLCALL, nil, nil) |
| |
| call.Ninit = ninit |
| call.Nbody = body |
| call.Rlist = inlretvars |
| call.Type = n.Type |
| call.Typecheck = 1 |
| |
| setlno(call, int(n.Lineno)) |
| |
| //dumplist("call body", body); |
| |
| *np = call |
| |
| inlfn = saveinlfn |
| |
| // transitive inlining |
| // TODO do this pre-expansion on fn->inl directly. requires |
| // either supporting exporting statemetns with complex ninits |
| // or saving inl and making inlinl |
| if Debug['l'] >= 5 { |
| body := fn.Inl |
| fn.Inl = nil // prevent infinite recursion |
| inlnodelist(call.Nbody) |
| for ll := call.Nbody; ll != nil; ll = ll.Next { |
| if ll.N.Op == OINLCALL { |
| inlconv2stmt(ll.N) |
| } |
| } |
| fn.Inl = body |
| } |
| |
| if Debug['m'] > 2 { |
| fmt.Printf("%v: After inlining %v\n\n", n.Line(), Nconv(*np, obj.FmtSign)) |
| } |
| } |
| |
| // Every time we expand a function we generate a new set of tmpnames, |
| // PAUTO's in the calling functions, and link them off of the |
| // PPARAM's, PAUTOS and PPARAMOUTs of the called function. |
| func inlvar(var_ *Node) *Node { |
| if Debug['m'] > 3 { |
| fmt.Printf("inlvar %v\n", Nconv(var_, obj.FmtSign)) |
| } |
| |
| n := newname(var_.Sym) |
| n.Type = var_.Type |
| n.Class = PAUTO |
| n.Used = 1 |
| n.Curfn = Curfn // the calling function, not the called one |
| n.Addrtaken = var_.Addrtaken |
| |
| // Esc pass wont run if we're inlining into a iface wrapper. |
| // Luckily, we can steal the results from the target func. |
| // If inlining a function defined in another package after |
| // escape analysis is done, treat all local vars as escaping. |
| // See issue 9537. |
| if var_.Esc == EscHeap || (inl_nonlocal != 0 && var_.Op == ONAME) { |
| addrescapes(n) |
| } |
| |
| Curfn.Dcl = list(Curfn.Dcl, n) |
| return n |
| } |
| |
| // Synthesize a variable to store the inlined function's results in. |
| func retvar(t *Type, i int) *Node { |
| namebuf = fmt.Sprintf("~r%d", i) |
| n := newname(Lookup(namebuf)) |
| n.Type = t.Type |
| n.Class = PAUTO |
| n.Used = 1 |
| n.Curfn = Curfn // the calling function, not the called one |
| Curfn.Dcl = list(Curfn.Dcl, n) |
| return n |
| } |
| |
| // Synthesize a variable to store the inlined function's arguments |
| // when they come from a multiple return call. |
| func argvar(t *Type, i int) *Node { |
| namebuf = fmt.Sprintf("~arg%d", i) |
| n := newname(Lookup(namebuf)) |
| n.Type = t.Type |
| n.Class = PAUTO |
| n.Used = 1 |
| n.Curfn = Curfn // the calling function, not the called one |
| Curfn.Dcl = list(Curfn.Dcl, n) |
| return n |
| } |
| |
| var newlabel_inl_label int |
| |
| func newlabel_inl() *Node { |
| newlabel_inl_label++ |
| namebuf = fmt.Sprintf(".inlret%.6d", newlabel_inl_label) |
| n := newname(Lookup(namebuf)) |
| n.Etype = 1 // flag 'safe' for escape analysis (no backjumps) |
| return n |
| } |
| |
| // inlsubst and inlsubstlist recursively copy the body of the saved |
| // pristine ->inl body of the function while substituting references |
| // to input/output parameters with ones to the tmpnames, and |
| // substituting returns with assignments to the output. |
| func inlsubstlist(ll *NodeList) *NodeList { |
| l := (*NodeList)(nil) |
| for ; ll != nil; ll = ll.Next { |
| l = list(l, inlsubst(ll.N)) |
| } |
| return l |
| } |
| |
| func inlsubst(n *Node) *Node { |
| if n == nil { |
| return nil |
| } |
| |
| switch n.Op { |
| case ONAME: |
| if n.Inlvar != nil { // These will be set during inlnode |
| if Debug['m'] > 2 { |
| fmt.Printf("substituting name %v -> %v\n", Nconv(n, obj.FmtSign), Nconv(n.Inlvar, obj.FmtSign)) |
| } |
| return n.Inlvar |
| } |
| |
| if Debug['m'] > 2 { |
| fmt.Printf("not substituting name %v\n", Nconv(n, obj.FmtSign)) |
| } |
| return n |
| |
| case OLITERAL, |
| OTYPE: |
| return n |
| |
| // Since we don't handle bodies with closures, this return is guaranteed to belong to the current inlined function. |
| |
| // dump("Return before substitution", n); |
| case ORETURN: |
| m := Nod(OGOTO, inlretlabel, nil) |
| |
| m.Ninit = inlsubstlist(n.Ninit) |
| |
| if inlretvars != nil && n.List != nil { |
| as := Nod(OAS2, nil, nil) |
| |
| // shallow copy or OINLCALL->rlist will be the same list, and later walk and typecheck may clobber that. |
| for ll := inlretvars; ll != nil; ll = ll.Next { |
| as.List = list(as.List, ll.N) |
| } |
| as.Rlist = inlsubstlist(n.List) |
| typecheck(&as, Etop) |
| m.Ninit = list(m.Ninit, as) |
| } |
| |
| typechecklist(m.Ninit, Etop) |
| typecheck(&m, Etop) |
| |
| // dump("Return after substitution", m); |
| return m |
| |
| case OGOTO, |
| OLABEL: |
| m := Nod(OXXX, nil, nil) |
| *m = *n |
| m.Ninit = nil |
| p := fmt.Sprintf("%s·%d", n.Left.Sym.Name, inlgen) |
| m.Left = newname(Lookup(p)) |
| |
| return m |
| } |
| |
| m := Nod(OXXX, nil, nil) |
| *m = *n |
| m.Ninit = nil |
| |
| if n.Op == OCLOSURE { |
| Fatal("cannot inline function containing closure: %v", Nconv(n, obj.FmtSign)) |
| } |
| |
| m.Left = inlsubst(n.Left) |
| m.Right = inlsubst(n.Right) |
| m.List = inlsubstlist(n.List) |
| m.Rlist = inlsubstlist(n.Rlist) |
| m.Ninit = concat(m.Ninit, inlsubstlist(n.Ninit)) |
| m.Ntest = inlsubst(n.Ntest) |
| m.Nincr = inlsubst(n.Nincr) |
| m.Nbody = inlsubstlist(n.Nbody) |
| m.Nelse = inlsubstlist(n.Nelse) |
| |
| return m |
| } |
| |
| // Plaster over linenumbers |
| func setlnolist(ll *NodeList, lno int) { |
| for ; ll != nil; ll = ll.Next { |
| setlno(ll.N, lno) |
| } |
| } |
| |
| func setlno(n *Node, lno int) { |
| if n == nil { |
| return |
| } |
| |
| // don't clobber names, unless they're freshly synthesized |
| if n.Op != ONAME || n.Lineno == 0 { |
| n.Lineno = int32(lno) |
| } |
| |
| setlno(n.Left, lno) |
| setlno(n.Right, lno) |
| setlnolist(n.List, lno) |
| setlnolist(n.Rlist, lno) |
| setlnolist(n.Ninit, lno) |
| setlno(n.Ntest, lno) |
| setlno(n.Nincr, lno) |
| setlnolist(n.Nbody, lno) |
| setlnolist(n.Nelse, lno) |
| } |