Define the new Rand and Source types to allow creating
isolated sources of random values.
Add normal and exponential distributions.
Add some tests for the normal and exponential distributions.
R=rsc
APPROVED=rsc
DELTA=1005 (904 added, 80 deleted, 21 changed)
OCL=35501
CL=35779
diff --git a/src/pkg/rand/rand_test.go b/src/pkg/rand/rand_test.go
new file mode 100644
index 0000000..7a9980e
--- /dev/null
+++ b/src/pkg/rand/rand_test.go
@@ -0,0 +1,314 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package rand
+
+import (
+ "math";
+ "fmt";
+ "os";
+ "testing";
+)
+
+const (
+ numTestSamples = 10000;
+)
+
+type statsResults struct {
+ mean float64;
+ stddev float64;
+ closeEnough float64;
+ maxError float64;
+}
+
+func max(a, b float64) float64 {
+ if a > b {
+ return a;
+ }
+ return b;
+}
+
+func nearEqual(a, b, closeEnough, maxError float64) bool {
+ absDiff := math.Fabs(a-b);
+ if absDiff < closeEnough { // Necessary when one value is zero and one value is close to zero.
+ return true;
+ }
+ return absDiff / max(math.Fabs(a), math.Fabs(b)) < maxError;
+}
+
+var testSeeds = []int64{1, 1754801282, 1698661970, 1550503961}
+
+// checkSimilarDistribution returns success if the mean and stddev of the
+// two statsResults are similar.
+func (this *statsResults) checkSimilarDistribution(expected *statsResults) os.Error {
+ if !nearEqual(this.mean, expected.mean, expected.closeEnough, expected.maxError) {
+ s := fmt.Sprintf("mean %v != %v (allowed error %v, %v)", this.mean, expected.mean, expected.closeEnough, expected.maxError);
+ fmt.Println(s);
+ return os.ErrorString(s);
+ }
+ if !nearEqual(this.stddev, expected.stddev, 0, expected.maxError) {
+ s := fmt.Sprintf("stddev %v != %v (allowed error %v, %v)", this.stddev, expected.stddev, expected.closeEnough, expected.maxError);
+ fmt.Println(s);
+ return os.ErrorString(s);
+ }
+ return nil;
+}
+
+func getStatsResults(samples []float64) *statsResults {
+ res := new(statsResults);
+ var sum float64;
+ for i := range samples {
+ sum += samples[i];
+ }
+ res.mean = sum/float64(len(samples));
+ var devsum float64;
+ for i := range samples {
+ devsum += math.Pow(samples[i] - res.mean, 2);
+ }
+ res.stddev = math.Sqrt(devsum/float64(len(samples)));
+ return res;
+}
+
+func checkSampleDistribution(t *testing.T, samples []float64, expected *statsResults) {
+ actual := getStatsResults(samples);
+ err := actual.checkSimilarDistribution(expected);
+ if err != nil {
+ t.Errorf(err.String());
+ }
+}
+
+func checkSampleSliceDistributions(t *testing.T, samples []float64, nslices int, expected *statsResults) {
+ chunk := len(samples)/nslices;
+ for i := 0; i < nslices; i++ {
+ low := i*chunk;
+ var high int;
+ if i == nslices-1 {
+ high = len(samples)-1;
+ } else {
+ high = (i+1)*chunk;
+ }
+ checkSampleDistribution(t, samples[low:high], expected);
+ }
+}
+
+//
+// Normal distribution tests
+//
+
+func generateNormalSamples(nsamples int, mean, stddev float64, seed int64) []float64 {
+ r := New(NewSource(seed));
+ samples := make([]float64, nsamples);
+ for i := range samples {
+ samples[i] = r.NormFloat64() * stddev + mean;
+ }
+ return samples;
+}
+
+func testNormalDistribution(t *testing.T, nsamples int, mean, stddev float64, seed int64) {
+ //fmt.Printf("testing nsamples=%v mean=%v stddev=%v seed=%v\n", nsamples, mean, stddev, seed);
+
+ samples := generateNormalSamples(nsamples, mean, stddev, seed);
+ errorScale := max(1.0, stddev); // Error scales with stddev
+ expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale};
+
+ // Make sure that the entire set matches the expected distribution.
+ checkSampleDistribution(t, samples, expected);
+
+ // Make sure that each half of the set matches the expected distribution.
+ checkSampleSliceDistributions(t, samples, 2, expected);
+
+ // Make sure that each 7th of the set matches the expected distribution.
+ checkSampleSliceDistributions(t, samples, 7, expected);
+}
+
+// Actual tests
+
+func TestStandardNormalValues(t *testing.T) {
+ for _, seed := range testSeeds {
+ testNormalDistribution(t, numTestSamples, 0, 1, seed);
+ }
+}
+
+func TestNonStandardNormalValues(t *testing.T) {
+ for sd := float64(0.5); sd < 1000; sd *= 2 {
+ for m := float64(0.5); m < 1000; m *= 2 {
+ for _, seed := range testSeeds {
+ testNormalDistribution(t, numTestSamples, m, sd, seed);
+ }
+ }
+ }
+}
+
+//
+// Exponential distribution tests
+//
+
+func generateExponentialSamples(nsamples int, rate float64, seed int64) []float64 {
+ r := New(NewSource(seed));
+ samples := make([]float64, nsamples);
+ for i := range samples {
+ samples[i] = r.ExpFloat64() / rate;
+ }
+ return samples;
+}
+
+func testExponentialDistribution(t *testing.T, nsamples int, rate float64, seed int64) {
+ //fmt.Printf("testing nsamples=%v rate=%v seed=%v\n", nsamples, rate, seed);
+
+ mean := 1/rate;
+ stddev := mean;
+
+ samples := generateExponentialSamples(nsamples, rate, seed);
+ errorScale := max(1.0, 1/rate); // Error scales with the inverse of the rate
+ expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.20 * errorScale};
+
+ // Make sure that the entire set matches the expected distribution.
+ checkSampleDistribution(t, samples, expected);
+
+ // Make sure that each half of the set matches the expected distribution.
+ checkSampleSliceDistributions(t, samples, 2, expected);
+
+ // Make sure that each 7th of the set matches the expected distribution.
+ checkSampleSliceDistributions(t, samples, 7, expected);
+}
+
+// Actual tests
+
+func TestStandardExponentialValues(t *testing.T) {
+ for _, seed := range testSeeds {
+ testExponentialDistribution(t, numTestSamples, 1, seed);
+ }
+}
+
+func TestNonStandardExponentialValues(t *testing.T) {
+ for rate := float64(0.05); rate < 10; rate *= 2 {
+ for _, seed := range testSeeds {
+ testExponentialDistribution(t, numTestSamples, rate, seed);
+ }
+ }
+}
+
+//
+// Table generation tests
+//
+
+func initNorm() (testKn []uint32, testWn, testFn []float32) {
+ const m1 = 1<<31;
+ var (
+ dn float64 = rn;
+ tn = dn;
+ vn float64 = 9.91256303526217e-3;
+ )
+
+ testKn = make([]uint32, 128);
+ testWn = make([]float32, 128);
+ testFn = make([]float32, 128);
+
+ q := vn / math.Exp(-0.5 * dn * dn);
+ testKn[0] = uint32((dn/q)*m1);
+ testKn[1] = 0;
+ testWn[0] = float32(q/m1);
+ testWn[127] = float32(dn/m1);
+ testFn[0] = 1.0;
+ testFn[127] = float32(math.Exp(-0.5 * dn * dn));
+ for i := 126; i >= 1; i-- {
+ dn = math.Sqrt(-2.0 * math.Log(vn/dn + math.Exp(-0.5 * dn * dn)));
+ testKn[i+1] = uint32((dn/tn)*m1);
+ tn = dn;
+ testFn[i] = float32(math.Exp(-0.5 * dn * dn));
+ testWn[i] = float32(dn/m1);
+ }
+ return;
+}
+
+func initExp() (testKe []uint32, testWe, testFe []float32) {
+ const m2 = 1<<32;
+ var (
+ de float64 = re;
+ te = de;
+ ve float64 = 3.9496598225815571993e-3;
+ )
+
+ testKe = make([]uint32, 256);
+ testWe = make([]float32, 256);
+ testFe = make([]float32, 256);
+
+ q := ve / math.Exp(-de);
+ testKe[0] = uint32((de/q)*m2);
+ testKe[1] = 0;
+ testWe[0] = float32(q/m2);
+ testWe[255] = float32(de/m2);
+ testFe[0] = 1.0;
+ testFe[255] = float32(math.Exp(-de));
+ for i := 254; i >= 1; i-- {
+ de = -math.Log(ve/de + math.Exp(-de));
+ testKe[i+1] = uint32((de/te)*m2);
+ te = de;
+ testFe[i] = float32(math.Exp(-de));
+ testWe[i] = float32(de/m2);
+ }
+ return;
+}
+
+// compareUint32Slices returns the first index where the two slices
+// disagree, or <0 if the lengths are the same and all elements
+// are identical.
+func compareUint32Slices(s1, s2 []uint32) int {
+ if len(s1) != len(s2) {
+ if len(s1) > len(s2) {
+ return len(s2)+1;
+ }
+ return len(s1)+1;
+ }
+ for i := range s1 {
+ if s1[i] != s2[i] {
+ return i;
+ }
+ }
+ return -1;
+}
+
+// compareFloat32Slices returns the first index where the two slices
+// disagree, or <0 if the lengths are the same and all elements
+// are identical.
+func compareFloat32Slices(s1, s2 []float32) int {
+ if len(s1) != len(s2) {
+ if len(s1) > len(s2) {
+ return len(s2)+1;
+ }
+ return len(s1)+1;
+ }
+ for i := range s1 {
+ if !nearEqual(float64(s1[i]), float64(s2[i]), 0, 1e-7) {
+ return i;
+ }
+ }
+ return -1;
+}
+
+func TestNormTables(t *testing.T) {
+ testKn, testWn, testFn := initNorm();
+ if i := compareUint32Slices(kn[0:len(kn)], testKn); i >= 0 {
+ t.Errorf("kn disagrees at index %v; %v != %v\n", i, kn[i], testKn[i]);
+ }
+ if i := compareFloat32Slices(wn[0:len(wn)], testWn); i >= 0 {
+ t.Errorf("wn disagrees at index %v; %v != %v\n", i, wn[i], testWn[i]);
+ }
+ if i := compareFloat32Slices(fn[0:len(fn)], testFn); i >= 0 {
+ t.Errorf("fn disagrees at index %v; %v != %v\n", i, fn[i], testFn[i]);
+ }
+}
+
+func TestExpTables(t *testing.T) {
+ testKe, testWe, testFe := initExp();
+ if i := compareUint32Slices(ke[0:len(ke)], testKe); i >= 0 {
+ t.Errorf("ke disagrees at index %v; %v != %v\n", i, ke[i], testKe[i]);
+ }
+ if i := compareFloat32Slices(we[0:len(we)], testWe); i >= 0 {
+ t.Errorf("we disagrees at index %v; %v != %v\n", i, we[i], testWe[i]);
+ }
+ if i := compareFloat32Slices(fe[0:len(fe)], testFe); i >= 0 {
+ t.Errorf("fe disagrees at index %v; %v != %v\n", i, fe[i], testFe[i]);
+ }
+}