| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // This file implements signed multi-precision integers. |
| |
| package big |
| |
| // An Int represents a signed multi-precision integer. |
| // The zero value for an Int represents the value 0. |
| type Int struct { |
| neg bool // sign |
| abs []Word // absolute value of the integer |
| } |
| |
| |
| // New allocates and returns a new Int set to x. |
| func (z *Int) New(x int64) *Int { |
| z.neg = false |
| if x < 0 { |
| z.neg = true |
| x = -x |
| } |
| z.abs = newN(z.abs, uint64(x)) |
| return z |
| } |
| |
| |
| // NewInt allocates and returns a new Int set to x. |
| func NewInt(x int64) *Int { return new(Int).New(x) } |
| |
| |
| // Set sets z to x. |
| func (z *Int) Set(x *Int) *Int { |
| z.neg = x.neg |
| z.abs = setN(z.abs, x.abs) |
| return z |
| } |
| |
| |
| // Add computes z = x+y. |
| func (z *Int) Add(x, y *Int) *Int { |
| if x.neg == y.neg { |
| // x + y == x + y |
| // (-x) + (-y) == -(x + y) |
| z.neg = x.neg |
| z.abs = addNN(z.abs, x.abs, y.abs) |
| } else { |
| // x + (-y) == x - y == -(y - x) |
| // (-x) + y == y - x == -(x - y) |
| if cmpNN(x.abs, y.abs) >= 0 { |
| z.neg = x.neg |
| z.abs = subNN(z.abs, x.abs, y.abs) |
| } else { |
| z.neg = !x.neg |
| z.abs = subNN(z.abs, y.abs, x.abs) |
| } |
| } |
| if len(z.abs) == 0 { |
| z.neg = false // 0 has no sign |
| } |
| return z |
| } |
| |
| |
| // Sub computes z = x-y. |
| func (z *Int) Sub(x, y *Int) *Int { |
| if x.neg != y.neg { |
| // x - (-y) == x + y |
| // (-x) - y == -(x + y) |
| z.neg = x.neg |
| z.abs = addNN(z.abs, x.abs, y.abs) |
| } else { |
| // x - y == x - y == -(y - x) |
| // (-x) - (-y) == y - x == -(x - y) |
| if cmpNN(x.abs, y.abs) >= 0 { |
| z.neg = x.neg |
| z.abs = subNN(z.abs, x.abs, y.abs) |
| } else { |
| z.neg = !x.neg |
| z.abs = subNN(z.abs, y.abs, x.abs) |
| } |
| } |
| if len(z.abs) == 0 { |
| z.neg = false // 0 has no sign |
| } |
| return z |
| } |
| |
| |
| // Mul computes z = x*y. |
| func (z *Int) Mul(x, y *Int) *Int { |
| // x * y == x * y |
| // x * (-y) == -(x * y) |
| // (-x) * y == -(x * y) |
| // (-x) * (-y) == x * y |
| z.abs = mulNN(z.abs, x.abs, y.abs) |
| z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign |
| return z |
| } |
| |
| |
| // Div calculates q = (x-r)/y where 0 <= r < y. The receiver is set to q. |
| func (z *Int) Div(x, y *Int) (q, r *Int) { |
| q = z |
| r = new(Int) |
| div(q, r, x, y) |
| return |
| } |
| |
| |
| // Mod calculates q = (x-r)/y and returns r. |
| func (z *Int) Mod(x, y *Int) (r *Int) { |
| q := new(Int) |
| r = z |
| div(q, r, x, y) |
| return |
| } |
| |
| |
| func div(q, r, x, y *Int) { |
| q.neg = x.neg != y.neg |
| r.neg = x.neg |
| q.abs, r.abs = divNN(q.abs, r.abs, x.abs, y.abs) |
| return |
| } |
| |
| |
| // Neg computes z = -x. |
| func (z *Int) Neg(x *Int) *Int { |
| z.abs = setN(z.abs, x.abs) |
| z.neg = len(z.abs) > 0 && !x.neg // 0 has no sign |
| return z |
| } |
| |
| |
| // Cmp compares x and y. The result is |
| // |
| // -1 if x < y |
| // 0 if x == y |
| // +1 if x > y |
| // |
| func (x *Int) Cmp(y *Int) (r int) { |
| // x cmp y == x cmp y |
| // x cmp (-y) == x |
| // (-x) cmp y == y |
| // (-x) cmp (-y) == -(x cmp y) |
| switch { |
| case x.neg == y.neg: |
| r = cmpNN(x.abs, y.abs) |
| if x.neg { |
| r = -r |
| } |
| case x.neg: |
| r = -1 |
| default: |
| r = 1 |
| } |
| return |
| } |
| |
| |
| func (z *Int) String() string { |
| s := "" |
| if z.neg { |
| s = "-" |
| } |
| return s + stringN(z.abs, 10) |
| } |
| |
| |
| // SetString sets z to the value of s, interpreted in the given base. |
| // If base is 0 then SetString attempts to detect the base by at the prefix of |
| // s. '0x' implies base 16, '0' implies base 8. Otherwise base 10 is assumed. |
| func (z *Int) SetString(s string, base int) (*Int, bool) { |
| var scanned int |
| |
| if base == 1 || base > 16 { |
| goto Error |
| } |
| |
| if len(s) == 0 { |
| goto Error |
| } |
| |
| if s[0] == '-' { |
| z.neg = true |
| s = s[1:] |
| } else { |
| z.neg = false |
| } |
| |
| z.abs, _, scanned = scanN(z.abs, s, base) |
| if scanned != len(s) { |
| goto Error |
| } |
| |
| return z, true |
| |
| Error: |
| z.neg = false |
| z.abs = nil |
| return nil, false |
| } |
| |
| |
| // SetBytes interprets b as the bytes of a big-endian, unsigned integer and |
| // sets x to that value. |
| func (z *Int) SetBytes(b []byte) *Int { |
| s := int(_S) |
| z.abs = makeN(z.abs, (len(b)+s-1)/s, false) |
| z.neg = false |
| |
| j := 0 |
| for len(b) >= s { |
| var w Word |
| |
| for i := s; i > 0; i-- { |
| w <<= 8 |
| w |= Word(b[len(b)-i]) |
| } |
| |
| z.abs[j] = w |
| j++ |
| b = b[0 : len(b)-s] |
| } |
| |
| if len(b) > 0 { |
| var w Word |
| |
| for i := len(b); i > 0; i-- { |
| w <<= 8 |
| w |= Word(b[len(b)-i]) |
| } |
| |
| z.abs[j] = w |
| } |
| |
| z.abs = normN(z.abs) |
| |
| return z |
| } |
| |
| |
| // Bytes returns the absolute value of x as a big-endian byte array. |
| func (z *Int) Bytes() []byte { |
| s := int(_S) |
| b := make([]byte, len(z.abs)*s) |
| |
| for i, w := range z.abs { |
| wordBytes := b[(len(z.abs)-i-1)*s : (len(z.abs)-i)*s] |
| for j := s - 1; j >= 0; j-- { |
| wordBytes[j] = byte(w) |
| w >>= 8 |
| } |
| } |
| |
| i := 0 |
| for i < len(b) && b[i] == 0 { |
| i++ |
| } |
| |
| return b[i:] |
| } |
| |
| |
| // Len returns the length of the absolute value of x in bits. Zero is |
| // considered to have a length of one. |
| func (z *Int) Len() int { |
| if len(z.abs) == 0 { |
| return 0 |
| } |
| |
| return len(z.abs)*_W - int(leadingZeros(z.abs[len(z.abs)-1])) |
| } |
| |
| |
| // Exp sets z = x**y mod m. If m is nil, z = x**y. |
| // See Knuth, volume 2, section 4.6.3. |
| func (z *Int) Exp(x, y, m *Int) *Int { |
| if y.neg || len(y.abs) == 0 { |
| z.New(1) |
| z.neg = x.neg |
| return z |
| } |
| |
| var mWords []Word |
| if m != nil { |
| mWords = m.abs |
| } |
| |
| z.abs = expNNN(z.abs, x.abs, y.abs, mWords) |
| z.neg = x.neg && y.abs[0]&1 == 1 |
| return z |
| } |
| |
| |
| // GcdInt sets d to the greatest common divisor of a and b, which must be |
| // positive numbers. |
| // If x and y are not nil, GcdInt sets x and y such that d = a*x + b*y. |
| // If either a or b is not positive, GcdInt sets d = x = y = 0. |
| func GcdInt(d, x, y, a, b *Int) { |
| if a.neg || b.neg { |
| d.New(0) |
| if x != nil { |
| x.New(0) |
| } |
| if y != nil { |
| y.New(0) |
| } |
| return |
| } |
| |
| A := new(Int).Set(a) |
| B := new(Int).Set(b) |
| |
| X := new(Int) |
| Y := new(Int).New(1) |
| |
| lastX := new(Int).New(1) |
| lastY := new(Int) |
| |
| q := new(Int) |
| temp := new(Int) |
| |
| for len(B.abs) > 0 { |
| q, r := q.Div(A, B) |
| |
| A, B = B, r |
| |
| temp.Set(X) |
| X.Mul(X, q) |
| X.neg = !X.neg |
| X.Add(X, lastX) |
| lastX.Set(temp) |
| |
| temp.Set(Y) |
| Y.Mul(Y, q) |
| Y.neg = !Y.neg |
| Y.Add(Y, lastY) |
| lastY.Set(temp) |
| } |
| |
| if x != nil { |
| *x = *lastX |
| } |
| |
| if y != nil { |
| *y = *lastY |
| } |
| |
| *d = *A |
| } |
| |
| |
| // ProbablyPrime performs n Miller-Rabin tests to check whether z is prime. |
| // If it returns true, z is prime with probability 1 - 1/4^n. |
| // If it returns false, z is not prime. |
| func ProbablyPrime(z *Int, n int) bool { return !z.neg && probablyPrime(z.abs, n) } |
| |
| |
| // Rsh sets z = x >> s and returns z. |
| func (z *Int) Rsh(x *Int, n int) *Int { |
| removedWords := n / _W |
| z.abs = makeN(z.abs, len(x.abs)-removedWords, false) |
| z.neg = x.neg |
| shiftRight(z.abs, x.abs[removedWords:], n%_W) |
| z.abs = normN(z.abs) |
| return z |
| } |