blob: ac3ad4111cfee33ba78f74400ba90cd0c6f7e561 [file] [log] [blame]
// Derived from Inferno utils/8c/txt.c
// http://code.google.com/p/inferno-os/source/browse/utils/8c/txt.c
//
// Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved.
// Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
// Portions Copyright © 1997-1999 Vita Nuova Limited
// Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
// Portions Copyright © 2004,2006 Bruce Ellis
// Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
// Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
// Portions Copyright © 2009 The Go Authors. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
package main
import (
"cmd/internal/obj"
"cmd/internal/obj/i386"
"fmt"
)
import "cmd/internal/gc"
// TODO(rsc): Can make this bigger if we move
// the text segment up higher in 8l for all GOOS.
// At the same time, can raise StackBig in ../../runtime/stack.h.
var unmappedzero uint32 = 4096
/*
* return Axxx for Oxxx on type t.
*/
func optoas(op int, t *gc.Type) int {
if t == nil {
gc.Fatal("optoas: t is nil")
}
a := obj.AXXX
switch uint32(op)<<16 | uint32(gc.Simtype[t.Etype]) {
default:
gc.Fatal("optoas: no entry %v-%v", gc.Oconv(int(op), 0), gc.Tconv(t, 0))
case gc.OADDR<<16 | gc.TPTR32:
a = i386.ALEAL
case gc.OEQ<<16 | gc.TBOOL,
gc.OEQ<<16 | gc.TINT8,
gc.OEQ<<16 | gc.TUINT8,
gc.OEQ<<16 | gc.TINT16,
gc.OEQ<<16 | gc.TUINT16,
gc.OEQ<<16 | gc.TINT32,
gc.OEQ<<16 | gc.TUINT32,
gc.OEQ<<16 | gc.TINT64,
gc.OEQ<<16 | gc.TUINT64,
gc.OEQ<<16 | gc.TPTR32,
gc.OEQ<<16 | gc.TPTR64,
gc.OEQ<<16 | gc.TFLOAT32,
gc.OEQ<<16 | gc.TFLOAT64:
a = i386.AJEQ
case gc.ONE<<16 | gc.TBOOL,
gc.ONE<<16 | gc.TINT8,
gc.ONE<<16 | gc.TUINT8,
gc.ONE<<16 | gc.TINT16,
gc.ONE<<16 | gc.TUINT16,
gc.ONE<<16 | gc.TINT32,
gc.ONE<<16 | gc.TUINT32,
gc.ONE<<16 | gc.TINT64,
gc.ONE<<16 | gc.TUINT64,
gc.ONE<<16 | gc.TPTR32,
gc.ONE<<16 | gc.TPTR64,
gc.ONE<<16 | gc.TFLOAT32,
gc.ONE<<16 | gc.TFLOAT64:
a = i386.AJNE
case gc.OLT<<16 | gc.TINT8,
gc.OLT<<16 | gc.TINT16,
gc.OLT<<16 | gc.TINT32,
gc.OLT<<16 | gc.TINT64:
a = i386.AJLT
case gc.OLT<<16 | gc.TUINT8,
gc.OLT<<16 | gc.TUINT16,
gc.OLT<<16 | gc.TUINT32,
gc.OLT<<16 | gc.TUINT64:
a = i386.AJCS
case gc.OLE<<16 | gc.TINT8,
gc.OLE<<16 | gc.TINT16,
gc.OLE<<16 | gc.TINT32,
gc.OLE<<16 | gc.TINT64:
a = i386.AJLE
case gc.OLE<<16 | gc.TUINT8,
gc.OLE<<16 | gc.TUINT16,
gc.OLE<<16 | gc.TUINT32,
gc.OLE<<16 | gc.TUINT64:
a = i386.AJLS
case gc.OGT<<16 | gc.TINT8,
gc.OGT<<16 | gc.TINT16,
gc.OGT<<16 | gc.TINT32,
gc.OGT<<16 | gc.TINT64:
a = i386.AJGT
case gc.OGT<<16 | gc.TUINT8,
gc.OGT<<16 | gc.TUINT16,
gc.OGT<<16 | gc.TUINT32,
gc.OGT<<16 | gc.TUINT64,
gc.OLT<<16 | gc.TFLOAT32,
gc.OLT<<16 | gc.TFLOAT64:
a = i386.AJHI
case gc.OGE<<16 | gc.TINT8,
gc.OGE<<16 | gc.TINT16,
gc.OGE<<16 | gc.TINT32,
gc.OGE<<16 | gc.TINT64:
a = i386.AJGE
case gc.OGE<<16 | gc.TUINT8,
gc.OGE<<16 | gc.TUINT16,
gc.OGE<<16 | gc.TUINT32,
gc.OGE<<16 | gc.TUINT64,
gc.OLE<<16 | gc.TFLOAT32,
gc.OLE<<16 | gc.TFLOAT64:
a = i386.AJCC
case gc.OCMP<<16 | gc.TBOOL,
gc.OCMP<<16 | gc.TINT8,
gc.OCMP<<16 | gc.TUINT8:
a = i386.ACMPB
case gc.OCMP<<16 | gc.TINT16,
gc.OCMP<<16 | gc.TUINT16:
a = i386.ACMPW
case gc.OCMP<<16 | gc.TINT32,
gc.OCMP<<16 | gc.TUINT32,
gc.OCMP<<16 | gc.TPTR32:
a = i386.ACMPL
case gc.OAS<<16 | gc.TBOOL,
gc.OAS<<16 | gc.TINT8,
gc.OAS<<16 | gc.TUINT8:
a = i386.AMOVB
case gc.OAS<<16 | gc.TINT16,
gc.OAS<<16 | gc.TUINT16:
a = i386.AMOVW
case gc.OAS<<16 | gc.TINT32,
gc.OAS<<16 | gc.TUINT32,
gc.OAS<<16 | gc.TPTR32:
a = i386.AMOVL
case gc.OAS<<16 | gc.TFLOAT32:
a = i386.AMOVSS
case gc.OAS<<16 | gc.TFLOAT64:
a = i386.AMOVSD
case gc.OADD<<16 | gc.TINT8,
gc.OADD<<16 | gc.TUINT8:
a = i386.AADDB
case gc.OADD<<16 | gc.TINT16,
gc.OADD<<16 | gc.TUINT16:
a = i386.AADDW
case gc.OADD<<16 | gc.TINT32,
gc.OADD<<16 | gc.TUINT32,
gc.OADD<<16 | gc.TPTR32:
a = i386.AADDL
case gc.OSUB<<16 | gc.TINT8,
gc.OSUB<<16 | gc.TUINT8:
a = i386.ASUBB
case gc.OSUB<<16 | gc.TINT16,
gc.OSUB<<16 | gc.TUINT16:
a = i386.ASUBW
case gc.OSUB<<16 | gc.TINT32,
gc.OSUB<<16 | gc.TUINT32,
gc.OSUB<<16 | gc.TPTR32:
a = i386.ASUBL
case gc.OINC<<16 | gc.TINT8,
gc.OINC<<16 | gc.TUINT8:
a = i386.AINCB
case gc.OINC<<16 | gc.TINT16,
gc.OINC<<16 | gc.TUINT16:
a = i386.AINCW
case gc.OINC<<16 | gc.TINT32,
gc.OINC<<16 | gc.TUINT32,
gc.OINC<<16 | gc.TPTR32:
a = i386.AINCL
case gc.ODEC<<16 | gc.TINT8,
gc.ODEC<<16 | gc.TUINT8:
a = i386.ADECB
case gc.ODEC<<16 | gc.TINT16,
gc.ODEC<<16 | gc.TUINT16:
a = i386.ADECW
case gc.ODEC<<16 | gc.TINT32,
gc.ODEC<<16 | gc.TUINT32,
gc.ODEC<<16 | gc.TPTR32:
a = i386.ADECL
case gc.OCOM<<16 | gc.TINT8,
gc.OCOM<<16 | gc.TUINT8:
a = i386.ANOTB
case gc.OCOM<<16 | gc.TINT16,
gc.OCOM<<16 | gc.TUINT16:
a = i386.ANOTW
case gc.OCOM<<16 | gc.TINT32,
gc.OCOM<<16 | gc.TUINT32,
gc.OCOM<<16 | gc.TPTR32:
a = i386.ANOTL
case gc.OMINUS<<16 | gc.TINT8,
gc.OMINUS<<16 | gc.TUINT8:
a = i386.ANEGB
case gc.OMINUS<<16 | gc.TINT16,
gc.OMINUS<<16 | gc.TUINT16:
a = i386.ANEGW
case gc.OMINUS<<16 | gc.TINT32,
gc.OMINUS<<16 | gc.TUINT32,
gc.OMINUS<<16 | gc.TPTR32:
a = i386.ANEGL
case gc.OAND<<16 | gc.TINT8,
gc.OAND<<16 | gc.TUINT8:
a = i386.AANDB
case gc.OAND<<16 | gc.TINT16,
gc.OAND<<16 | gc.TUINT16:
a = i386.AANDW
case gc.OAND<<16 | gc.TINT32,
gc.OAND<<16 | gc.TUINT32,
gc.OAND<<16 | gc.TPTR32:
a = i386.AANDL
case gc.OOR<<16 | gc.TINT8,
gc.OOR<<16 | gc.TUINT8:
a = i386.AORB
case gc.OOR<<16 | gc.TINT16,
gc.OOR<<16 | gc.TUINT16:
a = i386.AORW
case gc.OOR<<16 | gc.TINT32,
gc.OOR<<16 | gc.TUINT32,
gc.OOR<<16 | gc.TPTR32:
a = i386.AORL
case gc.OXOR<<16 | gc.TINT8,
gc.OXOR<<16 | gc.TUINT8:
a = i386.AXORB
case gc.OXOR<<16 | gc.TINT16,
gc.OXOR<<16 | gc.TUINT16:
a = i386.AXORW
case gc.OXOR<<16 | gc.TINT32,
gc.OXOR<<16 | gc.TUINT32,
gc.OXOR<<16 | gc.TPTR32:
a = i386.AXORL
case gc.OLROT<<16 | gc.TINT8,
gc.OLROT<<16 | gc.TUINT8:
a = i386.AROLB
case gc.OLROT<<16 | gc.TINT16,
gc.OLROT<<16 | gc.TUINT16:
a = i386.AROLW
case gc.OLROT<<16 | gc.TINT32,
gc.OLROT<<16 | gc.TUINT32,
gc.OLROT<<16 | gc.TPTR32:
a = i386.AROLL
case gc.OLSH<<16 | gc.TINT8,
gc.OLSH<<16 | gc.TUINT8:
a = i386.ASHLB
case gc.OLSH<<16 | gc.TINT16,
gc.OLSH<<16 | gc.TUINT16:
a = i386.ASHLW
case gc.OLSH<<16 | gc.TINT32,
gc.OLSH<<16 | gc.TUINT32,
gc.OLSH<<16 | gc.TPTR32:
a = i386.ASHLL
case gc.ORSH<<16 | gc.TUINT8:
a = i386.ASHRB
case gc.ORSH<<16 | gc.TUINT16:
a = i386.ASHRW
case gc.ORSH<<16 | gc.TUINT32,
gc.ORSH<<16 | gc.TPTR32:
a = i386.ASHRL
case gc.ORSH<<16 | gc.TINT8:
a = i386.ASARB
case gc.ORSH<<16 | gc.TINT16:
a = i386.ASARW
case gc.ORSH<<16 | gc.TINT32:
a = i386.ASARL
case gc.OHMUL<<16 | gc.TINT8,
gc.OMUL<<16 | gc.TINT8,
gc.OMUL<<16 | gc.TUINT8:
a = i386.AIMULB
case gc.OHMUL<<16 | gc.TINT16,
gc.OMUL<<16 | gc.TINT16,
gc.OMUL<<16 | gc.TUINT16:
a = i386.AIMULW
case gc.OHMUL<<16 | gc.TINT32,
gc.OMUL<<16 | gc.TINT32,
gc.OMUL<<16 | gc.TUINT32,
gc.OMUL<<16 | gc.TPTR32:
a = i386.AIMULL
case gc.OHMUL<<16 | gc.TUINT8:
a = i386.AMULB
case gc.OHMUL<<16 | gc.TUINT16:
a = i386.AMULW
case gc.OHMUL<<16 | gc.TUINT32,
gc.OHMUL<<16 | gc.TPTR32:
a = i386.AMULL
case gc.ODIV<<16 | gc.TINT8,
gc.OMOD<<16 | gc.TINT8:
a = i386.AIDIVB
case gc.ODIV<<16 | gc.TUINT8,
gc.OMOD<<16 | gc.TUINT8:
a = i386.ADIVB
case gc.ODIV<<16 | gc.TINT16,
gc.OMOD<<16 | gc.TINT16:
a = i386.AIDIVW
case gc.ODIV<<16 | gc.TUINT16,
gc.OMOD<<16 | gc.TUINT16:
a = i386.ADIVW
case gc.ODIV<<16 | gc.TINT32,
gc.OMOD<<16 | gc.TINT32:
a = i386.AIDIVL
case gc.ODIV<<16 | gc.TUINT32,
gc.ODIV<<16 | gc.TPTR32,
gc.OMOD<<16 | gc.TUINT32,
gc.OMOD<<16 | gc.TPTR32:
a = i386.ADIVL
case gc.OEXTEND<<16 | gc.TINT16:
a = i386.ACWD
case gc.OEXTEND<<16 | gc.TINT32:
a = i386.ACDQ
}
return a
}
func foptoas(op int, t *gc.Type, flg int) int {
a := obj.AXXX
et := int(gc.Simtype[t.Etype])
if gc.Use_sse != 0 {
goto sse
}
// If we need Fpop, it means we're working on
// two different floating-point registers, not memory.
// There the instruction only has a float64 form.
if flg&Fpop != 0 {
et = gc.TFLOAT64
}
// clear Frev if unneeded
switch op {
case gc.OADD,
gc.OMUL:
flg &^= Frev
}
switch uint32(op)<<16 | (uint32(et)<<8 | uint32(flg)) {
case gc.OADD<<16 | (gc.TFLOAT32<<8 | 0):
return i386.AFADDF
case gc.OADD<<16 | (gc.TFLOAT64<<8 | 0):
return i386.AFADDD
case gc.OADD<<16 | (gc.TFLOAT64<<8 | Fpop):
return i386.AFADDDP
case gc.OSUB<<16 | (gc.TFLOAT32<<8 | 0):
return i386.AFSUBF
case gc.OSUB<<16 | (gc.TFLOAT32<<8 | Frev):
return i386.AFSUBRF
case gc.OSUB<<16 | (gc.TFLOAT64<<8 | 0):
return i386.AFSUBD
case gc.OSUB<<16 | (gc.TFLOAT64<<8 | Frev):
return i386.AFSUBRD
case gc.OSUB<<16 | (gc.TFLOAT64<<8 | Fpop):
return i386.AFSUBDP
case gc.OSUB<<16 | (gc.TFLOAT64<<8 | (Fpop | Frev)):
return i386.AFSUBRDP
case gc.OMUL<<16 | (gc.TFLOAT32<<8 | 0):
return i386.AFMULF
case gc.OMUL<<16 | (gc.TFLOAT64<<8 | 0):
return i386.AFMULD
case gc.OMUL<<16 | (gc.TFLOAT64<<8 | Fpop):
return i386.AFMULDP
case gc.ODIV<<16 | (gc.TFLOAT32<<8 | 0):
return i386.AFDIVF
case gc.ODIV<<16 | (gc.TFLOAT32<<8 | Frev):
return i386.AFDIVRF
case gc.ODIV<<16 | (gc.TFLOAT64<<8 | 0):
return i386.AFDIVD
case gc.ODIV<<16 | (gc.TFLOAT64<<8 | Frev):
return i386.AFDIVRD
case gc.ODIV<<16 | (gc.TFLOAT64<<8 | Fpop):
return i386.AFDIVDP
case gc.ODIV<<16 | (gc.TFLOAT64<<8 | (Fpop | Frev)):
return i386.AFDIVRDP
case gc.OCMP<<16 | (gc.TFLOAT32<<8 | 0):
return i386.AFCOMF
case gc.OCMP<<16 | (gc.TFLOAT32<<8 | Fpop):
return i386.AFCOMFP
case gc.OCMP<<16 | (gc.TFLOAT64<<8 | 0):
return i386.AFCOMD
case gc.OCMP<<16 | (gc.TFLOAT64<<8 | Fpop):
return i386.AFCOMDP
case gc.OCMP<<16 | (gc.TFLOAT64<<8 | Fpop2):
return i386.AFCOMDPP
case gc.OMINUS<<16 | (gc.TFLOAT32<<8 | 0):
return i386.AFCHS
case gc.OMINUS<<16 | (gc.TFLOAT64<<8 | 0):
return i386.AFCHS
}
gc.Fatal("foptoas %v %v %#x", gc.Oconv(int(op), 0), gc.Tconv(t, 0), flg)
return 0
sse:
switch uint32(op)<<16 | uint32(et) {
default:
gc.Fatal("foptoas-sse: no entry %v-%v", gc.Oconv(int(op), 0), gc.Tconv(t, 0))
case gc.OCMP<<16 | gc.TFLOAT32:
a = i386.AUCOMISS
case gc.OCMP<<16 | gc.TFLOAT64:
a = i386.AUCOMISD
case gc.OAS<<16 | gc.TFLOAT32:
a = i386.AMOVSS
case gc.OAS<<16 | gc.TFLOAT64:
a = i386.AMOVSD
case gc.OADD<<16 | gc.TFLOAT32:
a = i386.AADDSS
case gc.OADD<<16 | gc.TFLOAT64:
a = i386.AADDSD
case gc.OSUB<<16 | gc.TFLOAT32:
a = i386.ASUBSS
case gc.OSUB<<16 | gc.TFLOAT64:
a = i386.ASUBSD
case gc.OMUL<<16 | gc.TFLOAT32:
a = i386.AMULSS
case gc.OMUL<<16 | gc.TFLOAT64:
a = i386.AMULSD
case gc.ODIV<<16 | gc.TFLOAT32:
a = i386.ADIVSS
case gc.ODIV<<16 | gc.TFLOAT64:
a = i386.ADIVSD
}
return a
}
var resvd = []int{
// REG_DI, // for movstring
// REG_SI, // for movstring
i386.REG_AX, // for divide
i386.REG_CX, // for shift
i386.REG_DX, // for divide
i386.REG_SP, // for stack
i386.REG_BL, // because REG_BX can be allocated
i386.REG_BH,
}
func ginit() {
for i := 0; i < len(reg); i++ {
reg[i] = 1
}
for i := i386.REG_AX; i <= i386.REG_DI; i++ {
reg[i] = 0
}
for i := i386.REG_X0; i <= i386.REG_X7; i++ {
reg[i] = 0
}
for i := 0; i < len(resvd); i++ {
reg[resvd[i]]++
}
}
var regpc [i386.MAXREG]uint32
func gclean() {
for i := 0; i < len(resvd); i++ {
reg[resvd[i]]--
}
for i := i386.REG_AX; i <= i386.REG_DI; i++ {
if reg[i] != 0 {
gc.Yyerror("reg %v left allocated at %x", gc.Ctxt.Rconv(i), regpc[i])
}
}
for i := i386.REG_X0; i <= i386.REG_X7; i++ {
if reg[i] != 0 {
gc.Yyerror("reg %v left allocated\n", gc.Ctxt.Rconv(i))
}
}
}
func anyregalloc() bool {
var j int
for i := i386.REG_AX; i <= i386.REG_DI; i++ {
if reg[i] == 0 {
goto ok
}
for j = 0; j < len(resvd); j++ {
if resvd[j] == i {
goto ok
}
}
return true
ok:
}
for i := i386.REG_X0; i <= i386.REG_X7; i++ {
if reg[i] != 0 {
return true
}
}
return false
}
/*
* allocate register of type t, leave in n.
* if o != N, o is desired fixed register.
* caller must regfree(n).
*/
func regalloc(n *gc.Node, t *gc.Type, o *gc.Node) {
if t == nil {
gc.Fatal("regalloc: t nil")
}
et := int(gc.Simtype[t.Etype])
var i int
switch et {
case gc.TINT64,
gc.TUINT64:
gc.Fatal("regalloc64")
case gc.TINT8,
gc.TUINT8,
gc.TINT16,
gc.TUINT16,
gc.TINT32,
gc.TUINT32,
gc.TPTR32,
gc.TPTR64,
gc.TBOOL:
if o != nil && o.Op == gc.OREGISTER {
i = int(o.Val.U.Reg)
if i >= i386.REG_AX && i <= i386.REG_DI {
goto out
}
}
for i = i386.REG_AX; i <= i386.REG_DI; i++ {
if reg[i] == 0 {
goto out
}
}
fmt.Printf("registers allocated at\n")
for i := i386.REG_AX; i <= i386.REG_DI; i++ {
fmt.Printf("\t%v\t%#x\n", gc.Ctxt.Rconv(i), regpc[i])
}
gc.Fatal("out of fixed registers")
goto err
case gc.TFLOAT32,
gc.TFLOAT64:
if gc.Use_sse == 0 {
i = i386.REG_F0
goto out
}
if o != nil && o.Op == gc.OREGISTER {
i = int(o.Val.U.Reg)
if i >= i386.REG_X0 && i <= i386.REG_X7 {
goto out
}
}
for i = i386.REG_X0; i <= i386.REG_X7; i++ {
if reg[i] == 0 {
goto out
}
}
fmt.Printf("registers allocated at\n")
for i := i386.REG_X0; i <= i386.REG_X7; i++ {
fmt.Printf("\t%v\t%#x\n", gc.Ctxt.Rconv(i), regpc[i])
}
gc.Fatal("out of floating registers")
}
gc.Yyerror("regalloc: unknown type %v", gc.Tconv(t, 0))
err:
gc.Nodreg(n, t, 0)
return
out:
if i == i386.REG_SP {
fmt.Printf("alloc SP\n")
}
if reg[i] == 0 {
regpc[i] = uint32(obj.Getcallerpc(&n))
if i == i386.REG_AX || i == i386.REG_CX || i == i386.REG_DX || i == i386.REG_SP {
gc.Dump("regalloc-o", o)
gc.Fatal("regalloc %v", gc.Ctxt.Rconv(i))
}
}
reg[i]++
gc.Nodreg(n, t, i)
}
func regfree(n *gc.Node) {
if n.Op == gc.ONAME {
return
}
if n.Op != gc.OREGISTER && n.Op != gc.OINDREG {
gc.Fatal("regfree: not a register")
}
i := int(n.Val.U.Reg)
if i == i386.REG_SP {
return
}
if i < 0 || i >= len(reg) {
gc.Fatal("regfree: reg out of range")
}
if reg[i] <= 0 {
gc.Fatal("regfree: reg not allocated")
}
reg[i]--
if reg[i] == 0 && (i == i386.REG_AX || i == i386.REG_CX || i == i386.REG_DX || i == i386.REG_SP) {
gc.Fatal("regfree %v", gc.Ctxt.Rconv(i))
}
}
/*
* generate
* as $c, reg
*/
func gconreg(as int, c int64, reg int) {
var n1 gc.Node
var n2 gc.Node
gc.Nodconst(&n1, gc.Types[gc.TINT64], c)
gc.Nodreg(&n2, gc.Types[gc.TINT64], reg)
gins(as, &n1, &n2)
}
/*
* swap node contents
*/
func nswap(a *gc.Node, b *gc.Node) {
t := *a
*a = *b
*b = t
}
/*
* return constant i node.
* overwritten by next call, but useful in calls to gins.
*/
var ncon_n gc.Node
func ncon(i uint32) *gc.Node {
if ncon_n.Type == nil {
gc.Nodconst(&ncon_n, gc.Types[gc.TUINT32], 0)
}
gc.Mpmovecfix(ncon_n.Val.U.Xval, int64(i))
return &ncon_n
}
var sclean [10]gc.Node
var nsclean int
/*
* n is a 64-bit value. fill in lo and hi to refer to its 32-bit halves.
*/
func split64(n *gc.Node, lo *gc.Node, hi *gc.Node) {
if !gc.Is64(n.Type) {
gc.Fatal("split64 %v", gc.Tconv(n.Type, 0))
}
if nsclean >= len(sclean) {
gc.Fatal("split64 clean")
}
sclean[nsclean].Op = gc.OEMPTY
nsclean++
switch n.Op {
default:
switch n.Op {
default:
var n1 gc.Node
if !dotaddable(n, &n1) {
igen(n, &n1, nil)
sclean[nsclean-1] = n1
}
n = &n1
case gc.ONAME:
if n.Class == gc.PPARAMREF {
var n1 gc.Node
cgen(n.Heapaddr, &n1)
sclean[nsclean-1] = n1
n = &n1
}
// nothing
case gc.OINDREG:
break
}
*lo = *n
*hi = *n
lo.Type = gc.Types[gc.TUINT32]
if n.Type.Etype == gc.TINT64 {
hi.Type = gc.Types[gc.TINT32]
} else {
hi.Type = gc.Types[gc.TUINT32]
}
hi.Xoffset += 4
case gc.OLITERAL:
var n1 gc.Node
gc.Convconst(&n1, n.Type, &n.Val)
i := gc.Mpgetfix(n1.Val.U.Xval)
gc.Nodconst(lo, gc.Types[gc.TUINT32], int64(uint32(i)))
i >>= 32
if n.Type.Etype == gc.TINT64 {
gc.Nodconst(hi, gc.Types[gc.TINT32], int64(int32(i)))
} else {
gc.Nodconst(hi, gc.Types[gc.TUINT32], int64(uint32(i)))
}
}
}
func splitclean() {
if nsclean <= 0 {
gc.Fatal("splitclean")
}
nsclean--
if sclean[nsclean].Op != gc.OEMPTY {
regfree(&sclean[nsclean])
}
}
/*
* set up nodes representing fp constants
*/
var zerof gc.Node
var two64f gc.Node
var two63f gc.Node
var bignodes_did int
func bignodes() {
if bignodes_did != 0 {
return
}
bignodes_did = 1
two64f = *ncon(0)
two64f.Type = gc.Types[gc.TFLOAT64]
two64f.Val.Ctype = gc.CTFLT
two64f.Val.U.Fval = new(gc.Mpflt)
gc.Mpmovecflt(two64f.Val.U.Fval, 18446744073709551616.)
two63f = two64f
two63f.Val.U.Fval = new(gc.Mpflt)
gc.Mpmovecflt(two63f.Val.U.Fval, 9223372036854775808.)
zerof = two64f
zerof.Val.U.Fval = new(gc.Mpflt)
gc.Mpmovecflt(zerof.Val.U.Fval, 0)
}
func memname(n *gc.Node, t *gc.Type) {
gc.Tempname(n, t)
n.Sym = gc.Lookup("." + n.Sym.Name[1:]) // keep optimizer from registerizing
n.Orig.Sym = n.Sym
}
func gmove(f *gc.Node, t *gc.Node) {
if gc.Debug['M'] != 0 {
fmt.Printf("gmove %v -> %v\n", gc.Nconv(f, 0), gc.Nconv(t, 0))
}
ft := gc.Simsimtype(f.Type)
tt := gc.Simsimtype(t.Type)
cvt := t.Type
if gc.Iscomplex[ft] != 0 || gc.Iscomplex[tt] != 0 {
gc.Complexmove(f, t)
return
}
if gc.Isfloat[ft] != 0 || gc.Isfloat[tt] != 0 {
floatmove(f, t)
return
}
// cannot have two integer memory operands;
// except 64-bit, which always copies via registers anyway.
var r1 gc.Node
var a int
if gc.Isint[ft] != 0 && gc.Isint[tt] != 0 && !gc.Is64(f.Type) && !gc.Is64(t.Type) && gc.Ismem(f) && gc.Ismem(t) {
goto hard
}
// convert constant to desired type
if f.Op == gc.OLITERAL {
var con gc.Node
gc.Convconst(&con, t.Type, &f.Val)
f = &con
ft = gc.Simsimtype(con.Type)
}
// value -> value copy, only one memory operand.
// figure out the instruction to use.
// break out of switch for one-instruction gins.
// goto rdst for "destination must be register".
// goto hard for "convert to cvt type first".
// otherwise handle and return.
switch uint32(ft)<<16 | uint32(tt) {
default:
goto fatal
/*
* integer copy and truncate
*/
case gc.TINT8<<16 | gc.TINT8, // same size
gc.TINT8<<16 | gc.TUINT8,
gc.TUINT8<<16 | gc.TINT8,
gc.TUINT8<<16 | gc.TUINT8:
a = i386.AMOVB
case gc.TINT16<<16 | gc.TINT8, // truncate
gc.TUINT16<<16 | gc.TINT8,
gc.TINT32<<16 | gc.TINT8,
gc.TUINT32<<16 | gc.TINT8,
gc.TINT16<<16 | gc.TUINT8,
gc.TUINT16<<16 | gc.TUINT8,
gc.TINT32<<16 | gc.TUINT8,
gc.TUINT32<<16 | gc.TUINT8:
a = i386.AMOVB
goto rsrc
case gc.TINT64<<16 | gc.TINT8, // truncate low word
gc.TUINT64<<16 | gc.TINT8,
gc.TINT64<<16 | gc.TUINT8,
gc.TUINT64<<16 | gc.TUINT8:
var flo gc.Node
var fhi gc.Node
split64(f, &flo, &fhi)
var r1 gc.Node
gc.Nodreg(&r1, t.Type, i386.REG_AX)
gmove(&flo, &r1)
gins(i386.AMOVB, &r1, t)
splitclean()
return
case gc.TINT16<<16 | gc.TINT16, // same size
gc.TINT16<<16 | gc.TUINT16,
gc.TUINT16<<16 | gc.TINT16,
gc.TUINT16<<16 | gc.TUINT16:
a = i386.AMOVW
case gc.TINT32<<16 | gc.TINT16, // truncate
gc.TUINT32<<16 | gc.TINT16,
gc.TINT32<<16 | gc.TUINT16,
gc.TUINT32<<16 | gc.TUINT16:
a = i386.AMOVW
goto rsrc
case gc.TINT64<<16 | gc.TINT16, // truncate low word
gc.TUINT64<<16 | gc.TINT16,
gc.TINT64<<16 | gc.TUINT16,
gc.TUINT64<<16 | gc.TUINT16:
var flo gc.Node
var fhi gc.Node
split64(f, &flo, &fhi)
var r1 gc.Node
gc.Nodreg(&r1, t.Type, i386.REG_AX)
gmove(&flo, &r1)
gins(i386.AMOVW, &r1, t)
splitclean()
return
case gc.TINT32<<16 | gc.TINT32, // same size
gc.TINT32<<16 | gc.TUINT32,
gc.TUINT32<<16 | gc.TINT32,
gc.TUINT32<<16 | gc.TUINT32:
a = i386.AMOVL
case gc.TINT64<<16 | gc.TINT32, // truncate
gc.TUINT64<<16 | gc.TINT32,
gc.TINT64<<16 | gc.TUINT32,
gc.TUINT64<<16 | gc.TUINT32:
var fhi gc.Node
var flo gc.Node
split64(f, &flo, &fhi)
var r1 gc.Node
gc.Nodreg(&r1, t.Type, i386.REG_AX)
gmove(&flo, &r1)
gins(i386.AMOVL, &r1, t)
splitclean()
return
case gc.TINT64<<16 | gc.TINT64, // same size
gc.TINT64<<16 | gc.TUINT64,
gc.TUINT64<<16 | gc.TINT64,
gc.TUINT64<<16 | gc.TUINT64:
var fhi gc.Node
var flo gc.Node
split64(f, &flo, &fhi)
var tlo gc.Node
var thi gc.Node
split64(t, &tlo, &thi)
if f.Op == gc.OLITERAL {
gins(i386.AMOVL, &flo, &tlo)
gins(i386.AMOVL, &fhi, &thi)
} else {
var r1 gc.Node
gc.Nodreg(&r1, gc.Types[gc.TUINT32], i386.REG_AX)
var r2 gc.Node
gc.Nodreg(&r2, gc.Types[gc.TUINT32], i386.REG_DX)
gins(i386.AMOVL, &flo, &r1)
gins(i386.AMOVL, &fhi, &r2)
gins(i386.AMOVL, &r1, &tlo)
gins(i386.AMOVL, &r2, &thi)
}
splitclean()
splitclean()
return
/*
* integer up-conversions
*/
case gc.TINT8<<16 | gc.TINT16, // sign extend int8
gc.TINT8<<16 | gc.TUINT16:
a = i386.AMOVBWSX
goto rdst
case gc.TINT8<<16 | gc.TINT32,
gc.TINT8<<16 | gc.TUINT32:
a = i386.AMOVBLSX
goto rdst
case gc.TINT8<<16 | gc.TINT64, // convert via int32
gc.TINT8<<16 | gc.TUINT64:
cvt = gc.Types[gc.TINT32]
goto hard
case gc.TUINT8<<16 | gc.TINT16, // zero extend uint8
gc.TUINT8<<16 | gc.TUINT16:
a = i386.AMOVBWZX
goto rdst
case gc.TUINT8<<16 | gc.TINT32,
gc.TUINT8<<16 | gc.TUINT32:
a = i386.AMOVBLZX
goto rdst
case gc.TUINT8<<16 | gc.TINT64, // convert via uint32
gc.TUINT8<<16 | gc.TUINT64:
cvt = gc.Types[gc.TUINT32]
goto hard
case gc.TINT16<<16 | gc.TINT32, // sign extend int16
gc.TINT16<<16 | gc.TUINT32:
a = i386.AMOVWLSX
goto rdst
case gc.TINT16<<16 | gc.TINT64, // convert via int32
gc.TINT16<<16 | gc.TUINT64:
cvt = gc.Types[gc.TINT32]
goto hard
case gc.TUINT16<<16 | gc.TINT32, // zero extend uint16
gc.TUINT16<<16 | gc.TUINT32:
a = i386.AMOVWLZX
goto rdst
case gc.TUINT16<<16 | gc.TINT64, // convert via uint32
gc.TUINT16<<16 | gc.TUINT64:
cvt = gc.Types[gc.TUINT32]
goto hard
case gc.TINT32<<16 | gc.TINT64, // sign extend int32
gc.TINT32<<16 | gc.TUINT64:
var thi gc.Node
var tlo gc.Node
split64(t, &tlo, &thi)
var flo gc.Node
gc.Nodreg(&flo, tlo.Type, i386.REG_AX)
var fhi gc.Node
gc.Nodreg(&fhi, thi.Type, i386.REG_DX)
gmove(f, &flo)
gins(i386.ACDQ, nil, nil)
gins(i386.AMOVL, &flo, &tlo)
gins(i386.AMOVL, &fhi, &thi)
splitclean()
return
case gc.TUINT32<<16 | gc.TINT64, // zero extend uint32
gc.TUINT32<<16 | gc.TUINT64:
var tlo gc.Node
var thi gc.Node
split64(t, &tlo, &thi)
gmove(f, &tlo)
gins(i386.AMOVL, ncon(0), &thi)
splitclean()
return
}
gins(a, f, t)
return
// requires register source
rsrc:
regalloc(&r1, f.Type, t)
gmove(f, &r1)
gins(a, &r1, t)
regfree(&r1)
return
// requires register destination
rdst:
regalloc(&r1, t.Type, t)
gins(a, f, &r1)
gmove(&r1, t)
regfree(&r1)
return
// requires register intermediate
hard:
regalloc(&r1, cvt, t)
gmove(f, &r1)
gmove(&r1, t)
regfree(&r1)
return
// should not happen
fatal:
gc.Fatal("gmove %v -> %v", gc.Nconv(f, 0), gc.Nconv(t, 0))
}
func floatmove(f *gc.Node, t *gc.Node) {
var r1 gc.Node
ft := gc.Simsimtype(f.Type)
tt := gc.Simsimtype(t.Type)
cvt := t.Type
// cannot have two floating point memory operands.
if gc.Isfloat[ft] != 0 && gc.Isfloat[tt] != 0 && gc.Ismem(f) && gc.Ismem(t) {
goto hard
}
// convert constant to desired type
if f.Op == gc.OLITERAL {
var con gc.Node
gc.Convconst(&con, t.Type, &f.Val)
f = &con
ft = gc.Simsimtype(con.Type)
// some constants can't move directly to memory.
if gc.Ismem(t) {
// float constants come from memory.
if gc.Isfloat[tt] != 0 {
goto hard
}
}
}
// value -> value copy, only one memory operand.
// figure out the instruction to use.
// break out of switch for one-instruction gins.
// goto rdst for "destination must be register".
// goto hard for "convert to cvt type first".
// otherwise handle and return.
switch uint32(ft)<<16 | uint32(tt) {
default:
if gc.Use_sse != 0 {
floatmove_sse(f, t)
} else {
floatmove_387(f, t)
}
return
// float to very long integer.
case gc.TFLOAT32<<16 | gc.TINT64,
gc.TFLOAT64<<16 | gc.TINT64:
if f.Op == gc.OREGISTER {
cvt = f.Type
goto hardmem
}
var r1 gc.Node
gc.Nodreg(&r1, gc.Types[ft], i386.REG_F0)
if ft == gc.TFLOAT32 {
gins(i386.AFMOVF, f, &r1)
} else {
gins(i386.AFMOVD, f, &r1)
}
// set round to zero mode during conversion
var t1 gc.Node
memname(&t1, gc.Types[gc.TUINT16])
var t2 gc.Node
memname(&t2, gc.Types[gc.TUINT16])
gins(i386.AFSTCW, nil, &t1)
gins(i386.AMOVW, ncon(0xf7f), &t2)
gins(i386.AFLDCW, &t2, nil)
if tt == gc.TINT16 {
gins(i386.AFMOVWP, &r1, t)
} else if tt == gc.TINT32 {
gins(i386.AFMOVLP, &r1, t)
} else {
gins(i386.AFMOVVP, &r1, t)
}
gins(i386.AFLDCW, &t1, nil)
return
case gc.TFLOAT32<<16 | gc.TUINT64,
gc.TFLOAT64<<16 | gc.TUINT64:
if !gc.Ismem(f) {
cvt = f.Type
goto hardmem
}
bignodes()
var f0 gc.Node
gc.Nodreg(&f0, gc.Types[ft], i386.REG_F0)
var f1 gc.Node
gc.Nodreg(&f1, gc.Types[ft], i386.REG_F0+1)
var ax gc.Node
gc.Nodreg(&ax, gc.Types[gc.TUINT16], i386.REG_AX)
if ft == gc.TFLOAT32 {
gins(i386.AFMOVF, f, &f0)
} else {
gins(i386.AFMOVD, f, &f0)
}
// if 0 > v { answer = 0 }
gins(i386.AFMOVD, &zerof, &f0)
gins(i386.AFUCOMIP, &f0, &f1)
p1 := gc.Gbranch(optoas(gc.OGT, gc.Types[tt]), nil, 0)
// if 1<<64 <= v { answer = 0 too }
gins(i386.AFMOVD, &two64f, &f0)
gins(i386.AFUCOMIP, &f0, &f1)
p2 := gc.Gbranch(optoas(gc.OGT, gc.Types[tt]), nil, 0)
gc.Patch(p1, gc.Pc)
gins(i386.AFMOVVP, &f0, t) // don't care about t, but will pop the stack
var thi gc.Node
var tlo gc.Node
split64(t, &tlo, &thi)
gins(i386.AMOVL, ncon(0), &tlo)
gins(i386.AMOVL, ncon(0), &thi)
splitclean()
p1 = gc.Gbranch(obj.AJMP, nil, 0)
gc.Patch(p2, gc.Pc)
// in range; algorithm is:
// if small enough, use native float64 -> int64 conversion.
// otherwise, subtract 2^63, convert, and add it back.
// set round to zero mode during conversion
var t1 gc.Node
memname(&t1, gc.Types[gc.TUINT16])
var t2 gc.Node
memname(&t2, gc.Types[gc.TUINT16])
gins(i386.AFSTCW, nil, &t1)
gins(i386.AMOVW, ncon(0xf7f), &t2)
gins(i386.AFLDCW, &t2, nil)
// actual work
gins(i386.AFMOVD, &two63f, &f0)
gins(i386.AFUCOMIP, &f0, &f1)
p2 = gc.Gbranch(optoas(gc.OLE, gc.Types[tt]), nil, 0)
gins(i386.AFMOVVP, &f0, t)
p3 := gc.Gbranch(obj.AJMP, nil, 0)
gc.Patch(p2, gc.Pc)
gins(i386.AFMOVD, &two63f, &f0)
gins(i386.AFSUBDP, &f0, &f1)
gins(i386.AFMOVVP, &f0, t)
split64(t, &tlo, &thi)
gins(i386.AXORL, ncon(0x80000000), &thi) // + 2^63
gc.Patch(p3, gc.Pc)
splitclean()
// restore rounding mode
gins(i386.AFLDCW, &t1, nil)
gc.Patch(p1, gc.Pc)
return
/*
* integer to float
*/
case gc.TINT64<<16 | gc.TFLOAT32,
gc.TINT64<<16 | gc.TFLOAT64:
if t.Op == gc.OREGISTER {
goto hardmem
}
var f0 gc.Node
gc.Nodreg(&f0, t.Type, i386.REG_F0)
gins(i386.AFMOVV, f, &f0)
if tt == gc.TFLOAT32 {
gins(i386.AFMOVFP, &f0, t)
} else {
gins(i386.AFMOVDP, &f0, t)
}
return
// algorithm is:
// if small enough, use native int64 -> float64 conversion.
// otherwise, halve (rounding to odd?), convert, and double.
case gc.TUINT64<<16 | gc.TFLOAT32,
gc.TUINT64<<16 | gc.TFLOAT64:
var ax gc.Node
gc.Nodreg(&ax, gc.Types[gc.TUINT32], i386.REG_AX)
var dx gc.Node
gc.Nodreg(&dx, gc.Types[gc.TUINT32], i386.REG_DX)
var cx gc.Node
gc.Nodreg(&cx, gc.Types[gc.TUINT32], i386.REG_CX)
var t1 gc.Node
gc.Tempname(&t1, f.Type)
var tlo gc.Node
var thi gc.Node
split64(&t1, &tlo, &thi)
gmove(f, &t1)
gins(i386.ACMPL, &thi, ncon(0))
p1 := gc.Gbranch(i386.AJLT, nil, 0)
// native
var r1 gc.Node
gc.Nodreg(&r1, gc.Types[tt], i386.REG_F0)
gins(i386.AFMOVV, &t1, &r1)
if tt == gc.TFLOAT32 {
gins(i386.AFMOVFP, &r1, t)
} else {
gins(i386.AFMOVDP, &r1, t)
}
p2 := gc.Gbranch(obj.AJMP, nil, 0)
// simulated
gc.Patch(p1, gc.Pc)
gmove(&tlo, &ax)
gmove(&thi, &dx)
p1 = gins(i386.ASHRL, ncon(1), &ax)
p1.From.Index = i386.REG_DX // double-width shift DX -> AX
p1.From.Scale = 0
gins(i386.AMOVL, ncon(0), &cx)
gins(i386.ASETCC, nil, &cx)
gins(i386.AORL, &cx, &ax)
gins(i386.ASHRL, ncon(1), &dx)
gmove(&dx, &thi)
gmove(&ax, &tlo)
gc.Nodreg(&r1, gc.Types[tt], i386.REG_F0)
var r2 gc.Node
gc.Nodreg(&r2, gc.Types[tt], i386.REG_F0+1)
gins(i386.AFMOVV, &t1, &r1)
gins(i386.AFMOVD, &r1, &r1)
gins(i386.AFADDDP, &r1, &r2)
if tt == gc.TFLOAT32 {
gins(i386.AFMOVFP, &r1, t)
} else {
gins(i386.AFMOVDP, &r1, t)
}
gc.Patch(p2, gc.Pc)
splitclean()
return
}
// requires register intermediate
hard:
regalloc(&r1, cvt, t)
gmove(f, &r1)
gmove(&r1, t)
regfree(&r1)
return
// requires memory intermediate
hardmem:
gc.Tempname(&r1, cvt)
gmove(f, &r1)
gmove(&r1, t)
return
}
func floatmove_387(f *gc.Node, t *gc.Node) {
var r1 gc.Node
var a int
ft := gc.Simsimtype(f.Type)
tt := gc.Simsimtype(t.Type)
cvt := t.Type
switch uint32(ft)<<16 | uint32(tt) {
default:
goto fatal
/*
* float to integer
*/
case gc.TFLOAT32<<16 | gc.TINT16,
gc.TFLOAT32<<16 | gc.TINT32,
gc.TFLOAT32<<16 | gc.TINT64,
gc.TFLOAT64<<16 | gc.TINT16,
gc.TFLOAT64<<16 | gc.TINT32,
gc.TFLOAT64<<16 | gc.TINT64:
if t.Op == gc.OREGISTER {
goto hardmem
}
var r1 gc.Node
gc.Nodreg(&r1, gc.Types[ft], i386.REG_F0)
if f.Op != gc.OREGISTER {
if ft == gc.TFLOAT32 {
gins(i386.AFMOVF, f, &r1)
} else {
gins(i386.AFMOVD, f, &r1)
}
}
// set round to zero mode during conversion
var t1 gc.Node
memname(&t1, gc.Types[gc.TUINT16])
var t2 gc.Node
memname(&t2, gc.Types[gc.TUINT16])
gins(i386.AFSTCW, nil, &t1)
gins(i386.AMOVW, ncon(0xf7f), &t2)
gins(i386.AFLDCW, &t2, nil)
if tt == gc.TINT16 {
gins(i386.AFMOVWP, &r1, t)
} else if tt == gc.TINT32 {
gins(i386.AFMOVLP, &r1, t)
} else {
gins(i386.AFMOVVP, &r1, t)
}
gins(i386.AFLDCW, &t1, nil)
return
// convert via int32.
case gc.TFLOAT32<<16 | gc.TINT8,
gc.TFLOAT32<<16 | gc.TUINT16,
gc.TFLOAT32<<16 | gc.TUINT8,
gc.TFLOAT64<<16 | gc.TINT8,
gc.TFLOAT64<<16 | gc.TUINT16,
gc.TFLOAT64<<16 | gc.TUINT8:
var t1 gc.Node
gc.Tempname(&t1, gc.Types[gc.TINT32])
gmove(f, &t1)
switch tt {
default:
gc.Fatal("gmove %v", gc.Nconv(t, 0))
case gc.TINT8:
gins(i386.ACMPL, &t1, ncon(-0x80&(1<<32-1)))
p1 := gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TINT32]), nil, -1)
gins(i386.ACMPL, &t1, ncon(0x7f))
p2 := gc.Gbranch(optoas(gc.OGT, gc.Types[gc.TINT32]), nil, -1)
p3 := gc.Gbranch(obj.AJMP, nil, 0)
gc.Patch(p1, gc.Pc)
gc.Patch(p2, gc.Pc)
gmove(ncon(-0x80&(1<<32-1)), &t1)
gc.Patch(p3, gc.Pc)
gmove(&t1, t)
case gc.TUINT8:
gins(i386.ATESTL, ncon(0xffffff00), &t1)
p1 := gc.Gbranch(i386.AJEQ, nil, +1)
gins(i386.AMOVL, ncon(0), &t1)
gc.Patch(p1, gc.Pc)
gmove(&t1, t)
case gc.TUINT16:
gins(i386.ATESTL, ncon(0xffff0000), &t1)
p1 := gc.Gbranch(i386.AJEQ, nil, +1)
gins(i386.AMOVL, ncon(0), &t1)
gc.Patch(p1, gc.Pc)
gmove(&t1, t)
}
return
// convert via int64.
case gc.TFLOAT32<<16 | gc.TUINT32,
gc.TFLOAT64<<16 | gc.TUINT32:
cvt = gc.Types[gc.TINT64]
goto hardmem
/*
* integer to float
*/
case gc.TINT16<<16 | gc.TFLOAT32,
gc.TINT16<<16 | gc.TFLOAT64,
gc.TINT32<<16 | gc.TFLOAT32,
gc.TINT32<<16 | gc.TFLOAT64,
gc.TINT64<<16 | gc.TFLOAT32,
gc.TINT64<<16 | gc.TFLOAT64:
if t.Op != gc.OREGISTER {
goto hard
}
if f.Op == gc.OREGISTER {
cvt = f.Type
goto hardmem
}
switch ft {
case gc.TINT16:
a = i386.AFMOVW
case gc.TINT32:
a = i386.AFMOVL
default:
a = i386.AFMOVV
}
// convert via int32 memory
case gc.TINT8<<16 | gc.TFLOAT32,
gc.TINT8<<16 | gc.TFLOAT64,
gc.TUINT16<<16 | gc.TFLOAT32,
gc.TUINT16<<16 | gc.TFLOAT64,
gc.TUINT8<<16 | gc.TFLOAT32,
gc.TUINT8<<16 | gc.TFLOAT64:
cvt = gc.Types[gc.TINT32]
goto hardmem
// convert via int64 memory
case gc.TUINT32<<16 | gc.TFLOAT32,
gc.TUINT32<<16 | gc.TFLOAT64:
cvt = gc.Types[gc.TINT64]
goto hardmem
// The way the code generator uses floating-point
// registers, a move from F0 to F0 is intended as a no-op.
// On the x86, it's not: it pushes a second copy of F0
// on the floating point stack. So toss it away here.
// Also, F0 is the *only* register we ever evaluate
// into, so we should only see register/register as F0/F0.
/*
* float to float
*/
case gc.TFLOAT32<<16 | gc.TFLOAT32,
gc.TFLOAT64<<16 | gc.TFLOAT64:
if gc.Ismem(f) && gc.Ismem(t) {
goto hard
}
if f.Op == gc.OREGISTER && t.Op == gc.OREGISTER {
if f.Val.U.Reg != i386.REG_F0 || t.Val.U.Reg != i386.REG_F0 {
goto fatal
}
return
}
a = i386.AFMOVF
if ft == gc.TFLOAT64 {
a = i386.AFMOVD
}
if gc.Ismem(t) {
if f.Op != gc.OREGISTER || f.Val.U.Reg != i386.REG_F0 {
gc.Fatal("gmove %v", gc.Nconv(f, 0))
}
a = i386.AFMOVFP
if ft == gc.TFLOAT64 {
a = i386.AFMOVDP
}
}
case gc.TFLOAT32<<16 | gc.TFLOAT64:
if gc.Ismem(f) && gc.Ismem(t) {
goto hard
}
if f.Op == gc.OREGISTER && t.Op == gc.OREGISTER {
if f.Val.U.Reg != i386.REG_F0 || t.Val.U.Reg != i386.REG_F0 {
goto fatal
}
return
}
if f.Op == gc.OREGISTER {
gins(i386.AFMOVDP, f, t)
} else {
gins(i386.AFMOVF, f, t)
}
return
case gc.TFLOAT64<<16 | gc.TFLOAT32:
if gc.Ismem(f) && gc.Ismem(t) {
goto hard
}
if f.Op == gc.OREGISTER && t.Op == gc.OREGISTER {
var r1 gc.Node
gc.Tempname(&r1, gc.Types[gc.TFLOAT32])
gins(i386.AFMOVFP, f, &r1)
gins(i386.AFMOVF, &r1, t)
return
}
if f.Op == gc.OREGISTER {
gins(i386.AFMOVFP, f, t)
} else {
gins(i386.AFMOVD, f, t)
}
return
}
gins(a, f, t)
return
// requires register intermediate
hard:
regalloc(&r1, cvt, t)
gmove(f, &r1)
gmove(&r1, t)
regfree(&r1)
return
// requires memory intermediate
hardmem:
gc.Tempname(&r1, cvt)
gmove(f, &r1)
gmove(&r1, t)
return
// should not happen
fatal:
gc.Fatal("gmove %v -> %v", gc.Nconv(f, obj.FmtLong), gc.Nconv(t, obj.FmtLong))
return
}
func floatmove_sse(f *gc.Node, t *gc.Node) {
var r1 gc.Node
var cvt *gc.Type
var a int
ft := gc.Simsimtype(f.Type)
tt := gc.Simsimtype(t.Type)
switch uint32(ft)<<16 | uint32(tt) {
// should not happen
default:
gc.Fatal("gmove %v -> %v", gc.Nconv(f, 0), gc.Nconv(t, 0))
return
// convert via int32.
/*
* float to integer
*/
case gc.TFLOAT32<<16 | gc.TINT16,
gc.TFLOAT32<<16 | gc.TINT8,
gc.TFLOAT32<<16 | gc.TUINT16,
gc.TFLOAT32<<16 | gc.TUINT8,
gc.TFLOAT64<<16 | gc.TINT16,
gc.TFLOAT64<<16 | gc.TINT8,
gc.TFLOAT64<<16 | gc.TUINT16,
gc.TFLOAT64<<16 | gc.TUINT8:
cvt = gc.Types[gc.TINT32]
goto hard
// convert via int64.
case gc.TFLOAT32<<16 | gc.TUINT32,
gc.TFLOAT64<<16 | gc.TUINT32:
cvt = gc.Types[gc.TINT64]
goto hardmem
case gc.TFLOAT32<<16 | gc.TINT32:
a = i386.ACVTTSS2SL
goto rdst
case gc.TFLOAT64<<16 | gc.TINT32:
a = i386.ACVTTSD2SL
goto rdst
// convert via int32 memory
/*
* integer to float
*/
case gc.TINT8<<16 | gc.TFLOAT32,
gc.TINT8<<16 | gc.TFLOAT64,
gc.TINT16<<16 | gc.TFLOAT32,
gc.TINT16<<16 | gc.TFLOAT64,
gc.TUINT16<<16 | gc.TFLOAT32,
gc.TUINT16<<16 | gc.TFLOAT64,
gc.TUINT8<<16 | gc.TFLOAT32,
gc.TUINT8<<16 | gc.TFLOAT64:
cvt = gc.Types[gc.TINT32]
goto hard
// convert via int64 memory
case gc.TUINT32<<16 | gc.TFLOAT32,
gc.TUINT32<<16 | gc.TFLOAT64:
cvt = gc.Types[gc.TINT64]
goto hardmem
case gc.TINT32<<16 | gc.TFLOAT32:
a = i386.ACVTSL2SS
goto rdst
case gc.TINT32<<16 | gc.TFLOAT64:
a = i386.ACVTSL2SD
goto rdst
/*
* float to float
*/
case gc.TFLOAT32<<16 | gc.TFLOAT32:
a = i386.AMOVSS
case gc.TFLOAT64<<16 | gc.TFLOAT64:
a = i386.AMOVSD
case gc.TFLOAT32<<16 | gc.TFLOAT64:
a = i386.ACVTSS2SD
goto rdst
case gc.TFLOAT64<<16 | gc.TFLOAT32:
a = i386.ACVTSD2SS
goto rdst
}
gins(a, f, t)
return
// requires register intermediate
hard:
regalloc(&r1, cvt, t)
gmove(f, &r1)
gmove(&r1, t)
regfree(&r1)
return
// requires memory intermediate
hardmem:
gc.Tempname(&r1, cvt)
gmove(f, &r1)
gmove(&r1, t)
return
// requires register destination
rdst:
regalloc(&r1, t.Type, t)
gins(a, f, &r1)
gmove(&r1, t)
regfree(&r1)
return
}
func samaddr(f *gc.Node, t *gc.Node) bool {
if f.Op != t.Op {
return false
}
switch f.Op {
case gc.OREGISTER:
if f.Val.U.Reg != t.Val.U.Reg {
break
}
return true
}
return false
}
/*
* generate one instruction:
* as f, t
*/
func gins(as int, f *gc.Node, t *gc.Node) *obj.Prog {
if as == i386.AFMOVF && f != nil && f.Op == gc.OREGISTER && t != nil && t.Op == gc.OREGISTER {
gc.Fatal("gins MOVF reg, reg")
}
if as == i386.ACVTSD2SS && f != nil && f.Op == gc.OLITERAL {
gc.Fatal("gins CVTSD2SS const")
}
if as == i386.AMOVSD && t != nil && t.Op == gc.OREGISTER && t.Val.U.Reg == i386.REG_F0 {
gc.Fatal("gins MOVSD into F0")
}
switch as {
case i386.AMOVB,
i386.AMOVW,
i386.AMOVL:
if f != nil && t != nil && samaddr(f, t) {
return nil
}
case i386.ALEAL:
if f != nil && gc.Isconst(f, gc.CTNIL) {
gc.Fatal("gins LEAL nil %v", gc.Tconv(f.Type, 0))
}
}
af := obj.Addr{}
at := obj.Addr{}
if f != nil {
gc.Naddr(f, &af, 1)
}
if t != nil {
gc.Naddr(t, &at, 1)
}
p := gc.Prog(as)
if f != nil {
p.From = af
}
if t != nil {
p.To = at
}
if gc.Debug['g'] != 0 {
fmt.Printf("%v\n", p)
}
w := 0
switch as {
case i386.AMOVB:
w = 1
case i386.AMOVW:
w = 2
case i386.AMOVL:
w = 4
}
if true && w != 0 && f != nil && (af.Width > int64(w) || at.Width > int64(w)) {
gc.Dump("bad width from:", f)
gc.Dump("bad width to:", t)
gc.Fatal("bad width: %v (%d, %d)\n", p, af.Width, at.Width)
}
if p.To.Type == obj.TYPE_ADDR && w > 0 {
gc.Fatal("bad use of addr: %v", p)
}
return p
}
func dotaddable(n *gc.Node, n1 *gc.Node) bool {
if n.Op != gc.ODOT {
return false
}
var oary [10]int64
var nn *gc.Node
o := gc.Dotoffset(n, oary[:], &nn)
if nn != nil && nn.Addable != 0 && o == 1 && oary[0] >= 0 {
*n1 = *nn
n1.Type = n.Type
n1.Xoffset += oary[0]
return true
}
return false
}
func sudoclean() {
}
func sudoaddable(as int, n *gc.Node, a *obj.Addr) bool {
*a = obj.Addr{}
return false
}