blob: f31cf29925e83be05a3e8d7d369736fb0549752d [file] [log] [blame]
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssagen
import (
"bufio"
"bytes"
"cmd/compile/internal/abi"
"fmt"
"go/constant"
"html"
"internal/buildcfg"
"os"
"path/filepath"
"sort"
"strings"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/liveness"
"cmd/compile/internal/objw"
"cmd/compile/internal/reflectdata"
"cmd/compile/internal/ssa"
"cmd/compile/internal/staticdata"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/internal/obj"
"cmd/internal/obj/x86"
"cmd/internal/objabi"
"cmd/internal/src"
"cmd/internal/sys"
)
var ssaConfig *ssa.Config
var ssaCaches []ssa.Cache
var ssaDump string // early copy of $GOSSAFUNC; the func name to dump output for
var ssaDir string // optional destination for ssa dump file
var ssaDumpStdout bool // whether to dump to stdout
var ssaDumpCFG string // generate CFGs for these phases
const ssaDumpFile = "ssa.html"
// ssaDumpInlined holds all inlined functions when ssaDump contains a function name.
var ssaDumpInlined []*ir.Func
func DumpInline(fn *ir.Func) {
if ssaDump != "" && ssaDump == ir.FuncName(fn) {
ssaDumpInlined = append(ssaDumpInlined, fn)
}
}
func InitEnv() {
ssaDump = os.Getenv("GOSSAFUNC")
ssaDir = os.Getenv("GOSSADIR")
if ssaDump != "" {
if strings.HasSuffix(ssaDump, "+") {
ssaDump = ssaDump[:len(ssaDump)-1]
ssaDumpStdout = true
}
spl := strings.Split(ssaDump, ":")
if len(spl) > 1 {
ssaDump = spl[0]
ssaDumpCFG = spl[1]
}
}
}
func InitConfig() {
types_ := ssa.NewTypes()
if Arch.SoftFloat {
softfloatInit()
}
// Generate a few pointer types that are uncommon in the frontend but common in the backend.
// Caching is disabled in the backend, so generating these here avoids allocations.
_ = types.NewPtr(types.Types[types.TINTER]) // *interface{}
_ = types.NewPtr(types.NewPtr(types.Types[types.TSTRING])) // **string
_ = types.NewPtr(types.NewSlice(types.Types[types.TINTER])) // *[]interface{}
_ = types.NewPtr(types.NewPtr(types.ByteType)) // **byte
_ = types.NewPtr(types.NewSlice(types.ByteType)) // *[]byte
_ = types.NewPtr(types.NewSlice(types.Types[types.TSTRING])) // *[]string
_ = types.NewPtr(types.NewPtr(types.NewPtr(types.Types[types.TUINT8]))) // ***uint8
_ = types.NewPtr(types.Types[types.TINT16]) // *int16
_ = types.NewPtr(types.Types[types.TINT64]) // *int64
_ = types.NewPtr(types.ErrorType) // *error
types.NewPtrCacheEnabled = false
ssaConfig = ssa.NewConfig(base.Ctxt.Arch.Name, *types_, base.Ctxt, base.Flag.N == 0, Arch.SoftFloat)
ssaConfig.Race = base.Flag.Race
ssaCaches = make([]ssa.Cache, base.Flag.LowerC)
// Set up some runtime functions we'll need to call.
ir.Syms.AssertE2I = typecheck.LookupRuntimeFunc("assertE2I")
ir.Syms.AssertE2I2 = typecheck.LookupRuntimeFunc("assertE2I2")
ir.Syms.AssertI2I = typecheck.LookupRuntimeFunc("assertI2I")
ir.Syms.AssertI2I2 = typecheck.LookupRuntimeFunc("assertI2I2")
ir.Syms.CheckPtrAlignment = typecheck.LookupRuntimeFunc("checkptrAlignment")
ir.Syms.Deferproc = typecheck.LookupRuntimeFunc("deferproc")
ir.Syms.DeferprocStack = typecheck.LookupRuntimeFunc("deferprocStack")
ir.Syms.Deferreturn = typecheck.LookupRuntimeFunc("deferreturn")
ir.Syms.Duffcopy = typecheck.LookupRuntimeFunc("duffcopy")
ir.Syms.Duffzero = typecheck.LookupRuntimeFunc("duffzero")
ir.Syms.GCWriteBarrier = typecheck.LookupRuntimeFunc("gcWriteBarrier")
ir.Syms.Goschedguarded = typecheck.LookupRuntimeFunc("goschedguarded")
ir.Syms.Growslice = typecheck.LookupRuntimeFunc("growslice")
ir.Syms.Memmove = typecheck.LookupRuntimeFunc("memmove")
ir.Syms.Msanread = typecheck.LookupRuntimeFunc("msanread")
ir.Syms.Msanwrite = typecheck.LookupRuntimeFunc("msanwrite")
ir.Syms.Msanmove = typecheck.LookupRuntimeFunc("msanmove")
ir.Syms.Asanread = typecheck.LookupRuntimeFunc("asanread")
ir.Syms.Asanwrite = typecheck.LookupRuntimeFunc("asanwrite")
ir.Syms.Newobject = typecheck.LookupRuntimeFunc("newobject")
ir.Syms.Newproc = typecheck.LookupRuntimeFunc("newproc")
ir.Syms.Panicdivide = typecheck.LookupRuntimeFunc("panicdivide")
ir.Syms.PanicdottypeE = typecheck.LookupRuntimeFunc("panicdottypeE")
ir.Syms.PanicdottypeI = typecheck.LookupRuntimeFunc("panicdottypeI")
ir.Syms.Panicnildottype = typecheck.LookupRuntimeFunc("panicnildottype")
ir.Syms.Panicoverflow = typecheck.LookupRuntimeFunc("panicoverflow")
ir.Syms.Panicshift = typecheck.LookupRuntimeFunc("panicshift")
ir.Syms.Raceread = typecheck.LookupRuntimeFunc("raceread")
ir.Syms.Racereadrange = typecheck.LookupRuntimeFunc("racereadrange")
ir.Syms.Racewrite = typecheck.LookupRuntimeFunc("racewrite")
ir.Syms.Racewriterange = typecheck.LookupRuntimeFunc("racewriterange")
ir.Syms.X86HasPOPCNT = typecheck.LookupRuntimeVar("x86HasPOPCNT") // bool
ir.Syms.X86HasSSE41 = typecheck.LookupRuntimeVar("x86HasSSE41") // bool
ir.Syms.X86HasFMA = typecheck.LookupRuntimeVar("x86HasFMA") // bool
ir.Syms.ARMHasVFPv4 = typecheck.LookupRuntimeVar("armHasVFPv4") // bool
ir.Syms.ARM64HasATOMICS = typecheck.LookupRuntimeVar("arm64HasATOMICS") // bool
ir.Syms.Staticuint64s = typecheck.LookupRuntimeVar("staticuint64s")
ir.Syms.Typedmemclr = typecheck.LookupRuntimeFunc("typedmemclr")
ir.Syms.Typedmemmove = typecheck.LookupRuntimeFunc("typedmemmove")
ir.Syms.Udiv = typecheck.LookupRuntimeVar("udiv") // asm func with special ABI
ir.Syms.WriteBarrier = typecheck.LookupRuntimeVar("writeBarrier") // struct { bool; ... }
ir.Syms.Zerobase = typecheck.LookupRuntimeVar("zerobase")
// asm funcs with special ABI
if base.Ctxt.Arch.Name == "amd64" {
GCWriteBarrierReg = map[int16]*obj.LSym{
x86.REG_AX: typecheck.LookupRuntimeFunc("gcWriteBarrier"),
x86.REG_CX: typecheck.LookupRuntimeFunc("gcWriteBarrierCX"),
x86.REG_DX: typecheck.LookupRuntimeFunc("gcWriteBarrierDX"),
x86.REG_BX: typecheck.LookupRuntimeFunc("gcWriteBarrierBX"),
x86.REG_BP: typecheck.LookupRuntimeFunc("gcWriteBarrierBP"),
x86.REG_SI: typecheck.LookupRuntimeFunc("gcWriteBarrierSI"),
x86.REG_R8: typecheck.LookupRuntimeFunc("gcWriteBarrierR8"),
x86.REG_R9: typecheck.LookupRuntimeFunc("gcWriteBarrierR9"),
}
}
if Arch.LinkArch.Family == sys.Wasm {
BoundsCheckFunc[ssa.BoundsIndex] = typecheck.LookupRuntimeFunc("goPanicIndex")
BoundsCheckFunc[ssa.BoundsIndexU] = typecheck.LookupRuntimeFunc("goPanicIndexU")
BoundsCheckFunc[ssa.BoundsSliceAlen] = typecheck.LookupRuntimeFunc("goPanicSliceAlen")
BoundsCheckFunc[ssa.BoundsSliceAlenU] = typecheck.LookupRuntimeFunc("goPanicSliceAlenU")
BoundsCheckFunc[ssa.BoundsSliceAcap] = typecheck.LookupRuntimeFunc("goPanicSliceAcap")
BoundsCheckFunc[ssa.BoundsSliceAcapU] = typecheck.LookupRuntimeFunc("goPanicSliceAcapU")
BoundsCheckFunc[ssa.BoundsSliceB] = typecheck.LookupRuntimeFunc("goPanicSliceB")
BoundsCheckFunc[ssa.BoundsSliceBU] = typecheck.LookupRuntimeFunc("goPanicSliceBU")
BoundsCheckFunc[ssa.BoundsSlice3Alen] = typecheck.LookupRuntimeFunc("goPanicSlice3Alen")
BoundsCheckFunc[ssa.BoundsSlice3AlenU] = typecheck.LookupRuntimeFunc("goPanicSlice3AlenU")
BoundsCheckFunc[ssa.BoundsSlice3Acap] = typecheck.LookupRuntimeFunc("goPanicSlice3Acap")
BoundsCheckFunc[ssa.BoundsSlice3AcapU] = typecheck.LookupRuntimeFunc("goPanicSlice3AcapU")
BoundsCheckFunc[ssa.BoundsSlice3B] = typecheck.LookupRuntimeFunc("goPanicSlice3B")
BoundsCheckFunc[ssa.BoundsSlice3BU] = typecheck.LookupRuntimeFunc("goPanicSlice3BU")
BoundsCheckFunc[ssa.BoundsSlice3C] = typecheck.LookupRuntimeFunc("goPanicSlice3C")
BoundsCheckFunc[ssa.BoundsSlice3CU] = typecheck.LookupRuntimeFunc("goPanicSlice3CU")
BoundsCheckFunc[ssa.BoundsConvert] = typecheck.LookupRuntimeFunc("goPanicSliceConvert")
} else {
BoundsCheckFunc[ssa.BoundsIndex] = typecheck.LookupRuntimeFunc("panicIndex")
BoundsCheckFunc[ssa.BoundsIndexU] = typecheck.LookupRuntimeFunc("panicIndexU")
BoundsCheckFunc[ssa.BoundsSliceAlen] = typecheck.LookupRuntimeFunc("panicSliceAlen")
BoundsCheckFunc[ssa.BoundsSliceAlenU] = typecheck.LookupRuntimeFunc("panicSliceAlenU")
BoundsCheckFunc[ssa.BoundsSliceAcap] = typecheck.LookupRuntimeFunc("panicSliceAcap")
BoundsCheckFunc[ssa.BoundsSliceAcapU] = typecheck.LookupRuntimeFunc("panicSliceAcapU")
BoundsCheckFunc[ssa.BoundsSliceB] = typecheck.LookupRuntimeFunc("panicSliceB")
BoundsCheckFunc[ssa.BoundsSliceBU] = typecheck.LookupRuntimeFunc("panicSliceBU")
BoundsCheckFunc[ssa.BoundsSlice3Alen] = typecheck.LookupRuntimeFunc("panicSlice3Alen")
BoundsCheckFunc[ssa.BoundsSlice3AlenU] = typecheck.LookupRuntimeFunc("panicSlice3AlenU")
BoundsCheckFunc[ssa.BoundsSlice3Acap] = typecheck.LookupRuntimeFunc("panicSlice3Acap")
BoundsCheckFunc[ssa.BoundsSlice3AcapU] = typecheck.LookupRuntimeFunc("panicSlice3AcapU")
BoundsCheckFunc[ssa.BoundsSlice3B] = typecheck.LookupRuntimeFunc("panicSlice3B")
BoundsCheckFunc[ssa.BoundsSlice3BU] = typecheck.LookupRuntimeFunc("panicSlice3BU")
BoundsCheckFunc[ssa.BoundsSlice3C] = typecheck.LookupRuntimeFunc("panicSlice3C")
BoundsCheckFunc[ssa.BoundsSlice3CU] = typecheck.LookupRuntimeFunc("panicSlice3CU")
BoundsCheckFunc[ssa.BoundsConvert] = typecheck.LookupRuntimeFunc("panicSliceConvert")
}
if Arch.LinkArch.PtrSize == 4 {
ExtendCheckFunc[ssa.BoundsIndex] = typecheck.LookupRuntimeVar("panicExtendIndex")
ExtendCheckFunc[ssa.BoundsIndexU] = typecheck.LookupRuntimeVar("panicExtendIndexU")
ExtendCheckFunc[ssa.BoundsSliceAlen] = typecheck.LookupRuntimeVar("panicExtendSliceAlen")
ExtendCheckFunc[ssa.BoundsSliceAlenU] = typecheck.LookupRuntimeVar("panicExtendSliceAlenU")
ExtendCheckFunc[ssa.BoundsSliceAcap] = typecheck.LookupRuntimeVar("panicExtendSliceAcap")
ExtendCheckFunc[ssa.BoundsSliceAcapU] = typecheck.LookupRuntimeVar("panicExtendSliceAcapU")
ExtendCheckFunc[ssa.BoundsSliceB] = typecheck.LookupRuntimeVar("panicExtendSliceB")
ExtendCheckFunc[ssa.BoundsSliceBU] = typecheck.LookupRuntimeVar("panicExtendSliceBU")
ExtendCheckFunc[ssa.BoundsSlice3Alen] = typecheck.LookupRuntimeVar("panicExtendSlice3Alen")
ExtendCheckFunc[ssa.BoundsSlice3AlenU] = typecheck.LookupRuntimeVar("panicExtendSlice3AlenU")
ExtendCheckFunc[ssa.BoundsSlice3Acap] = typecheck.LookupRuntimeVar("panicExtendSlice3Acap")
ExtendCheckFunc[ssa.BoundsSlice3AcapU] = typecheck.LookupRuntimeVar("panicExtendSlice3AcapU")
ExtendCheckFunc[ssa.BoundsSlice3B] = typecheck.LookupRuntimeVar("panicExtendSlice3B")
ExtendCheckFunc[ssa.BoundsSlice3BU] = typecheck.LookupRuntimeVar("panicExtendSlice3BU")
ExtendCheckFunc[ssa.BoundsSlice3C] = typecheck.LookupRuntimeVar("panicExtendSlice3C")
ExtendCheckFunc[ssa.BoundsSlice3CU] = typecheck.LookupRuntimeVar("panicExtendSlice3CU")
}
// Wasm (all asm funcs with special ABIs)
ir.Syms.WasmDiv = typecheck.LookupRuntimeVar("wasmDiv")
ir.Syms.WasmTruncS = typecheck.LookupRuntimeVar("wasmTruncS")
ir.Syms.WasmTruncU = typecheck.LookupRuntimeVar("wasmTruncU")
ir.Syms.SigPanic = typecheck.LookupRuntimeFunc("sigpanic")
}
// AbiForBodylessFuncStackMap returns the ABI for a bodyless function's stack map.
// This is not necessarily the ABI used to call it.
// Currently (1.17 dev) such a stack map is always ABI0;
// any ABI wrapper that is present is nosplit, hence a precise
// stack map is not needed there (the parameters survive only long
// enough to call the wrapped assembly function).
// This always returns a freshly copied ABI.
func AbiForBodylessFuncStackMap(fn *ir.Func) *abi.ABIConfig {
return ssaConfig.ABI0.Copy() // No idea what races will result, be safe
}
// abiForFunc implements ABI policy for a function, but does not return a copy of the ABI.
// Passing a nil function returns the default ABI based on experiment configuration.
func abiForFunc(fn *ir.Func, abi0, abi1 *abi.ABIConfig) *abi.ABIConfig {
if buildcfg.Experiment.RegabiArgs {
// Select the ABI based on the function's defining ABI.
if fn == nil {
return abi1
}
switch fn.ABI {
case obj.ABI0:
return abi0
case obj.ABIInternal:
// TODO(austin): Clean up the nomenclature here.
// It's not clear that "abi1" is ABIInternal.
return abi1
}
base.Fatalf("function %v has unknown ABI %v", fn, fn.ABI)
panic("not reachable")
}
a := abi0
if fn != nil {
if fn.Pragma&ir.RegisterParams != 0 { // TODO(register args) remove after register abi is working
a = abi1
}
}
return a
}
// dvarint writes a varint v to the funcdata in symbol x and returns the new offset.
func dvarint(x *obj.LSym, off int, v int64) int {
if v < 0 || v > 1e9 {
panic(fmt.Sprintf("dvarint: bad offset for funcdata - %v", v))
}
if v < 1<<7 {
return objw.Uint8(x, off, uint8(v))
}
off = objw.Uint8(x, off, uint8((v&127)|128))
if v < 1<<14 {
return objw.Uint8(x, off, uint8(v>>7))
}
off = objw.Uint8(x, off, uint8(((v>>7)&127)|128))
if v < 1<<21 {
return objw.Uint8(x, off, uint8(v>>14))
}
off = objw.Uint8(x, off, uint8(((v>>14)&127)|128))
if v < 1<<28 {
return objw.Uint8(x, off, uint8(v>>21))
}
off = objw.Uint8(x, off, uint8(((v>>21)&127)|128))
return objw.Uint8(x, off, uint8(v>>28))
}
// emitOpenDeferInfo emits FUNCDATA information about the defers in a function
// that is using open-coded defers. This funcdata is used to determine the active
// defers in a function and execute those defers during panic processing.
//
// The funcdata is all encoded in varints (since values will almost always be less than
// 128, but stack offsets could potentially be up to 2Gbyte). All "locations" (offsets)
// for stack variables are specified as the number of bytes below varp (pointer to the
// top of the local variables) for their starting address. The format is:
//
// - Offset of the deferBits variable
// - Number of defers in the function
// - Information about each defer call, in reverse order of appearance in the function:
// - Offset of the closure value to call
func (s *state) emitOpenDeferInfo() {
x := base.Ctxt.Lookup(s.curfn.LSym.Name + ".opendefer")
x.Set(obj.AttrContentAddressable, true)
s.curfn.LSym.Func().OpenCodedDeferInfo = x
off := 0
off = dvarint(x, off, -s.deferBitsTemp.FrameOffset())
off = dvarint(x, off, int64(len(s.openDefers)))
// Write in reverse-order, for ease of running in that order at runtime
for i := len(s.openDefers) - 1; i >= 0; i-- {
r := s.openDefers[i]
off = dvarint(x, off, -r.closureNode.FrameOffset())
}
}
func okOffset(offset int64) int64 {
if offset == types.BOGUS_FUNARG_OFFSET {
panic(fmt.Errorf("Bogus offset %d", offset))
}
return offset
}
// buildssa builds an SSA function for fn.
// worker indicates which of the backend workers is doing the processing.
func buildssa(fn *ir.Func, worker int) *ssa.Func {
name := ir.FuncName(fn)
printssa := false
if ssaDump != "" { // match either a simple name e.g. "(*Reader).Reset", package.name e.g. "compress/gzip.(*Reader).Reset", or subpackage name "gzip.(*Reader).Reset"
pkgDotName := base.Ctxt.Pkgpath + "." + name
printssa = name == ssaDump ||
strings.HasSuffix(pkgDotName, ssaDump) && (pkgDotName == ssaDump || strings.HasSuffix(pkgDotName, "/"+ssaDump))
}
var astBuf *bytes.Buffer
if printssa {
astBuf = &bytes.Buffer{}
ir.FDumpList(astBuf, "buildssa-enter", fn.Enter)
ir.FDumpList(astBuf, "buildssa-body", fn.Body)
ir.FDumpList(astBuf, "buildssa-exit", fn.Exit)
if ssaDumpStdout {
fmt.Println("generating SSA for", name)
fmt.Print(astBuf.String())
}
}
var s state
s.pushLine(fn.Pos())
defer s.popLine()
s.hasdefer = fn.HasDefer()
if fn.Pragma&ir.CgoUnsafeArgs != 0 {
s.cgoUnsafeArgs = true
}
s.checkPtrEnabled = ir.ShouldCheckPtr(fn, 1)
fe := ssafn{
curfn: fn,
log: printssa && ssaDumpStdout,
}
s.curfn = fn
s.f = ssa.NewFunc(&fe)
s.config = ssaConfig
s.f.Type = fn.Type()
s.f.Config = ssaConfig
s.f.Cache = &ssaCaches[worker]
s.f.Cache.Reset()
s.f.Name = name
s.f.PrintOrHtmlSSA = printssa
if fn.Pragma&ir.Nosplit != 0 {
s.f.NoSplit = true
}
s.f.ABI0 = ssaConfig.ABI0.Copy() // Make a copy to avoid racy map operations in type-register-width cache.
s.f.ABI1 = ssaConfig.ABI1.Copy()
s.f.ABIDefault = abiForFunc(nil, s.f.ABI0, s.f.ABI1)
s.f.ABISelf = abiForFunc(fn, s.f.ABI0, s.f.ABI1)
s.panics = map[funcLine]*ssa.Block{}
s.softFloat = s.config.SoftFloat
// Allocate starting block
s.f.Entry = s.f.NewBlock(ssa.BlockPlain)
s.f.Entry.Pos = fn.Pos()
if printssa {
ssaDF := ssaDumpFile
if ssaDir != "" {
ssaDF = filepath.Join(ssaDir, base.Ctxt.Pkgpath+"."+name+".html")
ssaD := filepath.Dir(ssaDF)
os.MkdirAll(ssaD, 0755)
}
s.f.HTMLWriter = ssa.NewHTMLWriter(ssaDF, s.f, ssaDumpCFG)
// TODO: generate and print a mapping from nodes to values and blocks
dumpSourcesColumn(s.f.HTMLWriter, fn)
s.f.HTMLWriter.WriteAST("AST", astBuf)
}
// Allocate starting values
s.labels = map[string]*ssaLabel{}
s.fwdVars = map[ir.Node]*ssa.Value{}
s.startmem = s.entryNewValue0(ssa.OpInitMem, types.TypeMem)
s.hasOpenDefers = base.Flag.N == 0 && s.hasdefer && !s.curfn.OpenCodedDeferDisallowed()
switch {
case base.Debug.NoOpenDefer != 0:
s.hasOpenDefers = false
case s.hasOpenDefers && (base.Ctxt.Flag_shared || base.Ctxt.Flag_dynlink) && base.Ctxt.Arch.Name == "386":
// Don't support open-coded defers for 386 ONLY when using shared
// libraries, because there is extra code (added by rewriteToUseGot())
// preceding the deferreturn/ret code that we don't track correctly.
s.hasOpenDefers = false
}
if s.hasOpenDefers && len(s.curfn.Exit) > 0 {
// Skip doing open defers if there is any extra exit code (likely
// race detection), since we will not generate that code in the
// case of the extra deferreturn/ret segment.
s.hasOpenDefers = false
}
if s.hasOpenDefers {
// Similarly, skip if there are any heap-allocated result
// parameters that need to be copied back to their stack slots.
for _, f := range s.curfn.Type().Results().FieldSlice() {
if !f.Nname.(*ir.Name).OnStack() {
s.hasOpenDefers = false
break
}
}
}
if s.hasOpenDefers &&
s.curfn.NumReturns*s.curfn.NumDefers > 15 {
// Since we are generating defer calls at every exit for
// open-coded defers, skip doing open-coded defers if there are
// too many returns (especially if there are multiple defers).
// Open-coded defers are most important for improving performance
// for smaller functions (which don't have many returns).
s.hasOpenDefers = false
}
s.sp = s.entryNewValue0(ssa.OpSP, types.Types[types.TUINTPTR]) // TODO: use generic pointer type (unsafe.Pointer?) instead
s.sb = s.entryNewValue0(ssa.OpSB, types.Types[types.TUINTPTR])
s.startBlock(s.f.Entry)
s.vars[memVar] = s.startmem
if s.hasOpenDefers {
// Create the deferBits variable and stack slot. deferBits is a
// bitmask showing which of the open-coded defers in this function
// have been activated.
deferBitsTemp := typecheck.TempAt(src.NoXPos, s.curfn, types.Types[types.TUINT8])
deferBitsTemp.SetAddrtaken(true)
s.deferBitsTemp = deferBitsTemp
// For this value, AuxInt is initialized to zero by default
startDeferBits := s.entryNewValue0(ssa.OpConst8, types.Types[types.TUINT8])
s.vars[deferBitsVar] = startDeferBits
s.deferBitsAddr = s.addr(deferBitsTemp)
s.store(types.Types[types.TUINT8], s.deferBitsAddr, startDeferBits)
// Make sure that the deferBits stack slot is kept alive (for use
// by panics) and stores to deferBits are not eliminated, even if
// all checking code on deferBits in the function exit can be
// eliminated, because the defer statements were all
// unconditional.
s.vars[memVar] = s.newValue1Apos(ssa.OpVarLive, types.TypeMem, deferBitsTemp, s.mem(), false)
}
var params *abi.ABIParamResultInfo
params = s.f.ABISelf.ABIAnalyze(fn.Type(), true)
// The backend's stackframe pass prunes away entries from the fn's
// Dcl list, including PARAMOUT nodes that correspond to output
// params passed in registers. Walk the Dcl list and capture these
// nodes to a side list, so that we'll have them available during
// DWARF-gen later on. See issue 48573 for more details.
var debugInfo ssa.FuncDebug
for _, n := range fn.Dcl {
if n.Class == ir.PPARAMOUT && n.IsOutputParamInRegisters() {
debugInfo.RegOutputParams = append(debugInfo.RegOutputParams, n)
}
}
fn.DebugInfo = &debugInfo
// Generate addresses of local declarations
s.decladdrs = map[*ir.Name]*ssa.Value{}
for _, n := range fn.Dcl {
switch n.Class {
case ir.PPARAM:
// Be aware that blank and unnamed input parameters will not appear here, but do appear in the type
s.decladdrs[n] = s.entryNewValue2A(ssa.OpLocalAddr, types.NewPtr(n.Type()), n, s.sp, s.startmem)
case ir.PPARAMOUT:
s.decladdrs[n] = s.entryNewValue2A(ssa.OpLocalAddr, types.NewPtr(n.Type()), n, s.sp, s.startmem)
case ir.PAUTO:
// processed at each use, to prevent Addr coming
// before the decl.
default:
s.Fatalf("local variable with class %v unimplemented", n.Class)
}
}
s.f.OwnAux = ssa.OwnAuxCall(fn.LSym, params)
// Populate SSAable arguments.
for _, n := range fn.Dcl {
if n.Class == ir.PPARAM {
if s.canSSA(n) {
v := s.newValue0A(ssa.OpArg, n.Type(), n)
s.vars[n] = v
s.addNamedValue(n, v) // This helps with debugging information, not needed for compilation itself.
} else { // address was taken AND/OR too large for SSA
paramAssignment := ssa.ParamAssignmentForArgName(s.f, n)
if len(paramAssignment.Registers) > 0 {
if TypeOK(n.Type()) { // SSA-able type, so address was taken -- receive value in OpArg, DO NOT bind to var, store immediately to memory.
v := s.newValue0A(ssa.OpArg, n.Type(), n)
s.store(n.Type(), s.decladdrs[n], v)
} else { // Too big for SSA.
// Brute force, and early, do a bunch of stores from registers
// TODO fix the nasty storeArgOrLoad recursion in ssa/expand_calls.go so this Just Works with store of a big Arg.
s.storeParameterRegsToStack(s.f.ABISelf, paramAssignment, n, s.decladdrs[n], false)
}
}
}
}
}
// Populate closure variables.
if fn.Needctxt() {
clo := s.entryNewValue0(ssa.OpGetClosurePtr, s.f.Config.Types.BytePtr)
offset := int64(types.PtrSize) // PtrSize to skip past function entry PC field
for _, n := range fn.ClosureVars {
typ := n.Type()
if !n.Byval() {
typ = types.NewPtr(typ)
}
offset = types.RoundUp(offset, typ.Alignment())
ptr := s.newValue1I(ssa.OpOffPtr, types.NewPtr(typ), offset, clo)
offset += typ.Size()
// If n is a small variable captured by value, promote
// it to PAUTO so it can be converted to SSA.
//
// Note: While we never capture a variable by value if
// the user took its address, we may have generated
// runtime calls that did (#43701). Since we don't
// convert Addrtaken variables to SSA anyway, no point
// in promoting them either.
if n.Byval() && !n.Addrtaken() && TypeOK(n.Type()) {
n.Class = ir.PAUTO
fn.Dcl = append(fn.Dcl, n)
s.assign(n, s.load(n.Type(), ptr), false, 0)
continue
}
if !n.Byval() {
ptr = s.load(typ, ptr)
}
s.setHeapaddr(fn.Pos(), n, ptr)
}
}
// Convert the AST-based IR to the SSA-based IR
s.stmtList(fn.Enter)
s.zeroResults()
s.paramsToHeap()
s.stmtList(fn.Body)
// fallthrough to exit
if s.curBlock != nil {
s.pushLine(fn.Endlineno)
s.exit()
s.popLine()
}
for _, b := range s.f.Blocks {
if b.Pos != src.NoXPos {
s.updateUnsetPredPos(b)
}
}
s.f.HTMLWriter.WritePhase("before insert phis", "before insert phis")
s.insertPhis()
// Main call to ssa package to compile function
ssa.Compile(s.f)
if s.hasOpenDefers {
s.emitOpenDeferInfo()
}
// Record incoming parameter spill information for morestack calls emitted in the assembler.
// This is done here, using all the parameters (used, partially used, and unused) because
// it mimics the behavior of the former ABI (everything stored) and because it's not 100%
// clear if naming conventions are respected in autogenerated code.
// TODO figure out exactly what's unused, don't spill it. Make liveness fine-grained, also.
for _, p := range params.InParams() {
typs, offs := p.RegisterTypesAndOffsets()
for i, t := range typs {
o := offs[i] // offset within parameter
fo := p.FrameOffset(params) // offset of parameter in frame
reg := ssa.ObjRegForAbiReg(p.Registers[i], s.f.Config)
s.f.RegArgs = append(s.f.RegArgs, ssa.Spill{Reg: reg, Offset: fo + o, Type: t})
}
}
return s.f
}
func (s *state) storeParameterRegsToStack(abi *abi.ABIConfig, paramAssignment *abi.ABIParamAssignment, n *ir.Name, addr *ssa.Value, pointersOnly bool) {
typs, offs := paramAssignment.RegisterTypesAndOffsets()
for i, t := range typs {
if pointersOnly && !t.IsPtrShaped() {
continue
}
r := paramAssignment.Registers[i]
o := offs[i]
op, reg := ssa.ArgOpAndRegisterFor(r, abi)
aux := &ssa.AuxNameOffset{Name: n, Offset: o}
v := s.newValue0I(op, t, reg)
v.Aux = aux
p := s.newValue1I(ssa.OpOffPtr, types.NewPtr(t), o, addr)
s.store(t, p, v)
}
}
// zeroResults zeros the return values at the start of the function.
// We need to do this very early in the function. Defer might stop a
// panic and show the return values as they exist at the time of
// panic. For precise stacks, the garbage collector assumes results
// are always live, so we need to zero them before any allocations,
// even allocations to move params/results to the heap.
func (s *state) zeroResults() {
for _, f := range s.curfn.Type().Results().FieldSlice() {
n := f.Nname.(*ir.Name)
if !n.OnStack() {
// The local which points to the return value is the
// thing that needs zeroing. This is already handled
// by a Needzero annotation in plive.go:(*liveness).epilogue.
continue
}
// Zero the stack location containing f.
if typ := n.Type(); TypeOK(typ) {
s.assign(n, s.zeroVal(typ), false, 0)
} else {
if typ.HasPointers() {
s.vars[memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, n, s.mem())
}
s.zero(n.Type(), s.decladdrs[n])
}
}
}
// paramsToHeap produces code to allocate memory for heap-escaped parameters
// and to copy non-result parameters' values from the stack.
func (s *state) paramsToHeap() {
do := func(params *types.Type) {
for _, f := range params.FieldSlice() {
if f.Nname == nil {
continue // anonymous or blank parameter
}
n := f.Nname.(*ir.Name)
if ir.IsBlank(n) || n.OnStack() {
continue
}
s.newHeapaddr(n)
if n.Class == ir.PPARAM {
s.move(n.Type(), s.expr(n.Heapaddr), s.decladdrs[n])
}
}
}
typ := s.curfn.Type()
do(typ.Recvs())
do(typ.Params())
do(typ.Results())
}
// newHeapaddr allocates heap memory for n and sets its heap address.
func (s *state) newHeapaddr(n *ir.Name) {
s.setHeapaddr(n.Pos(), n, s.newObject(n.Type(), nil))
}
// setHeapaddr allocates a new PAUTO variable to store ptr (which must be non-nil)
// and then sets it as n's heap address.
func (s *state) setHeapaddr(pos src.XPos, n *ir.Name, ptr *ssa.Value) {
if !ptr.Type.IsPtr() || !types.Identical(n.Type(), ptr.Type.Elem()) {
base.FatalfAt(n.Pos(), "setHeapaddr %L with type %v", n, ptr.Type)
}
// Declare variable to hold address.
addr := ir.NewNameAt(pos, &types.Sym{Name: "&" + n.Sym().Name, Pkg: types.LocalPkg})
addr.SetType(types.NewPtr(n.Type()))
addr.Class = ir.PAUTO
addr.SetUsed(true)
addr.Curfn = s.curfn
s.curfn.Dcl = append(s.curfn.Dcl, addr)
types.CalcSize(addr.Type())
if n.Class == ir.PPARAMOUT {
addr.SetIsOutputParamHeapAddr(true)
}
n.Heapaddr = addr
s.assign(addr, ptr, false, 0)
}
// newObject returns an SSA value denoting new(typ).
func (s *state) newObject(typ *types.Type, rtype *ssa.Value) *ssa.Value {
if typ.Size() == 0 {
return s.newValue1A(ssa.OpAddr, types.NewPtr(typ), ir.Syms.Zerobase, s.sb)
}
if rtype == nil {
rtype = s.reflectType(typ)
}
return s.rtcall(ir.Syms.Newobject, true, []*types.Type{types.NewPtr(typ)}, rtype)[0]
}
func (s *state) checkPtrAlignment(n *ir.ConvExpr, v *ssa.Value, count *ssa.Value) {
if !n.Type().IsPtr() {
s.Fatalf("expected pointer type: %v", n.Type())
}
elem, rtypeExpr := n.Type().Elem(), n.ElemRType
if count != nil {
if !elem.IsArray() {
s.Fatalf("expected array type: %v", elem)
}
elem, rtypeExpr = elem.Elem(), n.ElemElemRType
}
size := elem.Size()
// Casting from larger type to smaller one is ok, so for smallest type, do nothing.
if elem.Alignment() == 1 && (size == 0 || size == 1 || count == nil) {
return
}
if count == nil {
count = s.constInt(types.Types[types.TUINTPTR], 1)
}
if count.Type.Size() != s.config.PtrSize {
s.Fatalf("expected count fit to an uintptr size, have: %d, want: %d", count.Type.Size(), s.config.PtrSize)
}
var rtype *ssa.Value
if rtypeExpr != nil {
rtype = s.expr(rtypeExpr)
} else {
rtype = s.reflectType(elem)
}
s.rtcall(ir.Syms.CheckPtrAlignment, true, nil, v, rtype, count)
}
// reflectType returns an SSA value representing a pointer to typ's
// reflection type descriptor.
func (s *state) reflectType(typ *types.Type) *ssa.Value {
// TODO(mdempsky): Make this Fatalf under Unified IR; frontend needs
// to supply RType expressions.
lsym := reflectdata.TypeLinksym(typ)
return s.entryNewValue1A(ssa.OpAddr, types.NewPtr(types.Types[types.TUINT8]), lsym, s.sb)
}
func dumpSourcesColumn(writer *ssa.HTMLWriter, fn *ir.Func) {
// Read sources of target function fn.
fname := base.Ctxt.PosTable.Pos(fn.Pos()).Filename()
targetFn, err := readFuncLines(fname, fn.Pos().Line(), fn.Endlineno.Line())
if err != nil {
writer.Logf("cannot read sources for function %v: %v", fn, err)
}
// Read sources of inlined functions.
var inlFns []*ssa.FuncLines
for _, fi := range ssaDumpInlined {
elno := fi.Endlineno
fname := base.Ctxt.PosTable.Pos(fi.Pos()).Filename()
fnLines, err := readFuncLines(fname, fi.Pos().Line(), elno.Line())
if err != nil {
writer.Logf("cannot read sources for inlined function %v: %v", fi, err)
continue
}
inlFns = append(inlFns, fnLines)
}
sort.Sort(ssa.ByTopo(inlFns))
if targetFn != nil {
inlFns = append([]*ssa.FuncLines{targetFn}, inlFns...)
}
writer.WriteSources("sources", inlFns)
}
func readFuncLines(file string, start, end uint) (*ssa.FuncLines, error) {
f, err := os.Open(os.ExpandEnv(file))
if err != nil {
return nil, err
}
defer f.Close()
var lines []string
ln := uint(1)
scanner := bufio.NewScanner(f)
for scanner.Scan() && ln <= end {
if ln >= start {
lines = append(lines, scanner.Text())
}
ln++
}
return &ssa.FuncLines{Filename: file, StartLineno: start, Lines: lines}, nil
}
// updateUnsetPredPos propagates the earliest-value position information for b
// towards all of b's predecessors that need a position, and recurs on that
// predecessor if its position is updated. B should have a non-empty position.
func (s *state) updateUnsetPredPos(b *ssa.Block) {
if b.Pos == src.NoXPos {
s.Fatalf("Block %s should have a position", b)
}
bestPos := src.NoXPos
for _, e := range b.Preds {
p := e.Block()
if !p.LackingPos() {
continue
}
if bestPos == src.NoXPos {
bestPos = b.Pos
for _, v := range b.Values {
if v.LackingPos() {
continue
}
if v.Pos != src.NoXPos {
// Assume values are still in roughly textual order;
// TODO: could also seek minimum position?
bestPos = v.Pos
break
}
}
}
p.Pos = bestPos
s.updateUnsetPredPos(p) // We do not expect long chains of these, thus recursion is okay.
}
}
// Information about each open-coded defer.
type openDeferInfo struct {
// The node representing the call of the defer
n *ir.CallExpr
// If defer call is closure call, the address of the argtmp where the
// closure is stored.
closure *ssa.Value
// The node representing the argtmp where the closure is stored - used for
// function, method, or interface call, to store a closure that panic
// processing can use for this defer.
closureNode *ir.Name
}
type state struct {
// configuration (arch) information
config *ssa.Config
// function we're building
f *ssa.Func
// Node for function
curfn *ir.Func
// labels in f
labels map[string]*ssaLabel
// unlabeled break and continue statement tracking
breakTo *ssa.Block // current target for plain break statement
continueTo *ssa.Block // current target for plain continue statement
// current location where we're interpreting the AST
curBlock *ssa.Block
// variable assignments in the current block (map from variable symbol to ssa value)
// *Node is the unique identifier (an ONAME Node) for the variable.
// TODO: keep a single varnum map, then make all of these maps slices instead?
vars map[ir.Node]*ssa.Value
// fwdVars are variables that are used before they are defined in the current block.
// This map exists just to coalesce multiple references into a single FwdRef op.
// *Node is the unique identifier (an ONAME Node) for the variable.
fwdVars map[ir.Node]*ssa.Value
// all defined variables at the end of each block. Indexed by block ID.
defvars []map[ir.Node]*ssa.Value
// addresses of PPARAM and PPARAMOUT variables on the stack.
decladdrs map[*ir.Name]*ssa.Value
// starting values. Memory, stack pointer, and globals pointer
startmem *ssa.Value
sp *ssa.Value
sb *ssa.Value
// value representing address of where deferBits autotmp is stored
deferBitsAddr *ssa.Value
deferBitsTemp *ir.Name
// line number stack. The current line number is top of stack
line []src.XPos
// the last line number processed; it may have been popped
lastPos src.XPos
// list of panic calls by function name and line number.
// Used to deduplicate panic calls.
panics map[funcLine]*ssa.Block
cgoUnsafeArgs bool
hasdefer bool // whether the function contains a defer statement
softFloat bool
hasOpenDefers bool // whether we are doing open-coded defers
checkPtrEnabled bool // whether to insert checkptr instrumentation
// If doing open-coded defers, list of info about the defer calls in
// scanning order. Hence, at exit we should run these defers in reverse
// order of this list
openDefers []*openDeferInfo
// For open-coded defers, this is the beginning and end blocks of the last
// defer exit code that we have generated so far. We use these to share
// code between exits if the shareDeferExits option (disabled by default)
// is on.
lastDeferExit *ssa.Block // Entry block of last defer exit code we generated
lastDeferFinalBlock *ssa.Block // Final block of last defer exit code we generated
lastDeferCount int // Number of defers encountered at that point
prevCall *ssa.Value // the previous call; use this to tie results to the call op.
}
type funcLine struct {
f *obj.LSym
base *src.PosBase
line uint
}
type ssaLabel struct {
target *ssa.Block // block identified by this label
breakTarget *ssa.Block // block to break to in control flow node identified by this label
continueTarget *ssa.Block // block to continue to in control flow node identified by this label
}
// label returns the label associated with sym, creating it if necessary.
func (s *state) label(sym *types.Sym) *ssaLabel {
lab := s.labels[sym.Name]
if lab == nil {
lab = new(ssaLabel)
s.labels[sym.Name] = lab
}
return lab
}
func (s *state) Logf(msg string, args ...interface{}) { s.f.Logf(msg, args...) }
func (s *state) Log() bool { return s.f.Log() }
func (s *state) Fatalf(msg string, args ...interface{}) {
s.f.Frontend().Fatalf(s.peekPos(), msg, args...)
}
func (s *state) Warnl(pos src.XPos, msg string, args ...interface{}) { s.f.Warnl(pos, msg, args...) }
func (s *state) Debug_checknil() bool { return s.f.Frontend().Debug_checknil() }
func ssaMarker(name string) *ir.Name {
return typecheck.NewName(&types.Sym{Name: name})
}
var (
// marker node for the memory variable
memVar = ssaMarker("mem")
// marker nodes for temporary variables
ptrVar = ssaMarker("ptr")
lenVar = ssaMarker("len")
capVar = ssaMarker("cap")
typVar = ssaMarker("typ")
okVar = ssaMarker("ok")
deferBitsVar = ssaMarker("deferBits")
)
// startBlock sets the current block we're generating code in to b.
func (s *state) startBlock(b *ssa.Block) {
if s.curBlock != nil {
s.Fatalf("starting block %v when block %v has not ended", b, s.curBlock)
}
s.curBlock = b
s.vars = map[ir.Node]*ssa.Value{}
for n := range s.fwdVars {
delete(s.fwdVars, n)
}
}
// endBlock marks the end of generating code for the current block.
// Returns the (former) current block. Returns nil if there is no current
// block, i.e. if no code flows to the current execution point.
func (s *state) endBlock() *ssa.Block {
b := s.curBlock
if b == nil {
return nil
}
for len(s.defvars) <= int(b.ID) {
s.defvars = append(s.defvars, nil)
}
s.defvars[b.ID] = s.vars
s.curBlock = nil
s.vars = nil
if b.LackingPos() {
// Empty plain blocks get the line of their successor (handled after all blocks created),
// except for increment blocks in For statements (handled in ssa conversion of OFOR),
// and for blocks ending in GOTO/BREAK/CONTINUE.
b.Pos = src.NoXPos
} else {
b.Pos = s.lastPos
}
return b
}
// pushLine pushes a line number on the line number stack.
func (s *state) pushLine(line src.XPos) {
if !line.IsKnown() {
// the frontend may emit node with line number missing,
// use the parent line number in this case.
line = s.peekPos()
if base.Flag.K != 0 {
base.Warn("buildssa: unknown position (line 0)")
}
} else {
s.lastPos = line
}
s.line = append(s.line, line)
}
// popLine pops the top of the line number stack.
func (s *state) popLine() {
s.line = s.line[:len(s.line)-1]
}
// peekPos peeks the top of the line number stack.
func (s *state) peekPos() src.XPos {
return s.line[len(s.line)-1]
}
// newValue0 adds a new value with no arguments to the current block.
func (s *state) newValue0(op ssa.Op, t *types.Type) *ssa.Value {
return s.curBlock.NewValue0(s.peekPos(), op, t)
}
// newValue0A adds a new value with no arguments and an aux value to the current block.
func (s *state) newValue0A(op ssa.Op, t *types.Type, aux ssa.Aux) *ssa.Value {
return s.curBlock.NewValue0A(s.peekPos(), op, t, aux)
}
// newValue0I adds a new value with no arguments and an auxint value to the current block.
func (s *state) newValue0I(op ssa.Op, t *types.Type, auxint int64) *ssa.Value {
return s.curBlock.NewValue0I(s.peekPos(), op, t, auxint)
}
// newValue1 adds a new value with one argument to the current block.
func (s *state) newValue1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value {
return s.curBlock.NewValue1(s.peekPos(), op, t, arg)
}
// newValue1A adds a new value with one argument and an aux value to the current block.
func (s *state) newValue1A(op ssa.Op, t *types.Type, aux ssa.Aux, arg *ssa.Value) *ssa.Value {
return s.curBlock.NewValue1A(s.peekPos(), op, t, aux, arg)
}
// newValue1Apos adds a new value with one argument and an aux value to the current block.
// isStmt determines whether the created values may be a statement or not
// (i.e., false means never, yes means maybe).
func (s *state) newValue1Apos(op ssa.Op, t *types.Type, aux ssa.Aux, arg *ssa.Value, isStmt bool) *ssa.Value {
if isStmt {
return s.curBlock.NewValue1A(s.peekPos(), op, t, aux, arg)
}
return s.curBlock.NewValue1A(s.peekPos().WithNotStmt(), op, t, aux, arg)
}
// newValue1I adds a new value with one argument and an auxint value to the current block.
func (s *state) newValue1I(op ssa.Op, t *types.Type, aux int64, arg *ssa.Value) *ssa.Value {
return s.curBlock.NewValue1I(s.peekPos(), op, t, aux, arg)
}
// newValue2 adds a new value with two arguments to the current block.
func (s *state) newValue2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value {
return s.curBlock.NewValue2(s.peekPos(), op, t, arg0, arg1)
}
// newValue2A adds a new value with two arguments and an aux value to the current block.
func (s *state) newValue2A(op ssa.Op, t *types.Type, aux ssa.Aux, arg0, arg1 *ssa.Value) *ssa.Value {
return s.curBlock.NewValue2A(s.peekPos(), op, t, aux, arg0, arg1)
}
// newValue2Apos adds a new value with two arguments and an aux value to the current block.
// isStmt determines whether the created values may be a statement or not
// (i.e., false means never, yes means maybe).
func (s *state) newValue2Apos(op ssa.Op, t *types.Type, aux ssa.Aux, arg0, arg1 *ssa.Value, isStmt bool) *ssa.Value {
if isStmt {
return s.curBlock.NewValue2A(s.peekPos(), op, t, aux, arg0, arg1)
}
return s.curBlock.NewValue2A(s.peekPos().WithNotStmt(), op, t, aux, arg0, arg1)
}
// newValue2I adds a new value with two arguments and an auxint value to the current block.
func (s *state) newValue2I(op ssa.Op, t *types.Type, aux int64, arg0, arg1 *ssa.Value) *ssa.Value {
return s.curBlock.NewValue2I(s.peekPos(), op, t, aux, arg0, arg1)
}
// newValue3 adds a new value with three arguments to the current block.
func (s *state) newValue3(op ssa.Op, t *types.Type, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
return s.curBlock.NewValue3(s.peekPos(), op, t, arg0, arg1, arg2)
}
// newValue3I adds a new value with three arguments and an auxint value to the current block.
func (s *state) newValue3I(op ssa.Op, t *types.Type, aux int64, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
return s.curBlock.NewValue3I(s.peekPos(), op, t, aux, arg0, arg1, arg2)
}
// newValue3A adds a new value with three arguments and an aux value to the current block.
func (s *state) newValue3A(op ssa.Op, t *types.Type, aux ssa.Aux, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
return s.curBlock.NewValue3A(s.peekPos(), op, t, aux, arg0, arg1, arg2)
}
// newValue3Apos adds a new value with three arguments and an aux value to the current block.
// isStmt determines whether the created values may be a statement or not
// (i.e., false means never, yes means maybe).
func (s *state) newValue3Apos(op ssa.Op, t *types.Type, aux ssa.Aux, arg0, arg1, arg2 *ssa.Value, isStmt bool) *ssa.Value {
if isStmt {
return s.curBlock.NewValue3A(s.peekPos(), op, t, aux, arg0, arg1, arg2)
}
return s.curBlock.NewValue3A(s.peekPos().WithNotStmt(), op, t, aux, arg0, arg1, arg2)
}
// newValue4 adds a new value with four arguments to the current block.
func (s *state) newValue4(op ssa.Op, t *types.Type, arg0, arg1, arg2, arg3 *ssa.Value) *ssa.Value {
return s.curBlock.NewValue4(s.peekPos(), op, t, arg0, arg1, arg2, arg3)
}
// newValue4I adds a new value with four arguments and an auxint value to the current block.
func (s *state) newValue4I(op ssa.Op, t *types.Type, aux int64, arg0, arg1, arg2, arg3 *ssa.Value) *ssa.Value {
return s.curBlock.NewValue4I(s.peekPos(), op, t, aux, arg0, arg1, arg2, arg3)
}
func (s *state) entryBlock() *ssa.Block {
b := s.f.Entry
if base.Flag.N > 0 && s.curBlock != nil {
// If optimizations are off, allocate in current block instead. Since with -N
// we're not doing the CSE or tighten passes, putting lots of stuff in the
// entry block leads to O(n^2) entries in the live value map during regalloc.
// See issue 45897.
b = s.curBlock
}
return b
}
// entryNewValue0 adds a new value with no arguments to the entry block.
func (s *state) entryNewValue0(op ssa.Op, t *types.Type) *ssa.Value {
return s.entryBlock().NewValue0(src.NoXPos, op, t)
}
// entryNewValue0A adds a new value with no arguments and an aux value to the entry block.
func (s *state) entryNewValue0A(op ssa.Op, t *types.Type, aux ssa.Aux) *ssa.Value {
return s.entryBlock().NewValue0A(src.NoXPos, op, t, aux)
}
// entryNewValue1 adds a new value with one argument to the entry block.
func (s *state) entryNewValue1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value {
return s.entryBlock().NewValue1(src.NoXPos, op, t, arg)
}
// entryNewValue1I adds a new value with one argument and an auxint value to the entry block.
func (s *state) entryNewValue1I(op ssa.Op, t *types.Type, auxint int64, arg *ssa.Value) *ssa.Value {
return s.entryBlock().NewValue1I(src.NoXPos, op, t, auxint, arg)
}
// entryNewValue1A adds a new value with one argument and an aux value to the entry block.
func (s *state) entryNewValue1A(op ssa.Op, t *types.Type, aux ssa.Aux, arg *ssa.Value) *ssa.Value {
return s.entryBlock().NewValue1A(src.NoXPos, op, t, aux, arg)
}
// entryNewValue2 adds a new value with two arguments to the entry block.
func (s *state) entryNewValue2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value {
return s.entryBlock().NewValue2(src.NoXPos, op, t, arg0, arg1)
}
// entryNewValue2A adds a new value with two arguments and an aux value to the entry block.
func (s *state) entryNewValue2A(op ssa.Op, t *types.Type, aux ssa.Aux, arg0, arg1 *ssa.Value) *ssa.Value {
return s.entryBlock().NewValue2A(src.NoXPos, op, t, aux, arg0, arg1)
}
// const* routines add a new const value to the entry block.
func (s *state) constSlice(t *types.Type) *ssa.Value {
return s.f.ConstSlice(t)
}
func (s *state) constInterface(t *types.Type) *ssa.Value {
return s.f.ConstInterface(t)
}
func (s *state) constNil(t *types.Type) *ssa.Value { return s.f.ConstNil(t) }
func (s *state) constEmptyString(t *types.Type) *ssa.Value {
return s.f.ConstEmptyString(t)
}
func (s *state) constBool(c bool) *ssa.Value {
return s.f.ConstBool(types.Types[types.TBOOL], c)
}
func (s *state) constInt8(t *types.Type, c int8) *ssa.Value {
return s.f.ConstInt8(t, c)
}
func (s *state) constInt16(t *types.Type, c int16) *ssa.Value {
return s.f.ConstInt16(t, c)
}
func (s *state) constInt32(t *types.Type, c int32) *ssa.Value {
return s.f.ConstInt32(t, c)
}
func (s *state) constInt64(t *types.Type, c int64) *ssa.Value {
return s.f.ConstInt64(t, c)
}
func (s *state) constFloat32(t *types.Type, c float64) *ssa.Value {
return s.f.ConstFloat32(t, c)
}
func (s *state) constFloat64(t *types.Type, c float64) *ssa.Value {
return s.f.ConstFloat64(t, c)
}
func (s *state) constInt(t *types.Type, c int64) *ssa.Value {
if s.config.PtrSize == 8 {
return s.constInt64(t, c)
}
if int64(int32(c)) != c {
s.Fatalf("integer constant too big %d", c)
}
return s.constInt32(t, int32(c))
}
func (s *state) constOffPtrSP(t *types.Type, c int64) *ssa.Value {
return s.f.ConstOffPtrSP(t, c, s.sp)
}
// newValueOrSfCall* are wrappers around newValue*, which may create a call to a
// soft-float runtime function instead (when emitting soft-float code).
func (s *state) newValueOrSfCall1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value {
if s.softFloat {
if c, ok := s.sfcall(op, arg); ok {
return c
}
}
return s.newValue1(op, t, arg)
}
func (s *state) newValueOrSfCall2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value {
if s.softFloat {
if c, ok := s.sfcall(op, arg0, arg1); ok {
return c
}
}
return s.newValue2(op, t, arg0, arg1)
}
type instrumentKind uint8
const (
instrumentRead = iota
instrumentWrite
instrumentMove
)
func (s *state) instrument(t *types.Type, addr *ssa.Value, kind instrumentKind) {
s.instrument2(t, addr, nil, kind)
}
// instrumentFields instruments a read/write operation on addr.
// If it is instrumenting for MSAN or ASAN and t is a struct type, it instruments
// operation for each field, instead of for the whole struct.
func (s *state) instrumentFields(t *types.Type, addr *ssa.Value, kind instrumentKind) {
if !(base.Flag.MSan || base.Flag.ASan) || !t.IsStruct() {
s.instrument(t, addr, kind)
return
}
for _, f := range t.Fields().Slice() {
if f.Sym.IsBlank() {
continue
}
offptr := s.newValue1I(ssa.OpOffPtr, types.NewPtr(f.Type), f.Offset, addr)
s.instrumentFields(f.Type, offptr, kind)
}
}
func (s *state) instrumentMove(t *types.Type, dst, src *ssa.Value) {
if base.Flag.MSan {
s.instrument2(t, dst, src, instrumentMove)
} else {
s.instrument(t, src, instrumentRead)
s.instrument(t, dst, instrumentWrite)
}
}
func (s *state) instrument2(t *types.Type, addr, addr2 *ssa.Value, kind instrumentKind) {
if !s.curfn.InstrumentBody() {
return
}
w := t.Size()
if w == 0 {
return // can't race on zero-sized things
}
if ssa.IsSanitizerSafeAddr(addr) {
return
}
var fn *obj.LSym
needWidth := false
if addr2 != nil && kind != instrumentMove {
panic("instrument2: non-nil addr2 for non-move instrumentation")
}
if base.Flag.MSan {
switch kind {
case instrumentRead:
fn = ir.Syms.Msanread
case instrumentWrite:
fn = ir.Syms.Msanwrite
case instrumentMove:
fn = ir.Syms.Msanmove
default:
panic("unreachable")
}
needWidth = true
} else if base.Flag.Race && t.NumComponents(types.CountBlankFields) > 1 {
// for composite objects we have to write every address
// because a write might happen to any subobject.
// composites with only one element don't have subobjects, though.
switch kind {
case instrumentRead:
fn = ir.Syms.Racereadrange
case instrumentWrite:
fn = ir.Syms.Racewriterange
default:
panic("unreachable")
}
needWidth = true
} else if base.Flag.Race {
// for non-composite objects we can write just the start
// address, as any write must write the first byte.
switch kind {
case instrumentRead:
fn = ir.Syms.Raceread
case instrumentWrite:
fn = ir.Syms.Racewrite
default:
panic("unreachable")
}
} else if base.Flag.ASan {
switch kind {
case instrumentRead:
fn = ir.Syms.Asanread
case instrumentWrite:
fn = ir.Syms.Asanwrite
default:
panic("unreachable")
}
needWidth = true
} else {
panic("unreachable")
}
args := []*ssa.Value{addr}
if addr2 != nil {
args = append(args, addr2)
}
if needWidth {
args = append(args, s.constInt(types.Types[types.TUINTPTR], w))
}
s.rtcall(fn, true, nil, args...)
}
func (s *state) load(t *types.Type, src *ssa.Value) *ssa.Value {
s.instrumentFields(t, src, instrumentRead)
return s.rawLoad(t, src)
}
func (s *state) rawLoad(t *types.Type, src *ssa.Value) *ssa.Value {
return s.newValue2(ssa.OpLoad, t, src, s.mem())
}
func (s *state) store(t *types.Type, dst, val *ssa.Value) {
s.vars[memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, t, dst, val, s.mem())
}
func (s *state) zero(t *types.Type, dst *ssa.Value) {
s.instrument(t, dst, instrumentWrite)
store := s.newValue2I(ssa.OpZero, types.TypeMem, t.Size(), dst, s.mem())
store.Aux = t
s.vars[memVar] = store
}
func (s *state) move(t *types.Type, dst, src *ssa.Value) {
s.moveWhichMayOverlap(t, dst, src, false)
}
func (s *state) moveWhichMayOverlap(t *types.Type, dst, src *ssa.Value, mayOverlap bool) {
s.instrumentMove(t, dst, src)
if mayOverlap && t.IsArray() && t.NumElem() > 1 && !ssa.IsInlinableMemmove(dst, src, t.Size(), s.f.Config) {
// Normally, when moving Go values of type T from one location to another,
// we don't need to worry about partial overlaps. The two Ts must either be
// in disjoint (nonoverlapping) memory or in exactly the same location.
// There are 2 cases where this isn't true:
// 1) Using unsafe you can arrange partial overlaps.
// 2) Since Go 1.17, you can use a cast from a slice to a ptr-to-array.
// https://go.dev/ref/spec#Conversions_from_slice_to_array_pointer
// This feature can be used to construct partial overlaps of array types.
// var a [3]int
// p := (*[2]int)(a[:])
// q := (*[2]int)(a[1:])
// *p = *q
// We don't care about solving 1. Or at least, we haven't historically
// and no one has complained.
// For 2, we need to ensure that if there might be partial overlap,
// then we can't use OpMove; we must use memmove instead.
// (memmove handles partial overlap by copying in the correct
// direction. OpMove does not.)
//
// Note that we have to be careful here not to introduce a call when
// we're marshaling arguments to a call or unmarshaling results from a call.
// Cases where this is happening must pass mayOverlap to false.
// (Currently this only happens when unmarshaling results of a call.)
if t.HasPointers() {
s.rtcall(ir.Syms.Typedmemmove, true, nil, s.reflectType(t), dst, src)
// We would have otherwise implemented this move with straightline code,
// including a write barrier. Pretend we issue a write barrier here,
// so that the write barrier tests work. (Otherwise they'd need to know
// the details of IsInlineableMemmove.)
s.curfn.SetWBPos(s.peekPos())
} else {
s.rtcall(ir.Syms.Memmove, true, nil, dst, src, s.constInt(types.Types[types.TUINTPTR], t.Size()))
}
ssa.LogLargeCopy(s.f.Name, s.peekPos(), t.Size())
return
}
store := s.newValue3I(ssa.OpMove, types.TypeMem, t.Size(), dst, src, s.mem())
store.Aux = t
s.vars[memVar] = store
}
// stmtList converts the statement list n to SSA and adds it to s.
func (s *state) stmtList(l ir.Nodes) {
for _, n := range l {
s.stmt(n)
}
}
// stmt converts the statement n to SSA and adds it to s.
func (s *state) stmt(n ir.Node) {
s.pushLine(n.Pos())
defer s.popLine()
// If s.curBlock is nil, and n isn't a label (which might have an associated goto somewhere),
// then this code is dead. Stop here.
if s.curBlock == nil && n.Op() != ir.OLABEL {
return
}
s.stmtList(n.Init())
switch n.Op() {
case ir.OBLOCK:
n := n.(*ir.BlockStmt)
s.stmtList(n.List)
// No-ops
case ir.ODCLCONST, ir.ODCLTYPE, ir.OFALL:
// Expression statements
case ir.OCALLFUNC:
n := n.(*ir.CallExpr)
if ir.IsIntrinsicCall(n) {
s.intrinsicCall(n)
return
}
fallthrough
case ir.OCALLINTER:
n := n.(*ir.CallExpr)
s.callResult(n, callNormal)
if n.Op() == ir.OCALLFUNC && n.X.Op() == ir.ONAME && n.X.(*ir.Name).Class == ir.PFUNC {
if fn := n.X.Sym().Name; base.Flag.CompilingRuntime && fn == "throw" ||
n.X.Sym().Pkg == ir.Pkgs.Runtime && (fn == "throwinit" || fn == "gopanic" || fn == "panicwrap" || fn == "block" || fn == "panicmakeslicelen" || fn == "panicmakeslicecap" || fn == "panicunsafeslicelen" || fn == "panicunsafeslicenilptr" || fn == "panicunsafestringlen" || fn == "panicunsafestringnilptr") {
m := s.mem()
b := s.endBlock()
b.Kind = ssa.BlockExit
b.SetControl(m)
// TODO: never rewrite OPANIC to OCALLFUNC in the
// first place. Need to wait until all backends
// go through SSA.
}
}
case ir.ODEFER:
n := n.(*ir.GoDeferStmt)
if base.Debug.Defer > 0 {
var defertype string
if s.hasOpenDefers {
defertype = "open-coded"
} else if n.Esc() == ir.EscNever {
defertype = "stack-allocated"
} else {
defertype = "heap-allocated"
}
base.WarnfAt(n.Pos(), "%s defer", defertype)
}
if s.hasOpenDefers {
s.openDeferRecord(n.Call.(*ir.CallExpr))
} else {
d := callDefer
if n.Esc() == ir.EscNever {
d = callDeferStack
}
s.callResult(n.Call.(*ir.CallExpr), d)
}
case ir.OGO:
n := n.(*ir.GoDeferStmt)
s.callResult(n.Call.(*ir.CallExpr), callGo)
case ir.OAS2DOTTYPE:
n := n.(*ir.AssignListStmt)
var res, resok *ssa.Value
if n.Rhs[0].Op() == ir.ODOTTYPE2 {
res, resok = s.dottype(n.Rhs[0].(*ir.TypeAssertExpr), true)
} else {
res, resok = s.dynamicDottype(n.Rhs[0].(*ir.DynamicTypeAssertExpr), true)
}
deref := false
if !TypeOK(n.Rhs[0].Type()) {
if res.Op != ssa.OpLoad {
s.Fatalf("dottype of non-load")
}
mem := s.mem()
if res.Args[1] != mem {
s.Fatalf("memory no longer live from 2-result dottype load")
}
deref = true
res = res.Args[0]
}
s.assign(n.Lhs[0], res, deref, 0)
s.assign(n.Lhs[1], resok, false, 0)
return
case ir.OAS2FUNC:
// We come here only when it is an intrinsic call returning two values.
n := n.(*ir.AssignListStmt)
call := n.Rhs[0].(*ir.CallExpr)
if !ir.IsIntrinsicCall(call) {
s.Fatalf("non-intrinsic AS2FUNC not expanded %v", call)
}
v := s.intrinsicCall(call)
v1 := s.newValue1(ssa.OpSelect0, n.Lhs[0].Type(), v)
v2 := s.newValue1(ssa.OpSelect1, n.Lhs[1].Type(), v)
s.assign(n.Lhs[0], v1, false, 0)
s.assign(n.Lhs[1], v2, false, 0)
return
case ir.ODCL:
n := n.(*ir.Decl)
if v := n.X; v.Esc() == ir.EscHeap {
s.newHeapaddr(v)
}
case ir.OLABEL:
n := n.(*ir.LabelStmt)
sym := n.Label
if sym.IsBlank() {
// Nothing to do because the label isn't targetable. See issue 52278.
break
}
lab := s.label(sym)
// The label might already have a target block via a goto.
if lab.target == nil {
lab.target = s.f.NewBlock(ssa.BlockPlain)
}
// Go to that label.
// (We pretend "label:" is preceded by "goto label", unless the predecessor is unreachable.)
if s.curBlock != nil {
b := s.endBlock()
b.AddEdgeTo(lab.target)
}
s.startBlock(lab.target)
case ir.OGOTO:
n := n.(*ir.BranchStmt)
sym := n.Label
lab := s.label(sym)
if lab.target == nil {
lab.target = s.f.NewBlock(ssa.BlockPlain)
}
b := s.endBlock()
b.Pos = s.lastPos.WithIsStmt() // Do this even if b is an empty block.
b.AddEdgeTo(lab.target)
case ir.OAS:
n := n.(*ir.AssignStmt)
if n.X == n.Y && n.X.Op() == ir.ONAME {
// An x=x assignment. No point in doing anything
// here. In addition, skipping this assignment
// prevents generating:
// VARDEF x
// COPY x -> x
// which is bad because x is incorrectly considered
// dead before the vardef. See issue #14904.
return
}
// mayOverlap keeps track of whether the LHS and RHS might
// refer to partially overlapping memory. Partial overlapping can
// only happen for arrays, see the comment in moveWhichMayOverlap.
//
// If both sides of the assignment are not dereferences, then partial
// overlap can't happen. Partial overlap can only occur only when the
// arrays referenced are strictly smaller parts of the same base array.
// If one side of the assignment is a full array, then partial overlap
// can't happen. (The arrays are either disjoint or identical.)
mayOverlap := n.X.Op() == ir.ODEREF && (n.Y != nil && n.Y.Op() == ir.ODEREF)
if n.Y != nil && n.Y.Op() == ir.ODEREF {
p := n.Y.(*ir.StarExpr).X
for p.Op() == ir.OCONVNOP {
p = p.(*ir.ConvExpr).X
}
if p.Op() == ir.OSPTR && p.(*ir.UnaryExpr).X.Type().IsString() {
// Pointer fields of strings point to unmodifiable memory.
// That memory can't overlap with the memory being written.
mayOverlap = false
}
}
// Evaluate RHS.
rhs := n.Y
if rhs != nil {
switch rhs.Op() {
case ir.OSTRUCTLIT, ir.OARRAYLIT, ir.OSLICELIT:
// All literals with nonzero fields have already been
// rewritten during walk. Any that remain are just T{}
// or equivalents. Use the zero value.
if !ir.IsZero(rhs) {
s.Fatalf("literal with nonzero value in SSA: %v", rhs)
}
rhs = nil
case ir.OAPPEND:
rhs := rhs.(*ir.CallExpr)
// Check whether we're writing the result of an append back to the same slice.
// If so, we handle it specially to avoid write barriers on the fast
// (non-growth) path.
if !ir.SameSafeExpr(n.X, rhs.Args[0]) || base.Flag.N != 0 {
break
}
// If the slice can be SSA'd, it'll be on the stack,
// so there will be no write barriers,
// so there's no need to attempt to prevent them.
if s.canSSA(n.X) {
if base.Debug.Append > 0 { // replicating old diagnostic message
base.WarnfAt(n.Pos(), "append: len-only update (in local slice)")
}
break
}
if base.Debug.Append > 0 {
base.WarnfAt(n.Pos(), "append: len-only update")
}
s.append(rhs, true)
return
}
}
if ir.IsBlank(n.X) {
// _ = rhs
// Just evaluate rhs for side-effects.
if rhs != nil {
s.expr(rhs)
}
return
}
var t *types.Type
if n.Y != nil {
t = n.Y.Type()
} else {
t = n.X.Type()
}
var r *ssa.Value
deref := !TypeOK(t)
if deref {
if rhs == nil {
r = nil // Signal assign to use OpZero.
} else {
r = s.addr(rhs)
}
} else {
if rhs == nil {
r = s.zeroVal(t)
} else {
r = s.expr(rhs)
}
}
var skip skipMask
if rhs != nil && (rhs.Op() == ir.OSLICE || rhs.Op() == ir.OSLICE3 || rhs.Op() == ir.OSLICESTR) && ir.SameSafeExpr(rhs.(*ir.SliceExpr).X, n.X) {
// We're assigning a slicing operation back to its source.
// Don't write back fields we aren't changing. See issue #14855.
rhs := rhs.(*ir.SliceExpr)
i, j, k := rhs.Low, rhs.High, rhs.Max
if i != nil && (i.Op() == ir.OLITERAL && i.Val().Kind() == constant.Int && ir.Int64Val(i) == 0) {
// [0:...] is the same as [:...]
i = nil
}
// TODO: detect defaults for len/cap also.
// Currently doesn't really work because (*p)[:len(*p)] appears here as:
// tmp = len(*p)
// (*p)[:tmp]
// if j != nil && (j.Op == OLEN && SameSafeExpr(j.Left, n.Left)) {
// j = nil
// }
// if k != nil && (k.Op == OCAP && SameSafeExpr(k.Left, n.Left)) {
// k = nil
// }
if i == nil {
skip |= skipPtr
if j == nil {
skip |= skipLen
}
if k == nil {
skip |= skipCap
}
}
}
s.assignWhichMayOverlap(n.X, r, deref, skip, mayOverlap)
case ir.OIF:
n := n.(*ir.IfStmt)
if ir.IsConst(n.Cond, constant.Bool) {
s.stmtList(n.Cond.Init())
if ir.BoolVal(n.Cond) {
s.stmtList(n.Body)
} else {
s.stmtList(n.Else)
}
break
}
bEnd := s.f.NewBlock(ssa.BlockPlain)
var likely int8
if n.Likely {
likely = 1
}
var bThen *ssa.Block
if len(n.Body) != 0 {
bThen = s.f.NewBlock(ssa.BlockPlain)
} else {
bThen = bEnd
}
var bElse *ssa.Block
if len(n.Else) != 0 {
bElse = s.f.NewBlock(ssa.BlockPlain)
} else {
bElse = bEnd
}
s.condBranch(n.Cond, bThen, bElse, likely)
if len(n.Body) != 0 {
s.startBlock(bThen)
s.stmtList(n.Body)
if b := s.endBlock(); b != nil {
b.AddEdgeTo(bEnd)
}
}
if len(n.Else) != 0 {
s.startBlock(bElse)
s.stmtList(n.Else)
if b := s.endBlock(); b != nil {
b.AddEdgeTo(bEnd)
}
}
s.startBlock(bEnd)
case ir.ORETURN:
n := n.(*ir.ReturnStmt)
s.stmtList(n.Results)
b := s.exit()
b.Pos = s.lastPos.WithIsStmt()
case ir.OTAILCALL:
n := n.(*ir.TailCallStmt)
s.callResult(n.Call, callTail)
call := s.mem()
b := s.endBlock()
b.Kind = ssa.BlockRetJmp // could use BlockExit. BlockRetJmp is mostly for clarity.
b.SetControl(call)
case ir.OCONTINUE, ir.OBREAK:
n := n.(*ir.BranchStmt)
var to *ssa.Block
if n.Label == nil {
// plain break/continue
switch n.Op() {
case ir.OCONTINUE:
to = s.continueTo
case ir.OBREAK:
to = s.breakTo
}
} else {
// labeled break/continue; look up the target
sym := n.Label
lab := s.label(sym)
switch n.Op() {
case ir.OCONTINUE:
to = lab.continueTarget
case ir.OBREAK:
to = lab.breakTarget
}
}
b := s.endBlock()
b.Pos = s.lastPos.WithIsStmt() // Do this even if b is an empty block.
b.AddEdgeTo(to)
case ir.OFOR:
// OFOR: for Ninit; Left; Right { Nbody }
// cond (Left); body (Nbody); incr (Right)
n := n.(*ir.ForStmt)
bCond := s.f.NewBlock(ssa.BlockPlain)
bBody := s.f.NewBlock(ssa.BlockPlain)
bIncr := s.f.NewBlock(ssa.BlockPlain)
bEnd := s.f.NewBlock(ssa.BlockPlain)
// ensure empty for loops have correct position; issue #30167
bBody.Pos = n.Pos()
// first, jump to condition test
b := s.endBlock()
b.AddEdgeTo(bCond)
// generate code to test condition
s.startBlock(bCond)
if n.Cond != nil {
s.condBranch(n.Cond, bBody, bEnd, 1)
} else {
b := s.endBlock()
b.Kind = ssa.BlockPlain
b.AddEdgeTo(bBody)
}
// set up for continue/break in body
prevContinue := s.continueTo
prevBreak := s.breakTo
s.continueTo = bIncr
s.breakTo = bEnd
var lab *ssaLabel
if sym := n.Label; sym != nil {
// labeled for loop
lab = s.label(sym)
lab.continueTarget = bIncr
lab.breakTarget = bEnd
}
// generate body
s.startBlock(bBody)
s.stmtList(n.Body)
// tear down continue/break
s.continueTo = prevContinue
s.breakTo = prevBreak
if lab != nil {
lab.continueTarget = nil
lab.breakTarget = nil
}
// done with body, goto incr
if b := s.endBlock(); b != nil {
b.AddEdgeTo(bIncr)
}
// generate incr
s.startBlock(bIncr)
if n.Post != nil {
s.stmt(n.Post)
}
if b := s.endBlock(); b != nil {
b.AddEdgeTo(bCond)
// It can happen that bIncr ends in a block containing only VARKILL,
// and that muddles the debugging experience.
if b.Pos == src.NoXPos {
b.Pos = bCond.Pos
}
}
s.startBlock(bEnd)
case ir.OSWITCH, ir.OSELECT:
// These have been mostly rewritten by the front end into their Nbody fields.
// Our main task is to correctly hook up any break statements.
bEnd := s.f.NewBlock(ssa.BlockPlain)
prevBreak := s.breakTo
s.breakTo = bEnd
var sym *types.Sym
var body ir.Nodes
if n.Op() == ir.OSWITCH {
n := n.(*ir.SwitchStmt)
sym = n.Label
body = n.Compiled
} else {
n := n.(*ir.SelectStmt)
sym = n.Label
body = n.Compiled
}
var lab *ssaLabel
if sym != nil {
// labeled
lab = s.label(sym)
lab.breakTarget = bEnd
}
// generate body code
s.stmtList(body)
s.breakTo = prevBreak
if lab != nil {
lab.breakTarget = nil
}
// walk adds explicit OBREAK nodes to the end of all reachable code paths.
// If we still have a current block here, then mark it unreachable.
if s.curBlock != nil {
m := s.mem()
b := s.endBlock()
b.Kind = ssa.BlockExit
b.SetControl(m)
}
s.startBlock(bEnd)
case ir.OJUMPTABLE:
n := n.(*ir.JumpTableStmt)
// Make blocks we'll need.
jt := s.f.NewBlock(ssa.BlockJumpTable)
bEnd := s.f.NewBlock(ssa.BlockPlain)
// The only thing that needs evaluating is the index we're looking up.
idx := s.expr(n.Idx)
unsigned := idx.Type.IsUnsigned()
// Extend so we can do everything in uintptr arithmetic.
t := types.Types[types.TUINTPTR]
idx = s.conv(nil, idx, idx.Type, t)
// The ending condition for the current block decides whether we'll use
// the jump table at all.
// We check that min <= idx <= max and jump around the jump table
// if that test fails.
// We implement min <= idx <= max with 0 <= idx-min <= max-min, because
// we'll need idx-min anyway as the control value for the jump table.
var min, max uint64
if unsigned {
min, _ = constant.Uint64Val(n.Cases[0])
max, _ = constant.Uint64Val(n.Cases[len(n.Cases)-1])
} else {
mn, _ := constant.Int64Val(n.Cases[0])
mx, _ := constant.Int64Val(n.Cases[len(n.Cases)-1])
min = uint64(mn)
max = uint64(mx)
}
// Compare idx-min with max-min, to see if we can use the jump table.
idx = s.newValue2(s.ssaOp(ir.OSUB, t), t, idx, s.uintptrConstant(min))
width := s.uintptrConstant(max - min)
cmp := s.newValue2(s.ssaOp(ir.OLE, t), types.Types[types.TBOOL], idx, width)
b := s.endBlock()
b.Kind = ssa.BlockIf
b.SetControl(cmp)
b.AddEdgeTo(jt) // in range - use jump table
b.AddEdgeTo(bEnd) // out of range - no case in the jump table will trigger
b.Likely = ssa.BranchLikely // TODO: assumes missing the table entirely is unlikely. True?
// Build jump table block.
s.startBlock(jt)
jt.Pos = n.Pos()
if base.Flag.Cfg.SpectreIndex {
idx = s.newValue2(ssa.OpSpectreSliceIndex, t, idx, width)
}
jt.SetControl(idx)
// Figure out where we should go for each index in the table.
table := make([]*ssa.Block, max-min+1)
for i := range table {
table[i] = bEnd // default target
}
for i := range n.Targets {
c := n.Cases[i]
lab := s.label(n.Targets[i])
if lab.target == nil {
lab.target = s.f.NewBlock(ssa.BlockPlain)
}
var val uint64
if unsigned {
val, _ = constant.Uint64Val(c)
} else {
vl, _ := constant.Int64Val(c)
val = uint64(vl)
}
// Overwrite the default target.
table[val-min] = lab.target
}
for _, t := range table {
jt.AddEdgeTo(t)
}
s.endBlock()
s.startBlock(bEnd)
case ir.OCHECKNIL:
n := n.(*ir.UnaryExpr)
p := s.expr(n.X)
s.nilCheck(p)
case ir.OINLMARK:
n := n.(*ir.InlineMarkStmt)
s.newValue1I(ssa.OpInlMark, types.TypeVoid, n.Index, s.mem())
default:
s.Fatalf("unhandled stmt %v", n.Op())
}
}
// If true, share as many open-coded defer exits as possible (with the downside of
// worse line-number information)
const shareDeferExits = false
// exit processes any code that needs to be generated just before returning.
// It returns a BlockRet block that ends the control flow. Its control value
// will be set to the final memory state.
func (s *state) exit() *ssa.Block {
if s.hasdefer {
if s.hasOpenDefers {
if shareDeferExits && s.lastDeferExit != nil && len(s.openDefers) == s.lastDeferCount {
if s.curBlock.Kind != ssa.BlockPlain {
panic("Block for an exit should be BlockPlain")
}
s.curBlock.AddEdgeTo(s.lastDeferExit)
s.endBlock()
return s.lastDeferFinalBlock
}
s.openDeferExit()
} else {
s.rtcall(ir.Syms.Deferreturn, true, nil)
}
}
var b *ssa.Block
var m *ssa.Value
// Do actual return.
// These currently turn into self-copies (in many cases).
resultFields := s.curfn.Type().Results().FieldSlice()
results := make([]*ssa.Value, len(resultFields)+1, len(resultFields)+1)
m = s.newValue0(ssa.OpMakeResult, s.f.OwnAux.LateExpansionResultType())
// Store SSAable and heap-escaped PPARAMOUT variables back to stack locations.
for i, f := range resultFields {
n := f.Nname.(*ir.Name)
if s.canSSA(n) { // result is in some SSA variable
if !n.IsOutputParamInRegisters() && n.Type().HasPointers() {
// We are about to store to the result slot.
s.vars[memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, n, s.mem())
}
results[i] = s.variable(n, n.Type())
} else if !n.OnStack() { // result is actually heap allocated
// We are about to copy the in-heap result to the result slot.
if n.Type().HasPointers() {
s.vars[memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, n, s.mem())
}
ha := s.expr(n.Heapaddr)
s.instrumentFields(n.Type(), ha, instrumentRead)
results[i] = s.newValue2(ssa.OpDereference, n.Type(), ha, s.mem())
} else { // result is not SSA-able; not escaped, so not on heap, but too large for SSA.
// Before register ABI this ought to be a self-move, home=dest,
// With register ABI, it's still a self-move if parameter is on stack (i.e., too big or overflowed)
// No VarDef, as the result slot is already holding live value.
results[i] = s.newValue2(ssa.OpDereference, n.Type(), s.addr(n), s.mem())
}
}
// Run exit code. Today, this is just racefuncexit, in -race mode.
// TODO(register args) this seems risky here with a register-ABI, but not clear it is right to do it earlier either.
// Spills in register allocation might just fix it.
s.stmtList(s.curfn.Exit)
results[len(results)-1] = s.mem()
m.AddArgs(results...)
b = s.endBlock()
b.Kind = ssa.BlockRet
b.SetControl(m)
if s.hasdefer && s.hasOpenDefers {
s.lastDeferFinalBlock = b
}
return b
}
type opAndType struct {
op ir.Op
etype types.Kind
}
var opToSSA = map[opAndType]ssa.Op{
{ir.OADD, types.TINT8}: ssa.OpAdd8,
{ir.OADD, types.TUINT8}: ssa.OpAdd8,
{ir.OADD, types.TINT16}: ssa.OpAdd16,
{ir.OADD, types.TUINT16}: ssa.OpAdd16,
{ir.OADD, types.TINT32}: ssa.OpAdd32,
{ir.OADD, types.TUINT32}: ssa.OpAdd32,
{ir.OADD, types.TINT64}: ssa.OpAdd64,
{ir.OADD, types.TUINT64}: ssa.OpAdd64,
{ir.OADD, types.TFLOAT32}: ssa.OpAdd32F,
{ir.OADD, types.TFLOAT64}: ssa.OpAdd64F,
{ir.OSUB, types.TINT8}: ssa.OpSub8,
{ir.OSUB, types.TUINT8}: ssa.OpSub8,
{ir.OSUB, types.TINT16}: ssa.OpSub16,
{ir.OSUB, types.TUINT16}: ssa.OpSub16,
{ir.OSUB, types.TINT32}: ssa.OpSub32,
{ir.OSUB, types.TUINT32}: ssa.OpSub32,
{ir.OSUB, types.TINT64}: ssa.OpSub64,
{ir.OSUB, types.TUINT64}: ssa.OpSub64,
{ir.OSUB, types.TFLOAT32}: ssa.OpSub32F,
{ir.OSUB, types.TFLOAT64}: ssa.OpSub64F,
{ir.ONOT, types.TBOOL}: ssa.OpNot,
{ir.ONEG, types.TINT8}: ssa.OpNeg8,
{ir.ONEG, types.TUINT8}: ssa.OpNeg8,
{ir.ONEG, types.TINT16}: ssa.OpNeg16,
{ir.ONEG, types.TUINT16}: ssa.OpNeg16,
{ir.ONEG, types.TINT32}: ssa.OpNeg32,
{ir.ONEG, types.TUINT32}: ssa.OpNeg32,
{ir.ONEG, types.TINT64}: ssa.OpNeg64,
{ir.ONEG, types.TUINT64}: ssa.OpNeg64,
{ir.ONEG, types.TFLOAT32}: ssa.OpNeg32F,
{ir.ONEG, types.TFLOAT64}: ssa.OpNeg64F,
{ir.OBITNOT, types.TINT8}: ssa.OpCom8,
{ir.OBITNOT, types.TUINT8}: ssa.OpCom8,
{ir.OBITNOT, types.TINT16}: ssa.OpCom16,
{ir.OBITNOT, types.TUINT16}: ssa.OpCom16,
{ir.OBITNOT, types.TINT32}: ssa.OpCom32,
{ir.OBITNOT, types.TUINT32}: ssa.OpCom32,
{ir.OBITNOT, types.TINT64}: ssa.OpCom64,
{ir.OBITNOT, types.TUINT64}: ssa.OpCom64,
{ir.OIMAG, types.TCOMPLEX64}: ssa.OpComplexImag,
{ir.OIMAG, types.TCOMPLEX128}: ssa.OpComplexImag,
{ir.OREAL, types.TCOMPLEX64}: ssa.OpComplexReal,
{ir.OREAL, types.TCOMPLEX128}: ssa.OpComplexReal,
{ir.OMUL, types.TINT8}: ssa.OpMul8,
{ir.OMUL, types.TUINT8}: ssa.OpMul8,
{ir.OMUL, types.TINT16}: ssa.OpMul16,
{ir.OMUL, types.TUINT16}: ssa.OpMul16,
{ir.OMUL, types.TINT32}: ssa.OpMul32,
{ir.OMUL, types.TUINT32}: ssa.OpMul32,
{ir.OMUL, types.TINT64}: ssa.OpMul64,
{ir.OMUL, types.TUINT64}: ssa.OpMul64,
{ir.OMUL, types.TFLOAT32}: ssa.OpMul32F,
{ir.OMUL, types.TFLOAT64}: ssa.OpMul64F,
{ir.ODIV, types.TFLOAT32}: ssa.OpDiv32F,
{ir.ODIV, types.TFLOAT64}: ssa.OpDiv64F,
{ir.ODIV, types.TINT8}: ssa.OpDiv8,
{ir.ODIV, types.TUINT8}: ssa.OpDiv8u,
{ir.ODIV, types.TINT16}: ssa.OpDiv16,
{ir.ODIV, types.TUINT16}: ssa.OpDiv16u,
{ir.ODIV, types.TINT32}: ssa.OpDiv32,
{ir.ODIV, types.TUINT32}: ssa.OpDiv32u,
{ir.ODIV, types.TINT64}: ssa.OpDiv64,
{ir.ODIV, types.TUINT64}: ssa.OpDiv64u,
{ir.OMOD, types.TINT8}: ssa.OpMod8,
{ir.OMOD, types.TUINT8}: ssa.OpMod8u,
{ir.OMOD, types.TINT16}: ssa.OpMod16,
{ir.OMOD, types.TUINT16}: ssa.OpMod16u,
{ir.OMOD, types.TINT32}: ssa.OpMod32,
{ir.OMOD, types.TUINT32}: ssa.OpMod32u,
{ir.OMOD, types.TINT64}: ssa.OpMod64,
{ir.OMOD, types.TUINT64}: ssa.OpMod64u,
{ir.OAND, types.TINT8}: ssa.OpAnd8,
{ir.OAND, types.TUINT8}: ssa.OpAnd8,
{ir.OAND, types.TINT16}: ssa.OpAnd16,
{ir.OAND, types.TUINT16}: ssa.OpAnd16,
{ir.OAND, types.TINT32}: ssa.OpAnd32,
{ir.OAND, types.TUINT32}: ssa.OpAnd32,
{ir.OAND, types.TINT64}: ssa.OpAnd64,
{ir.OAND, types.TUINT64}: ssa.OpAnd64,
{ir.OOR, types.TINT8}: ssa.OpOr8,
{ir.OOR, types.TUINT8}: ssa.OpOr8,
{ir.OOR, types.TINT16}: ssa.OpOr16,
{ir.OOR, types.TUINT16}: ssa.OpOr16,
{ir.OOR, types.TINT32}: ssa.OpOr32,
{ir.OOR, types.TUINT32}: ssa.OpOr32,
{ir.OOR, types.TINT64}: ssa.OpOr64,
{ir.OOR, types.TUINT64}: ssa.OpOr64,
{ir.OXOR, types.TINT8}: ssa.OpXor8,
{ir.OXOR, types.TUINT8}: ssa.OpXor8,
{ir.OXOR, types.TINT16}: ssa.OpXor16,
{ir.OXOR, types.TUINT16}: ssa.OpXor16,
{ir.OXOR, types.TINT32}: ssa.OpXor32,
{ir.OXOR, types.TUINT32}: ssa.OpXor32,
{ir.OXOR, types.TINT64}: ssa.OpXor64,
{ir.OXOR, types.TUINT64}: ssa.OpXor64,
{ir.OEQ, types.TBOOL}: ssa.OpEqB,
{ir.OEQ, types.TINT8}: ssa.OpEq8,
{ir.OEQ, types.TUINT8}: ssa.OpEq8,
{ir.OEQ, types.TINT16}: ssa.OpEq16,
{ir.OEQ, types.TUINT16}: ssa.OpEq16,
{ir.OEQ, types.TINT32}: ssa.OpEq32,
{ir.OEQ, types.TUINT32}: ssa.OpEq32,
{ir.OEQ, types.TINT64}: ssa.OpEq64,
{ir.OEQ, types.TUINT64}: ssa.OpEq64,
{ir.OEQ, types.TINTER}: ssa.OpEqInter,
{ir.OEQ, types.TSLICE}: ssa.OpEqSlice,
{ir.OEQ, types.TFUNC}: ssa.OpEqPtr,
{ir.OEQ, types.TMAP}: ssa.OpEqPtr,
{ir.OEQ, types.TCHAN}: ssa.OpEqPtr,
{ir.OEQ, types.TPTR}: ssa.OpEqPtr,
{ir.OEQ, types.TUINTPTR}: ssa.OpEqPtr,
{ir.OEQ, types.TUNSAFEPTR}: ssa.OpEqPtr,
{ir.OEQ, types.TFLOAT64}: ssa.OpEq64F,
{ir.OEQ, types.TFLOAT32}: ssa.OpEq32F,
{ir.ONE, types.TBOOL}: ssa.OpNeqB,
{ir.ONE, types.TINT8}: ssa.OpNeq8,
{ir.ONE, types.TUINT8}: ssa.OpNeq8,
{ir.ONE, types.TINT16}: ssa.OpNeq16,
{ir.ONE, types.TUINT16}: ssa.OpNeq16,
{ir.ONE, types.TINT32}: ssa.OpNeq32,
{ir.ONE, types.TUINT32}: ssa.OpNeq32,
{ir.ONE, types.TINT64}: ssa.OpNeq64,
{ir.ONE, types.TUINT64}: ssa.OpNeq64,
{ir.ONE, types.TINTER}: ssa.OpNeqInter,
{ir.ONE, types.TSLICE}: ssa.OpNeqSlice,
{ir.ONE, types.TFUNC}: ssa.OpNeqPtr,
{ir.ONE, types.TMAP}: ssa.OpNeqPtr,
{ir.ONE, types.TCHAN}: ssa.OpNeqPtr,
{ir.ONE, types.TPTR}: ssa.OpNeqPtr,
{ir.ONE, types.TUINTPTR}: ssa.OpNeqPtr,
{ir.ONE, types.TUNSAFEPTR}: ssa.OpNeqPtr,
{ir.ONE, types.TFLOAT64}: ssa.OpNeq64F,
{ir.ONE, types.TFLOAT32}: ssa.OpNeq32F,
{ir.OLT, types.TINT8}: ssa.OpLess8,
{ir.OLT, types.TUINT8}: ssa.OpLess8U,
{ir.OLT, types.TINT16}: ssa.OpLess16,
{ir.OLT, types.TUINT16}: ssa.OpLess16U,
{ir.OLT, types.TINT32}: ssa.OpLess32,
{ir.OLT, types.TUINT32}: ssa.OpLess32U,
{ir.OLT, types.TINT64}: ssa.OpLess64,
{ir.OLT, types.TUINT64}: ssa.OpLess64U,
{ir.OLT, types.TFLOAT64}: ssa.OpLess64F,
{ir.OLT, types.TFLOAT32}: ssa.OpLess32F,
{ir.OLE, types.TINT8}: ssa.OpLeq8,
{ir.OLE, types.TUINT8}: ssa.OpLeq8U,
{ir.OLE, types.TINT16}: ssa.OpLeq16,
{ir.OLE, types.TUINT16}: ssa.OpLeq16U,
{ir.OLE, types.TINT32}: ssa.OpLeq32,
{ir.OLE, types.TUINT32}: ssa.OpLeq32U,
{ir.OLE, types.TINT64}: ssa.OpLeq64,
{ir.OLE, types.TUINT64}: ssa.OpLeq64U,
{ir.OLE, types.TFLOAT64}: ssa.OpLeq64F,
{ir.OLE, types.TFLOAT32}: ssa.OpLeq32F,
}
func (s *state) concreteEtype(t *types.Type) types.Kind {
e := t.Kind()
switch e {
default:
return e
case types.TINT:
if s.config.PtrSize == 8 {
return types.TINT64
}
return types.TINT32
case types.TUINT:
if s.config.PtrSize == 8 {
return types.TUINT64
}
return types.TUINT32
case types.TUINTPTR:
if s.config.PtrSize == 8 {
return types.TUINT64
}
return types.TUINT32
}
}
func (s *state) ssaOp(op ir.Op, t *types.Type) ssa.Op {
etype := s.concreteEtype(t)
x, ok := opToSSA[opAndType{op, etype}]
if !ok {
s.Fatalf("unhandled binary op %v %s", op, etype)
}
return x
}
type opAndTwoTypes struct {
op ir.Op
etype1 types.Kind
etype2 types.Kind
}
type twoTypes struct {
etype1 types.Kind
etype2 types.Kind
}
type twoOpsAndType struct {
op1 ssa.Op
op2 ssa.Op
intermediateType types.Kind
}
var fpConvOpToSSA = map[twoTypes]twoOpsAndType{
{types.TINT8, types.TFLOAT32}: {ssa.OpSignExt8to32, ssa.OpCvt32to32F, types.TINT32},
{types.TINT16, types.TFLOAT32}: {ssa.OpSignExt16to32, ssa.OpCvt32to32F, types.TINT32},
{types.TINT32, types.TFLOAT32}: {ssa.OpCopy, ssa.OpCvt32to32F, types.TINT32},
{types.TINT64, types.TFLOAT32}: {ssa.OpCopy, ssa.OpCvt64to32F, types.TINT64},
{types.TINT8, types.TFLOAT64}: {ssa.OpSignExt8to32, ssa.OpCvt32to64F, types.TINT32},
{types.TINT16, types.TFLOAT64}: {ssa.OpSignExt16to32, ssa.OpCvt32to64F, types.TINT32},
{types.TINT32, types.TFLOAT64}: {ssa.OpCopy, ssa.OpCvt32to64F, types.TINT32},
{types.TINT64, types.TFLOAT64}: {ssa.OpCopy, ssa.OpCvt64to64F, types.TINT64},
{types.TFLOAT32, types.TINT8}: {ssa.OpCvt32Fto32, ssa.OpTrunc32to8, types.TINT32},
{types.TFLOAT32, types.TINT16}: {ssa.OpCvt32Fto32, ssa.OpTrunc32to16, types.TINT32},
{types.TFLOAT32, types.TINT32}: {ssa.OpCvt32Fto32, ssa.OpCopy, types.TINT32},
{types.TFLOAT32, types.TINT64}: {ssa.OpCvt32Fto64, ssa.OpCopy, types.TINT64},
{types.TFLOAT64, types.TINT8}: {ssa.OpCvt64Fto32, ssa.OpTrunc32to8, types.TINT32},
{types.TFLOAT64, types.TINT16}: {ssa.OpCvt64Fto32, ssa.OpTrunc32to16, types.TINT32},
{types.TFLOAT64, types.TINT32}: {ssa.OpCvt64Fto32, ssa.OpCopy, types.TINT32},
{types.TFLOAT64, types.TINT64}: {ssa.OpCvt64Fto64, ssa.OpCopy, types.TINT64},
// unsigned
{types.TUINT8, types.TFLOAT32}: {ssa.OpZeroExt8to32, ssa.OpCvt32to32F, types.TINT32},
{types.TUINT16, types.TFLOAT32}: {ssa.OpZeroExt16to32, ssa.OpCvt32to32F, types.TINT32},
{types.TUINT32, types.TFLOAT32}: {ssa.OpZeroExt32to64, ssa.OpCvt64to32F, types.TINT64}, // go wide to dodge unsigned
{types.TUINT64, types.TFLOAT32}: {ssa.OpCopy, ssa.OpInvalid, types.TUINT64}, // Cvt64Uto32F, branchy code expansion instead
{types.TUINT8, types.TFLOAT64}: {ssa.OpZeroExt8to32, ssa.OpCvt32to64F, types.TINT32},
{types.TUINT16, types.TFLOAT64}: {ssa.OpZeroExt16to32, ssa.OpCvt32to64F, types.TINT32},
{types.TUINT32, types.TFLOAT64}: {ssa.OpZeroExt32to64, ssa.OpCvt64to64F, types.TINT64}, // go wide to dodge unsigned
{types.TUINT64, types.TFLOAT64}: {ssa.OpCopy, ssa.OpInvalid, types.TUINT64}, // Cvt64Uto64F, branchy code expansion instead
{types.TFLOAT32, types.TUINT8}: {ssa.OpCvt32Fto32, ssa.OpTrunc32to8, types.TINT32},
{types.TFLOAT32, types.TUINT16}: {ssa.OpCvt32Fto32, ssa.OpTrunc32to16, types.TINT32},
{types.TFLOAT32, types.TUINT32}: {ssa.OpCvt32Fto64, ssa.OpTrunc64to32, types.TINT64}, // go wide to dodge unsigned
{types.TFLOAT32, types.TUINT64}: {ssa.OpInvalid, ssa.OpCopy, types.TUINT64}, // Cvt32Fto64U, branchy code expansion instead
{types.TFLOAT64, types.TUINT8}: {ssa.OpCvt64Fto32, ssa.OpTrunc32to8, types.TINT32},
{types.TFLOAT64, types.TUINT16}: {ssa.OpCvt64Fto32, ssa.OpTrunc32to16, types.TINT32},
{types.TFLOAT64, types.TUINT32}: {ssa.OpCvt64Fto64, ssa.OpTrunc64to32, types.TINT64}, // go wide to dodge unsigned
{types.TFLOAT64, types.TUINT64}: {ssa.OpInvalid, ssa.OpCopy, types.TUINT64}, // Cvt64Fto64U, branchy code expansion instead
// float
{types.TFLOAT64, types.TFLOAT32}: {ssa.OpCvt64Fto32F, ssa.OpCopy, types.TFLOAT32},
{types.TFLOAT64, types.TFLOAT64}: {ssa.OpRound64F, ssa.OpCopy, types.TFLOAT64},
{types.TFLOAT32, types.TFLOAT32}: {ssa.OpRound32F, ssa.OpCopy, types.TFLOAT32},
{types.TFLOAT32, types.TFLOAT64}: {ssa.OpCvt32Fto64F, ssa.OpCopy, types.TFLOAT64},
}
// this map is used only for 32-bit arch, and only includes the difference
// on 32-bit arch, don't use int64<->float conversion for uint32
var fpConvOpToSSA32 = map[twoTypes]twoOpsAndType{
{types.TUINT32, types.TFLOAT32}: {ssa.OpCopy, ssa.OpCvt32Uto32F, types.TUINT32},
{types.TUINT32, types.TFLOAT64}: {ssa.OpCopy, ssa.OpCvt32Uto64F, types.TUINT32},
{types.TFLOAT32, types.TUINT32}: {ssa.OpCvt32Fto32U, ssa.OpCopy, types.TUINT32},
{types.TFLOAT64, types.TUINT32}: {ssa.OpCvt64Fto32U, ssa.OpCopy, types.TUINT32},
}
// uint64<->float conversions, only on machines that have instructions for that
var uint64fpConvOpToSSA = map[twoTypes]twoOpsAndType{
{types.TUINT64, types.TFLOAT32}: {ssa.OpCopy, ssa.OpCvt64Uto32F, types.TUINT64},
{types.TUINT64, types.TFLOAT64}: {ssa.OpCopy, ssa.OpCvt64Uto64F, types.TUINT64},
{types.TFLOAT32, types.TUINT64}: {ssa.OpCvt32Fto64U, ssa.OpCopy, types.TUINT64},
{types.TFLOAT64, types.TUINT64}: {ssa.OpCvt64Fto64U, ssa.OpCopy, types.TUINT64},
}
var shiftOpToSSA = map[opAndTwoTypes]ssa.Op{
{ir.OLSH, types.TINT8, types.TUINT8}: ssa.OpLsh8x8,
{ir.OLSH, types.TUINT8, types.TUINT8}: ssa.OpLsh8x8,
{ir.OLSH, types.TINT8, types.TUINT16}: ssa.OpLsh8x16,
{ir.OLSH, types.TUINT8, types.TUINT16}: ssa.OpLsh8x16,
{ir.OLSH, types.TINT8, types.TUINT32}: ssa.OpLsh8x32,
{ir.OLSH, types.TUINT8, types.TUINT32}: ssa.OpLsh8x32,
{ir.OLSH, types.TINT8, types.TUINT64}: ssa.OpLsh8x64,
{ir.OLSH, types.TUINT8, types.TUINT64}: ssa.OpLsh8x64,
{ir.OLSH, types.TINT16, types.TUINT8}: ssa.OpLsh16x8,
{ir.OLSH, types.TUINT16, types.TUINT8}: ssa.OpLsh16x8,
{ir.OLSH, types.TINT16, types.TUINT16}: ssa.OpLsh16x16,
{ir.OLSH, types.TUINT16, types.TUINT16}: ssa.OpLsh16x16,
{ir.OLSH, types.TINT16, types.TUINT32}: ssa.OpLsh16x32,
{ir.OLSH, types.TUINT16, types.TUINT32}: ssa.OpLsh16x32,
{ir.OLSH, types.TINT16, types.TUINT64}: ssa.OpLsh16x64,
{ir.OLSH, types.TUINT16, types.TUINT64}: ssa.OpLsh16x64,
{ir.OLSH, types.TINT32, types.TUINT8}: ssa.OpLsh32x8,
{ir.OLSH, types.TUINT32, types.TUINT8}: ssa.OpLsh32x8,
{ir.OLSH, types.TINT32, types.TUINT16}: ssa.OpLsh32x16,
{ir.OLSH, types.TUINT32, types.TUINT16}: ssa.OpLsh32x16,
{ir.OLSH, types.TINT32, types.TUINT32}: ssa.OpLsh32x32,
{ir.OLSH, types.TUINT32, types.TUINT32}: ssa.OpLsh32x32,
{ir.OLSH, types.TINT32, types.TUINT64}: ssa.OpLsh32x64,
{ir.OLSH, types.TUINT32, types.TUINT64}: ssa.OpLsh32x64,
{ir.OLSH, types.TINT64, types.TUINT8}: ssa.OpLsh64x8,
{ir.OLSH, types.TUINT64, types.TUINT8}: ssa.OpLsh64x8,
{ir.OLSH, types.TINT64, types.TUINT16}: ssa.OpLsh64x16,
{ir.OLSH, types.TUINT64, types.TUINT16}: ssa.OpLsh64x16,
{ir.OLSH, types.TINT64, types.TUINT32}: ssa.OpLsh64x32,
{ir.OLSH, types.TUINT64, types.TUINT32}: ssa.OpLsh64x32,
{ir.OLSH, types.TINT64, types.TUINT64}: ssa.OpLsh64x64,
{ir.OLSH, types.TUINT64, types.TUINT64}: ssa.OpLsh64x64,
{ir.ORSH, types.TINT8, types.TUINT8}: ssa.OpRsh8x8,
{ir.ORSH, types.TUINT8, types.TUINT8}: ssa.OpRsh8Ux8,
{ir.ORSH, types.TINT8, types.TUINT16}: ssa.OpRsh8x16,
{ir.ORSH, types.TUINT8, types.TUINT16}: ssa.OpRsh8Ux16,
{ir.ORSH, types.TINT8, types.TUINT32}: ssa.OpRsh8x32,
{ir.ORSH, types.TUINT8, types.TUINT32}: ssa.OpRsh8Ux32,
{ir.ORSH, types.TINT8, types.TUINT64}: ssa.OpRsh8x64,
{ir.ORSH, types.TUINT8, types.TUINT64}: ssa.OpRsh8Ux64,
{ir.ORSH, types.TINT16, types.TUINT8}: ssa.OpRsh16x8,
{ir.ORSH, types.TUINT16, types.TUINT8}: ssa.OpRsh16Ux8,
{ir.ORSH, types.TINT16, types.TUINT16}: ssa.OpRsh16x16,
{ir.ORSH, types.TUINT16, types.TUINT16}: ssa.OpRsh16Ux16,
{ir.ORSH, types.TINT16, types.TUINT32}: ssa.OpRsh16x32,
{ir.ORSH, types.TUINT16, types.TUINT32}: ssa.OpRsh16Ux32,
{ir.ORSH, types.TINT16, types.TUINT64}: ssa.OpRsh16x64,
{ir.ORSH, types.TUINT16, types.TUINT64}: ssa.OpRsh16Ux64,
{ir.ORSH, types.TINT32, types.TUINT8}: ssa.OpRsh32x8,
{ir.ORSH, types.TUINT32, types.TUINT8}: ssa.OpRsh32Ux8,
{ir.ORSH, types.TINT32, types.TUINT16}: ssa.OpRsh32x16,
{ir.ORSH, types.TUINT32, types.TUINT16}: ssa.OpRsh32Ux16,
{ir.ORSH, types.TINT32, types.TUINT32}: ssa.OpRsh32x32,
{ir.ORSH, types.TUINT32, types.TUINT32}: ssa.OpRsh32Ux32,
{ir.ORSH, types.TINT32, types.TUINT64}: ssa.OpRsh32x64,
{ir.ORSH, types.TUINT32, types.TUINT64}: ssa.OpRsh32Ux64,
{ir.ORSH, types.TINT64, types.TUINT8}: ssa.OpRsh64x8,
{ir.ORSH, types.TUINT64, types.TUINT8}: ssa.OpRsh64Ux8,
{ir.ORSH, types.TINT64, types.TUINT16}: ssa.OpRsh64x16,
{ir.ORSH, types.TUINT64, types.TUINT16}: ssa.OpRsh64Ux16,
{ir.ORSH, types.TINT64, types.TUINT32}: ssa.OpRsh64x32,
{ir.ORSH, types.TUINT64, types.TUINT32}: ssa.OpRsh64Ux32,
{ir.ORSH, types.TINT64, types.TUINT64}: ssa.OpRsh64x64,
{ir.ORSH, types.TUINT64, types.TUINT64}: ssa.OpRsh64Ux64,
}
func (s *state) ssaShiftOp(op ir.Op, t *types.Type, u *types.Type) ssa.Op {
etype1 := s.concreteEtype(t)
etype2 := s.concreteEtype(u)
x, ok := shiftOpToSSA[opAndTwoTypes{op, etype1, etype2}]
if !ok {
s.Fatalf("unhandled shift op %v etype=%s/%s", op, etype1, etype2)
}
return x
}
func (s *state) uintptrConstant(v uint64) *ssa.Value {
if s.config.PtrSize == 4 {
return s.newValue0I(ssa.OpConst32, types.Types[types.TUINTPTR], int64(v))
}
return s.newValue0I(ssa.OpConst64, types.Types[types.TUINTPTR], int64(v))
}
func (s *state) conv(n ir.Node, v *ssa.Value, ft, tt *types.Type) *ssa.Value {
if ft.IsBoolean() && tt.IsKind(types.TUINT8) {
// Bool -> uint8 is generated internally when indexing into runtime.staticbyte.
return s.newValue1(ssa.OpCvtBoolToUint8, tt, v)
}
if ft.IsInteger() && tt.IsInteger() {
var op ssa.Op
if tt.Size() == ft.Size() {
op = ssa.OpCopy
} else if tt.Size() < ft.Size() {
// truncation
switch 10*ft.Size() + tt.Size() {
case 21:
op = ssa.OpTrunc16to8
case 41:
op = ssa.OpTrunc32to8
case 42:
op = ssa.OpTrunc32to16
case 81:
op = ssa.OpTrunc64to8
case 82:
op = ssa.OpTrunc64to16
case 84:
op = ssa.OpTrunc64to32
default:
s.Fatalf("weird integer truncation %v -> %v", ft, tt)
}
} else if ft.IsSigned() {
// sign extension
switch 10*ft.Size() + tt.Size() {
case 12:
op = ssa.OpSignExt8to16
case 14:
op = ssa.OpSignExt8to32
case 18:
op = ssa.OpSignExt8to64
case 24:
op = ssa.OpSignExt16to32
case 28:
op = ssa.OpSignExt16to64
case 48:
op = ssa.OpSignExt32to64
default:
s.Fatalf("bad integer sign extension %v -> %v", ft, tt)
}
} else {
// zero extension
switch 10*ft.Size() + tt.Size() {
case 12:
op = ssa.OpZeroExt8to16
case 14:
op = ssa.OpZeroExt8to32
case 18:
op = ssa.OpZeroExt8to64
case 24:
op = ssa.OpZeroExt16to32
case 28:
op = ssa.OpZeroExt16to64
case 48:
op = ssa.OpZeroExt32to64
default:
s.Fatalf("weird integer sign extension %v -> %v", ft, tt)
}
}
return s.newValue1(op, tt, v)
}
if ft.IsComplex() && tt.IsComplex() {
var op ssa.Op
if ft.Size() == tt.Size() {
switch ft.Size() {
case 8:
op = ssa.OpRound32F
case 16:
op = ssa.OpRound64F
default:
s.Fatalf("weird complex conversion %v -> %v", ft, tt)
}
} else if ft.Size() == 8 && tt.Size() == 16 {
op = ssa.OpCvt32Fto64F
} else if ft.Size() == 16 && tt.Size() == 8 {
op = ssa.OpCvt64Fto32F
} else {
s.Fatalf("weird complex conversion %v -> %v", ft, tt)
}
ftp := types.FloatForComplex(ft)
ttp := types.FloatForComplex(tt)
return s.newValue2(ssa.OpComplexMake, tt,
s.newValueOrSfCall1(op, ttp, s.newValue1(ssa.OpComplexReal, ftp, v)),
s.newValueOrSfCall1(op, ttp, s.newValue1(ssa.OpComplexImag, ftp, v)))
}
if tt.IsComplex() { // and ft is not complex
// Needed for generics support - can't happen in normal Go code.
et := types.FloatForComplex(tt)
v = s.conv(n, v, ft, et)
return s.newValue2(ssa.OpComplexMake, tt, v, s.zeroVal(et))
}
if ft.IsFloat() || tt.IsFloat() {
conv, ok := fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]
if s.config.RegSize == 4 && Arch.LinkArch.Family != sys.MIPS && !s.softFloat {
if conv1, ok1 := fpConvOpToSSA32[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 {
conv = conv1
}
}
if Arch.LinkArch.Family == sys.ARM64 || Arch.LinkArch.Family == sys.Wasm || Arch.LinkArch.Family == sys.S390X || s.softFloat {
if conv1, ok1 := uint64fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 {
conv = conv1
}
}
if Arch.LinkArch.Family == sys.MIPS && !s.softFloat {
if ft.Size() == 4 && ft.IsInteger() && !ft.IsSigned() {
// tt is float32 or float64, and ft is also unsigned
if tt.Size() == 4 {
return s.uint32Tofloat32(n, v, ft, tt)
}
if tt.Size() == 8 {
return s.uint32Tofloat64(n, v, ft, tt)
}
} else if tt.Size() == 4 && tt.IsInteger() && !tt.IsSigned() {
// ft is float32 or float64, and tt is unsigned integer
if ft.Size() == 4 {
return s.float32ToUint32(n, v, ft, tt)
}
if ft.Size() == 8 {
return s.float64ToUint32(n, v, ft, tt)
}
}
}
if !ok {
s.Fatalf("weird float conversion %v -> %v", ft, tt)
}
op1, op2, it := conv.op1, conv.op2, conv.intermediateType
if op1 != ssa.OpInvalid && op2 != ssa.OpInvalid {
// normal case, not tripping over unsigned 64
if op1 == ssa.OpCopy {
if op2 == ssa.OpCopy {
return v
}
return s.newValueOrSfCall1(op2, tt, v)
}
if op2 == ssa.OpCopy {
return s.newValueOrSfCall1(op1, tt, v)
}
return s.newValueOrSfCall1(op2, tt, s.newValueOrSfCall1(op1, types.Types[it], v))
}
// Tricky 64-bit unsigned cases.
if ft.IsInteger() {
// tt is float32 or float64, and ft is also unsigned
if tt.Size() == 4 {
return s.uint64Tofloat32(n, v, ft, tt)
}
if tt.Size() == 8 {
return s.uint64Tofloat64(n, v, ft, tt)
}
s.Fatalf("weird unsigned integer to float conversion %v -> %v", ft, tt)
}
// ft is float32 or float64, and tt is unsigned integer
if ft.Size() == 4 {
return s.float32ToUint64(n, v, ft, tt)
}
if ft.Size() == 8 {
return s.float64ToUint64(n, v, ft, tt)
}
s.Fatalf("weird float to unsigned integer conversion %v -> %v", ft, tt)
return nil
}
s.Fatalf("unhandled OCONV %s -> %s", ft.Kind(), tt.Kind())
return nil
}
// expr converts the expression n to ssa, adds it to s and returns the ssa result.
func (s *state) expr(n ir.Node) *ssa.Value {
return s.exprCheckPtr(n, true)
}
func (s *state) exprCheckPtr(n ir.Node, checkPtrOK bool) *ssa.Value {
if ir.HasUniquePos(n) {
// ONAMEs and named OLITERALs have the line number
// of the decl, not the use. See issue 14742.
s.pushLine(n.Pos())
defer s.popLine()
}
s.stmtList(n.Init())
switch n.Op() {
case ir.OBYTES2STRTMP:
n := n.(*ir.ConvExpr)
slice := s.expr(n.X)
ptr := s.newValue1(ssa.OpSlicePtr, s.f.Config.Types.BytePtr, slice)
len := s.newValue1(ssa.OpSliceLen, types.Types[types.TINT], slice)
return s.newValue2(ssa.OpStringMake, n.Type(), ptr, len)
case ir.OSTR2BYTESTMP:
n := n.(*ir.ConvExpr)
str := s.expr(n.X)
ptr := s.newValue1(ssa.OpStringPtr, s.f.Config.Types.BytePtr, str)
len := s.newValue1(ssa.OpStringLen, types.Types[types.TINT], str)
return s.newValue3(ssa.OpSliceMake, n.Type(), ptr, len, len)
case ir.OCFUNC:
n := n.(*ir.UnaryExpr)
aux := n.X.(*ir.Name).Linksym()
// OCFUNC is used to build function values, which must
// always reference ABIInternal entry points.
if aux.ABI() != obj.ABIInternal {
s.Fatalf("expected ABIInternal: %v", aux.ABI())
}
return s.entryNewValue1A(ssa.OpAddr, n.Type(), aux, s.sb)
case ir.ONAME:
n := n.(*ir.Name)
if n.Class == ir.PFUNC {
// "value" of a function is the address of the function's closure
sym := staticdata.FuncLinksym(n)
return s.entryNewValue1A(ssa.OpAddr, types.NewPtr(n.Type()), sym, s.sb)
}
if s.canSSA(n) {
return s.variable(n, n.Type())
}
return s.load(n.Type(), s.addr(n))
case ir.OLINKSYMOFFSET:
n := n.(*ir.LinksymOffsetExpr)
return s.load(n.Type(), s.addr(n))
case ir.ONIL:
n := n.(*ir.NilExpr)
t := n.Type()
switch {
case t.IsSlice():
return s.constSlice(t)
case t.IsInterface():
return s.constInterface(t)
default:
return s.constNil(t)
}
case ir.OLITERAL:
switch u := n.Val(); u.Kind() {
case constant.Int:
i := ir.IntVal(n.Type(), u)
switch n.Type().Size() {
case 1:
return s.constInt8(n.Type(), int8(i))
case 2:
return s.constInt16(n.Type(), int16(i))
case 4:
return s.constInt32(n.Type(), int32(i))
case 8:
return s.constInt64(n.Type(), i)
default:
s.Fatalf("bad integer size %d", n.Type().Size())
return nil
}
case constant.String:
i := constant.StringVal(u)
if i == "" {
return s.constEmptyString(n.Type())
}
return s.entryNewValue0A(ssa.OpConstString, n.Type(), ssa.StringToAux(i))
case constant.Bool:
return s.constBool(constant.BoolVal(u))
case constant.Float:
f, _ := constant.Float64Val(u)
switch n.Type().Size() {
case 4:
return s.constFloat32(n.Type(), f)
case 8:
return s.constFloat64(n.Type(), f)
default:
s.Fatalf("bad float size %d", n.Type().Size())
return nil
}
case constant.Complex:
re, _ := constant.Float64Val(constant.Real(u))
im, _ := constant.Float64Val(constant.Imag(u))
switch n.Type().Size() {
case 8:
pt := types.Types[types.TFLOAT32]
return s.newValue2(ssa.OpComplexMake, n.Type(),
s.constFloat32(pt, re),
s.constFloat32(pt, im))
case 16:
pt := types.Types[types.TFLOAT64]
return s.newValue2(ssa.OpComplexMake, n.Type(),
s.constFloat64(pt, re),
s.constFloat64(pt, im))
default:
s.Fatalf("bad complex size %d", n.Type().Size())
return nil
}
default:
s.Fatalf("unhandled OLITERAL %v", u.Kind())
return nil
}
case ir.OCONVNOP:
n := n.(*ir.ConvExpr)
to := n.Type()
from := n.X.Type()
// Assume everything will work out, so set up our return value.
// Anything interesting that happens from here is a fatal.
x := s.expr(n.X)
if to == from {
return x
}
// Special case for not confusing GC and liveness.
// We don't want pointers accidentally classified
// as not-pointers or vice-versa because of copy
// elision.
if to.IsPtrShaped() != from.IsPtrShaped() {
return s.newValue2(ssa.OpConvert, to, x, s.mem())
}
v := s.newValue1(ssa.OpCopy, to, x) // ensure that v has the right type
// CONVNOP closure
if to.Kind() == types.TFUNC && from.IsPtrShaped() {
return v
}
// named <--> unnamed type or typed <--> untyped const
if from.Kind() == to.Kind() {
return v
}
// unsafe.Pointer <--> *T
if to.IsUnsafePtr() && from.IsPtrShaped() || from.IsUnsafePtr() && to.IsPtrShaped() {
if s.checkPtrEnabled && checkPtrOK && to.IsPtr() && from.IsUnsafePtr() {
s.checkPtrAlignment(n, v, nil)
}
return v
}
// map <--> *hmap
if to.Kind() == types.TMAP && from.IsPtr() &&
to.MapType().Hmap == from.Elem() {
return v
}
types.CalcSize(from)
types.CalcSize(to)
if from.Size() != to.Size() {
s.Fatalf("CONVNOP width mismatch %v (%d) -> %v (%d)\n", from, from.Size(), to, to.Size())
return nil
}
if etypesign(from.Kind()) != etypesign(to.Kind()) {
s.Fatalf("CONVNOP sign mismatch %v (%s) -> %v (%s)\n", from, from.Kind(), to, to.Kind())
return nil
}
if base.Flag.Cfg.Instrumenting {
// These appear to be fine, but they fail the
// integer constraint below, so okay them here.
// Sample non-integer conversion: map[string]string -> *uint8
return v
}
if etypesign(from.Kind()) == 0 {
s.Fatalf("CONVNOP unrecognized non-integer %v -> %v\n", from, to)
return nil
}
// integer, same width, same sign
return v
case ir.OCONV:
n := n.(*ir.ConvExpr)
x := s.expr(n.X)
return s.conv(n, x, n.X.Type(), n.Type())
case ir.ODOTTYPE:
n := n.(*ir.TypeAssertExpr)
res, _ := s.dottype(n, false)
return res
case ir.ODYNAMICDOTTYPE:
n := n.(*ir.DynamicTypeAssertExpr)
res, _ := s.dynamicDottype(n, false)
return res
// binary ops
case ir.OLT, ir.OEQ, ir.ONE, ir.OLE, ir.OGE, ir.OGT:
n := n.(*ir.BinaryExpr)
a := s.expr(n.X)
b := s.expr(n.Y)
if n.X.Type().IsComplex() {
pt := types.FloatForComplex(n.X.Type())
op := s.ssaOp(ir.OEQ, pt)
r := s.newValueOrSfCall2(op, types.Types[types.TBOOL], s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b))
i := s.newValueOrSfCall2(op, types.Types[types.TBOOL], s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b))
c := s.newValue2(ssa.OpAndB, types.Types[types.TBOOL], r, i)
switch n.Op() {
case ir.OEQ:
return c
case ir.ONE:
return s.newValue1(ssa.OpNot, types.Types[types.TBOOL], c)
default:
s.Fatalf("ordered complex compare %v", n.Op())
}
}
// Convert OGE and OGT into OLE and OLT.
op := n.Op()
switch op {
case ir.OGE:
op, a, b = ir.OLE, b, a
case ir.OGT:
op, a, b = ir.OLT, b, a
}
if n.X.Type().IsFloat() {
// float comparison
return s.newValueOrSfCall2(s.ssaOp(op, n.X.Type()), types.Types[types.TBOOL], a, b)
}
// integer comparison
return s.newValue2(s.ssaOp(op, n.X.Type()), types.Types[types.TBOOL], a, b)
case ir.OMUL:
n := n.(*ir.BinaryExpr)
a := s.expr(n.X)
b := s.expr(n.Y)
if n.Type().IsComplex() {
mulop := ssa.OpMul64F
addop := ssa.OpAdd64F
subop := ssa.OpSub64F
pt := types.FloatForComplex(n.Type()) // Could be Float32 or Float64
wt := types.Types[types.TFLOAT64] // Compute in Float64 to minimize cancellation error
areal := s.newValue1(ssa.OpComplexReal, pt, a)
breal := s.newValue1(ssa.OpComplexReal, pt, b)
aimag := s.newValue1(ssa.OpComplexImag, pt, a)
bimag := s.newValue1(ssa.OpComplexImag, pt, b)
if pt != wt { // Widen for calculation
areal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, areal)
breal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, breal)
aimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, aimag)
bimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, bimag)
}
xreal := s.newValueOrSfCall2(subop, wt, s.newValueOrSfCall2(mulop, wt, areal, breal), s.newValueOrSfCall2(mulop, wt, aimag, bimag))
ximag := s.newValueOrSfCall2(addop, wt, s.newValueOrSfCall2(mulop, wt, areal, bimag), s.newValueOrSfCall2(mulop, wt, aimag, breal))
if pt != wt { // Narrow to store back
xreal = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, xreal)
ximag = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, ximag)
}
return s.newValue2(ssa.OpComplexMake, n.Type(), xreal, ximag)
}
if n.Type().IsFloat() {
return s.newValueOrSfCall2(s.ssaOp(n.Op(), n.Type()), a.Type, a, b)
}
return s.newValue2(s.ssaOp(n.Op(), n.Type()), a.Type, a, b)
case ir.ODIV:
n := n.(*ir.BinaryExpr)
a := s.expr(n.X)
b := s.expr(n.Y)
if n.Type().IsComplex() {
// TODO this is not executed because the front-end substitutes a runtime call.
// That probably ought to change; with modest optimization the widen/narrow
// conversions could all be elided in larger expression trees.
mulop := ssa.OpMul64F
addop := ssa.OpAdd64F
subop := ssa.OpSub64F
divop := ssa.OpDiv64F
pt := types.FloatForComplex(n.Type()) // Could be Float32 or Float64
wt := types.Types[types.TFLOAT64] // Compute in Float64 to minimize cancellation error
areal := s.newValue1(ssa.OpComplexReal, pt, a)
breal := s.newValue1(ssa.OpComplexReal, pt, b)
aimag := s.newValue1(ssa.OpComplexImag, pt, a)
bimag := s.newValue1(ssa.OpComplexImag, pt, b)
if pt != wt { // Widen for calculation
areal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, areal)
breal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, breal)
aimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, aimag)
bimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, bimag)
}
denom := s.newValueOrSfCall2(addop, wt, s.newValueOrSfCall2(mulop, wt, breal, breal), s.newValueOrSfCall2(mulop, wt, bimag, bimag))
xreal := s.newValueOrSfCall2(addop, wt, s.newValueOrSfCall2(mulop, wt, areal, breal), s.newValueOrSfCall2(mulop, wt, aimag, bimag))
ximag := s.newValueOrSfCall2(subop, wt, s.newValueOrSfCall2(mulop, wt, aimag, breal), s.newValueOrSfCall2(mulop, wt, areal, bimag))
// TODO not sure if this is best done in wide precision or narrow
// Double-rounding might be an issue.
// Note that the pre-SSA implementation does the entire calculation
// in wide format, so wide is compatible.
xreal = s.newValueOrSfCall2(divop, wt, xreal, denom)
ximag = s.newValueOrSfCall2(divop, wt, ximag, denom)
if pt != wt { // Narrow to store back
xreal = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, xreal)
ximag = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, ximag)
}
return s.newValue2(ssa.OpComplexMake, n.Type(), xreal, ximag)
}
if n.Type().IsFloat() {
return s.newValueOrSfCall2(s.ssaOp(n.Op(), n.Type()), a.Type, a, b)
}
return s.intDivide(n, a, b)
case ir.OMOD:
n := n.(*ir.BinaryExpr)
a := s.expr(n.X)
b := s.expr(n.Y)
return s.intDivide(n, a, b)
case ir.OADD, ir.OSUB:
n := n.(*ir.BinaryExpr)
a := s.expr(n.X)
b := s.expr(n.Y)
if n.Type().IsComplex() {
pt := types.FloatForComplex(n.Type())
op := s.ssaOp(n.Op(), pt)
return s.newValue2(ssa.OpComplexMake, n.Type(),
s.newValueOrSfCall2(op, pt, s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)),
s.newValueOrSfCall2(op, pt, s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b)))
}
if n.Type().IsFloat() {
return s.newValueOrSfCall2(s.ssaOp(n.Op(), n.Type()), a.Type, a, b)
}
return s.newValue2(s.ssaOp(n.Op(), n.Type()), a.Type, a, b)
case ir.OAND, ir.OOR, ir.OXOR:
n := n.(*ir.BinaryExpr)
a := s.expr(n.X)
b := s.expr(n.Y)
return s.newValue2(s.ssaOp(n.Op(), n.Type()), a.Type, a, b)
case ir.OANDNOT:
n := n.(*ir.BinaryExpr)
a := s.expr(n.X)
b := s.expr(n.Y)
b = s.newValue1(s.ssaOp(ir.OBITNOT, b.Type), b.Type, b)
return s.newValue2(s.ssaOp(ir.OAND, n.Type()), a.Type, a, b)
case ir.OLSH, ir.ORSH:
n := n.(*ir.BinaryExpr)
a := s.expr(n.X)
b := s.expr(n.Y)
bt := b.Type
if bt.IsSigned() {
cmp := s.newValue2(s.ssaOp(ir.OLE, bt), types.Types[types.TBOOL], s.zeroVal(bt), b)
s.check(cmp, ir.Syms.Panicshift)
bt = bt.ToUnsigned()
}
return s.newValue2(s.ssaShiftOp(n.Op(), n.Type(), bt), a.Type, a, b)
case ir.OANDAND, ir.OOROR:
// To implement OANDAND (and OOROR), we introduce a
// new temporary variable to hold the result. The
// variable is associated with the OANDAND node in the
// s.vars table (normally variables are only
// associated with ONAME nodes). We convert
// A && B
// to
// var = A
// if var {
// var = B
// }
// Using var in the subsequent block introduces the
// necessary phi variable.
n := n.(*ir.LogicalExpr)
el := s.expr(n.X)
s.vars[n] = el
b := s.endBlock()
b.Kind = ssa.BlockIf
b.SetControl(el)
// In theory, we should set b.Likely here based on context.
// However, gc only gives us likeliness hints
// in a single place, for plain OIF statements,
// and passing around context is finnicky, so don't bother for now.
bRight := s.f.NewBlock(ssa.BlockPlain)
bResult := s.f.NewBlock(ssa.BlockPlain)
if n.Op() == ir.OANDAND {
b.AddEdgeTo(bRight)
b.AddEdgeTo(bResult)
} else if n.Op() == ir.OOROR {
b.AddEdgeTo(bResult)
b.AddEdgeTo(bRight)
}
s.startBlock(bRight)
er := s.expr(n.Y)
s.vars[n] = er
b = s.endBlock()
b.AddEdgeTo(bResult)
s.startBlock(bResult)
return s.variable(n, types.Types[types.TBOOL])
case ir.OCOMPLEX:
n := n.(*ir.BinaryExpr)
r := s.expr(n.X)
i := s.expr(n.Y)
return s.newValue2(ssa.OpComplexMake, n.Type(), r, i)
// unary ops
case ir.ONEG:
n := n.(*ir.UnaryExpr)
a := s.expr(n.X)
if n.Type().IsComplex() {
tp := types.FloatForComplex(n.Type())
negop := s.ssaOp(n.Op(), tp)
return s.newValue2(ssa.OpComplexMake, n.Type(),
s.newValue1(negop, tp, s.newValue1(ssa.OpComplexReal, tp, a)),
s.newValue1(negop, tp, s.newValue1(ssa.OpComplexImag, tp, a)))
}
return s.newValue1(s.ssaOp(n.Op(), n.Type()), a.Type, a)
case ir.ONOT, ir.OBITNOT:
n := n.(*ir.UnaryExpr)
a := s.expr(n.X)
return s.newValue1(s.ssaOp(n.Op(), n.Type()), a.Type, a)
case ir.OIMAG, ir.OREAL:
n := n.(*ir.UnaryExpr)
a := s.expr(n.X)
return s.newValue1(s.ssaOp(n.Op(), n.X.Type()), n.Type(), a)
case ir.OPLUS:
n := n.(*ir.UnaryExpr)
return s.expr(n.X)
case ir.OADDR:
n := n.(*ir.AddrExpr)
return s.addr(n.X)
case ir.ORESULT:
n := n.(*ir.ResultExpr)
if s.prevCall == nil || s.prevCall.Op != ssa.OpStaticLECall && s.prevCall.Op != ssa.OpInterLECall && s.prevCall.Op != ssa.OpClosureLECall {
panic("Expected to see a previous call")
}
which := n.Index
if which == -1 {
panic(fmt.Errorf("ORESULT %v does not match call %s", n, s.prevCall))
}
return s.resultOfCall(s.prevCall, which, n.Type())
case ir.ODEREF:
n := n.(*ir.StarExpr)
p := s.exprPtr(n.X, n.Bounded(), n.Pos())
return s.load(n.Type(), p)
case ir.ODOT:
n := n.(*ir.SelectorExpr)
if n.X.Op() == ir.OSTRUCTLIT {
// All literals with nonzero fields have already been
// rewritten during walk. Any that remain are just T{}
// or equivalents. Use the zero value.
if !ir.IsZero(n.X) {
s.Fatalf("literal with nonzero value in SSA: %v", n.X)
}
return s.zeroVal(n.Type())
}
// If n is addressable and can't be represented in
// SSA, then load just the selected field. This
// prevents false memory dependencies in race/msan/asan
// instrumentation.
if ir.IsAddressable(n) && !s.canSSA(n) {
p := s.addr(n)
return s.load(n.Type(), p)
}
v := s.expr(n.X)
return s.newValue1I(ssa.OpStructSelect, n.Type(), int64(fieldIdx(n)), v)
case ir.ODOTPTR:
n := n.(*ir.SelectorExpr)
p := s.exprPtr(n.X, n.Bounded(), n.Pos())
p = s.newValue1I(ssa.OpOffPtr, types.NewPtr(n.Type()), n.Offset(), p)
return s.load(n.Type(), p)
case ir.OINDEX:
n := n.(*ir.IndexExpr)
switch {
case n.X.Type().IsString():
if n.Bounded() && ir.IsConst(n.X, constant.String) && ir.IsConst(n.Index, constant.Int) {
// Replace "abc"[1] with 'b'.
// Delayed until now because "abc"[1] is not an ideal constant.
// See test/fixedbugs/issue11370.go.
return s.newValue0I(ssa.OpConst8, types.Types[types.TUINT8], int64(int8(ir.StringVal(n.X)[ir.Int64Val(n.Index)])))
}
a := s.expr(n.X)
i := s.expr(n.Index)
len := s.newValue1(ssa.OpStringLen, types.Types[types.TINT], a)
i = s.boundsCheck(i, len, ssa.BoundsIndex, n.Bounded())
ptrtyp := s.f.Config.Types.BytePtr
ptr := s.newValue1(ssa.OpStringPtr, ptrtyp, a)
if ir.IsConst(n.Index, constant.Int) {
ptr = s.newValue1I(ssa.OpOffPtr, ptrtyp, ir.Int64Val(n.Index), ptr)
} else {
ptr = s.newValue2(ssa.OpAddPtr, ptrtyp, ptr, i)
}
return s.load(types.Types[types.TUINT8], ptr)
case n.X.Type().IsSlice():
p := s.addr(n)
return s.load(n.X.Type().Elem(), p)
case n.X.Type().IsArray():
if TypeOK(n.X.Type()) {
// SSA can handle arrays of length at most 1.
bound := n.X.Type().NumElem()
a := s.expr(n.X)
i := s.expr(n.Index)
if bound == 0 {
// Bounds check will never succeed. Might as well
// use constants for the bounds check.
z := s.constInt(types.Types[types.TINT], 0)
s.boundsCheck(z, z, ssa.BoundsIndex, false)
// The return value won't be live, return junk.
// But not quite junk, in case bounds checks are turned off. See issue 48092.
return s.zeroVal(n.Type())
}
len := s.constInt(types.Types[types.TINT], bound)
s.boundsCheck(i, len, ssa.BoundsIndex, n.Bounded()) // checks i == 0
return s.newValue1I(ssa.OpArraySelect, n.Type(), 0, a)
}
p := s.addr(n)
return s.load(n.X.Type().Elem(), p)
default:
s.Fatalf("bad type for index %v", n.X.Type())
return nil
}
case ir.OLEN, ir.OCAP:
n := n.(*ir.UnaryExpr)
switch {
case n.X.Type().IsSlice():
op := ssa.OpSliceLen
if n.Op() == ir.OCAP {
op = ssa.OpSliceCap
}
return s.newValue1(op, types.Types[types.TINT], s.expr(n.X))
case n.X.Type().IsString(): // string; not reachable for OCAP
return s.newValue1(ssa.OpStringLen, types.Types[types.TINT], s.expr(n.X))
case n.X.Type().IsMap(), n.X.Type().IsChan():
return s.referenceTypeBuiltin(n, s.expr(n.X))
default: // array
return s.constInt(types.Types[types.TINT], n.X.Type().NumElem())
}
case ir.OSPTR:
n := n.(*ir.UnaryExpr)
a := s.expr(n.X)
if n.X.Type().IsSlice() {
return s.newValue1(ssa.OpSlicePtr, n.Type(), a)
} else {
return s.newValue1(ssa.OpStringPtr, n.Type(), a)
}
case ir.OITAB:
n := n.(*ir.UnaryExpr)
a := s.expr(n.X)
return s.newValue1(ssa.OpITab, n.Type(), a)
case ir.OIDATA:
n := n.(*ir.UnaryExpr)
a := s.expr(n.X)
return s.newValue1(ssa.OpIData, n.Type(), a)
case ir.OEFACE:
n := n.(*ir.BinaryExpr)
tab := s.expr(n.X)
data := s.expr(n.Y)
return s.newValue2(ssa.OpIMake, n.Type(), tab, data)
case ir.OSLICEHEADER:
n := n.(*ir.SliceHeaderExpr)
p := s.expr(n.Ptr)
l := s.expr(n.Len)
c := s.expr(n.Cap)
return s.newValue3(ssa.OpSliceMake, n.Type(), p, l, c)
case ir.OSTRINGHEADER:
n := n.(*ir.StringHeaderExpr)
p := s.expr(n.Ptr)
l := s.expr(n.Len)
return s.newValue2(ssa.OpStringMake, n.Type(), p, l)
case ir.OSLICE, ir.OSLICEARR, ir.OSLICE3, ir.OSLICE3ARR:
n := n.(*ir.SliceExpr)
check := s.checkPtrEnabled && n.Op() == ir.OSLICE3ARR && n.X.Op() == ir.OCONVNOP && n.X.(*ir.ConvExpr).X.Type().IsUnsafePtr()
v := s.exprCheckPtr(n.X, !check)
var i, j, k *ssa.Value
if n.Low != nil {
i = s.expr(n.Low)
}
if n.High != nil {
j = s.expr(n.High)
}
if n.Max != nil {
k = s.expr(n.Max)
}
p, l, c := s.slice(v, i, j, k, n.Bounded())
if check {
// Emit checkptr instrumentation after bound check to prevent false positive, see #46938.
s.checkPtrAlignment(n.X.(*ir.ConvExpr), v, s.conv(n.Max, k, k.Type, types.Types[types.TUINTPTR]))
}
return s.newValue3(ssa.OpSliceMake, n.Type(), p, l, c)
case ir.OSLICESTR:
n := n.(*ir.SliceExpr)
v := s.expr(n.X)
var i, j *ssa.Value
if n.Low != nil {
i = s.expr(n.Low)
}
if n.High != nil {
j = s.expr(n.High)
}
p, l, _ := s.slice(v, i, j, nil, n.Bounded())
return s.newValue2(ssa.OpStringMake, n.Type(), p, l)
case ir.OSLICE2ARRPTR:
// if arrlen > slice.len {
// panic(...)
// }
// slice.ptr
n := n.(*ir.ConvExpr)
v := s.expr(n.X)
arrlen := s.constInt(types.Types[types.TINT], n.Type().Elem().NumElem())
cap := s.newValue1(ssa.OpSliceLen, types.Types[types.TINT], v)
s.boundsCheck(arrlen, cap, ssa.BoundsConvert, false)
return s.newValue1(ssa.OpSlicePtrUnchecked, n.Type(), v)
case ir.OCALLFUNC:
n := n.(*ir.CallExpr)
if ir.IsIntrinsicCall(n) {
return s.intrinsicCall(n)
}
fallthrough
case ir.OCALLINTER:
n := n.(*ir.CallExpr)
return s.callResult(n, callNormal)
case ir.OGETG:
n := n.(*ir.CallExpr)
return s.newValue1(ssa.OpGetG, n.Type(), s.mem())
case ir.OGETCALLERPC:
n := n.(*ir.CallExpr)
return s.newValue0(ssa.OpGetCallerPC, n.Type())
case ir.OGETCALLERSP:
n := n.(*ir.CallExpr)
return s.newValue1(ssa.OpGetCallerSP, n.Type(), s.mem())
case ir.OAPPEND:
return s.append(n.(*ir.CallExpr), false)
case ir.OSTRUCTLIT, ir.OARRAYLIT:
// All literals with nonzero fields have already been
// rewritten during walk. Any that remain are just T{}
// or equivalents. Use the zero value.
n := n.(*ir.CompLitExpr)
if !ir.IsZero(n) {
s.Fatalf("literal with nonzero value in SSA: %v", n)
}
return s.zeroVal(n.Type())
case ir.ONEW:
n := n.(*ir.UnaryExpr)
var rtype *ssa.Value
if x, ok := n.X.(*ir.DynamicType); ok && x.Op() == ir.ODYNAMICTYPE {
rtype = s.expr(x.RType)
}
return s.newObject(n.Type().Elem(), rtype)
case ir.OUNSAFEADD:
n := n.(*ir.BinaryExpr)
ptr := s.expr(n.X)
len := s.expr(n.Y)
// Force len to uintptr to prevent misuse of garbage bits in the
// upper part of the register (#48536).
len = s.conv(n, len, len.Type, types.Types[types.TUINTPTR])
return s.newValue2(ssa.OpAddPtr, n.Type(), ptr, len)
default:
s.Fatalf("unhandled expr %v", n.Op())
return nil
}
}
func (s *state) resultOfCall(c *ssa.Value, which int64, t *types.Type) *ssa.Value {
aux := c.Aux.(*ssa.AuxCall)
pa := aux.ParamAssignmentForResult(which)
// TODO(register args) determine if in-memory TypeOK is better loaded early from SelectNAddr or later when SelectN is expanded.
// SelectN is better for pattern-matching and possible call-aware analysis we might want to do in the future.
if len(pa.Registers) == 0 && !TypeOK(t) {
addr := s.newValue1I(ssa.OpSelectNAddr, types.NewPtr(t), which, c)
return s.rawLoad(t, addr)
}
return s.newValue1I(ssa.OpSelectN, t, which, c)
}
func (s *state) resultAddrOfCall(c *ssa.Value, which int64, t *types.Type) *ssa.Value {
aux := c.Aux.(*ssa.AuxCall)
pa := aux.ParamAssignmentForResult(which)
if len(pa.Registers) == 0 {
return s.newValue1I(ssa.OpSelectNAddr, types.NewPtr(t), which, c)
}
_, addr := s.temp(c.Pos, t)
rval := s.newValue1I(ssa.OpSelectN, t, which, c)
s.vars[memVar] = s.newValue3Apos(ssa.OpStore, types.TypeMem, t, addr, rval, s.mem(), false)
return addr
}
// append converts an OAPPEND node to SSA.
// If inplace is false, it converts the OAPPEND expression n to an ssa.Value,
// adds it to s, and returns the Value.
// If inplace is true, it writes the result of the OAPPEND expression n
// back to the slice being appended to, and returns nil.
// inplace MUST be set to false if the slice can be SSA'd.
// Note: this code only handles fixed-count appends. Dotdotdot appends
// have already been rewritten at this point (by walk).
func (s *state) append(n *ir.CallExpr, inplace bool) *ssa.Value {
// If inplace is false, process as expression "append(s, e1, e2, e3)":
//
// ptr, len, cap := s
// len += 3
// if uint(len) > uint(cap) {
// ptr, len, cap = growslice(ptr, len, cap, 3, typ)
// Note that len is unmodified by growslice.
// }
// // with write barriers, if needed:
// *(ptr+(len-3)) = e1
// *(ptr+(len-2)) = e2
// *(ptr+(len-1)) = e3
// return makeslice(ptr, len, cap)
//
//
// If inplace is true, process as statement "s = append(s, e1, e2, e3)":
//
// a := &s
// ptr, len, cap := s
// len += 3
// if uint(len) > uint(cap) {
// ptr, len, cap = growslice(ptr, len, cap, 3, typ)
// vardef(a) // if necessary, advise liveness we are writing a new a
// *a.cap = cap // write before ptr to avoid a spill
// *a.ptr = ptr // with write barrier
// }
// *a.len = len
// // with write barriers, if needed:
// *(ptr+(len-3)) = e1
// *(ptr+(len-2)) = e2
// *(ptr+(len-1)) = e3
et := n.Type().Elem()
pt := types.NewPtr(et)
// Evaluate slice
sn := n.Args[0] // the slice node is the first in the list
var slice, addr *ssa.Value
if inplace {
addr = s.addr(sn)
slice = s.load(n.Type(), addr)
} else {
slice = s.expr(sn)
}
// Allocate new blocks
grow := s.f.NewBlock(ssa.BlockPlain)
assign := s.f.NewBlock(ssa.BlockPlain)
// Decomposse input slice.
p := s.newValue1(ssa.OpSlicePtr, pt, slice)
l := s.newValue1(ssa.OpSliceLen, types.Types[types.TINT], slice)
c := s.newValue1(ssa.OpSliceCap, types.Types[types.TINT], slice)
// Add number of new elements to length.
nargs := s.constInt(types.Types[types.TINT], int64(len(n.Args)-1))
l = s.newValue2(s.ssaOp(ir.OADD, types.Types[types.TINT]), types.Types[types.TINT], l, nargs)
// Decide if we need to grow
cmp := s.newValue2(s.ssaOp(ir.OLT, types.Types[types.TUINT]), types.Types[types.TBOOL], c, l)
// Record values of ptr/len/cap before branch.
s.vars[ptrVar] = p
s.vars[lenVar] = l
if !inplace {
s.vars[capVar] = c
}
b := s.endBlock()
b.Kind = ssa.BlockIf
b.Likely = ssa.BranchUnlikely
b.SetControl(cmp)
b.AddEdgeTo(grow)
b.AddEdgeTo(assign)
// Call growslice
s.startBlock(grow)
taddr := s.expr(n.X)
r := s.rtcall(ir.Syms.Growslice, true, []*types.Type{n.Type()}, p, l, c, nargs, taddr)
// Decompose output slice
p = s.newValue1(ssa.OpSlicePtr, pt, r[0])
l = s.newValue1(ssa.OpSliceLen, types.Types[types.TINT], r[0])
c = s.newValue1(ssa.OpSliceCap, types.Types[types.TINT], r[0])
s.vars[ptrVar] = p
s.vars[lenVar] = l
s.vars[capVar] = c
if inplace {
if sn.Op() == ir.ONAME {
sn := sn.(*ir.Name)
if sn.Class != ir.PEXTERN {
// Tell liveness we're about to build a new slice
s.vars[memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, sn, s.mem())
}
}
capaddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, types.SliceCapOffset, addr)
s.store(types.Types[types.TINT], capaddr, c)
s.store(pt, addr, p)
}
b = s.endBlock()
b.AddEdgeTo(assign)
// assign new elements to slots
s.startBlock(assign)
p = s.variable(ptrVar, pt) // generates phi for ptr
l = s.variable(lenVar, types.Types[types.TINT]) // generates phi for len
if !inplace {
c = s.variable(capVar, types.Types[types.TINT]) // generates phi for cap
}
if inplace {
// Update length in place.
// We have to wait until here to make sure growslice succeeded.
lenaddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, types.SliceLenOffset, addr)
s.store(types.Types[types.TINT], lenaddr, l)
}
// Evaluate args
type argRec struct {
// if store is true, we're appending the value v. If false, we're appending the
// value at *v.
v *ssa.Value
store bool
}
args := make([]argRec, 0, len(n.Args[1:]))
for _, n := range n.Args[1:] {
if TypeOK(n.Type()) {
args = append(args, argRec{v: s.expr(n), store: true})
} else {
v := s.addr(n)
args = append(args, argRec{v: v})
}
}
// Write args into slice.
oldLen := s.newValue2(s.ssaOp(ir.OSUB, types.Types[types.TINT]), types.Types[types.TINT], l, nargs)
p2 := s.newValue2(ssa.OpPtrIndex, pt, p, oldLen)
for i, arg := range args {
addr := s.newValue2(ssa.OpPtrIndex, pt, p2, s.constInt(types.Types[types.TINT], int64(i)))
if arg.store {
s.storeType(et, addr, arg.v, 0, true)
} else {
s.move(et, addr, arg.v)
}
}
delete(s.vars, ptrVar)
delete(s.vars, lenVar)
if !inplace {
delete(s.vars, capVar)
}
// make result
if inplace {
return nil
}
return s.newValue3(ssa.OpSliceMake, n.Type(), p, l, c)
}
// condBranch evaluates the boolean expression cond and branches to yes
// if cond is true and no if cond is false.
// This function is intended to handle && and || better than just calling
// s.expr(cond) and branching on the result.
func (s *state) condBranch(cond ir.Node, yes, no *ssa.Block, likely int8) {
switch cond.Op() {
case ir.OANDAND:
cond := cond.(*ir.LogicalExpr)
mid := s.f.NewBlock(ssa.BlockPlain)
s.stmtList(cond.Init())
s.condBranch(cond.X, mid, no, max8(likely, 0))
s.startBlock(mid)
s.condBranch(cond.Y, yes, no, likely)
return
// Note: if likely==1, then both recursive calls pass 1.
// If likely==-1, then we don't have enough information to decide
// whether the first branch is likely or not. So we pass 0 for
// the likeliness of the first branch.
// TODO: have the frontend give us branch prediction hints for
// OANDAND and OOROR nodes (if it ever has such info).
case ir.OOROR:
cond := cond.(*ir.LogicalExpr)
mid := s.f.NewBlock(ssa.BlockPlain)
s.stmtList(cond.Init())
s.condBranch(cond.X, yes, mid, min8(likely, 0))
s.startBlock(mid)
s.condBranch(cond.Y, yes, no, likely)
return
// Note: if likely==-1, then both recursive calls pass -1.
// If likely==1, then we don't have enough info to decide
// the likelihood of the first branch.
case ir.ONOT:
cond := cond.(*ir.UnaryExpr)
s.stmtList(cond.Init())
s.condBranch(cond.X, no, yes, -likely)
return
case ir.OCONVNOP:
cond := cond.(*ir.ConvExpr)
s.stmtList(cond.Init())
s.condBranch(cond.X, yes, no, likely)
return
}
c := s.expr(cond)
b := s.endBlock()
b.Kind = ssa.BlockIf
b.SetControl(c)
b.Likely = ssa.BranchPrediction(likely) // gc and ssa both use -1/0/+1 for likeliness
b.AddEdgeTo(yes)
b.AddEdgeTo(no)
}
type skipMask uint8
const (
skipPtr skipMask = 1 << iota
skipLen
skipCap
)
// assign does left = right.
// Right has already been evaluated to ssa, left has not.
// If deref is true, then we do left = *right instead (and right has already been nil-checked).
// If deref is true and right == nil, just do left = 0.
// skip indicates assignments (at the top level) that can be avoided.
// mayOverlap indicates whether left&right might partially overlap in memory. Default is false.
func (s *state) assign(left ir.Node, right *ssa.Value, deref bool, skip skipMask) {
s.assignWhichMayOverlap(left, right, deref, skip, false)
}
func (s *state) assignWhichMayOverlap(left ir.Node, right *ssa.Value, deref bool, skip skipMask, mayOverlap bool) {
if left.Op() == ir.ONAME && ir.IsBlank(left) {
return
}
t := left.Type()
types.CalcSize(t)
if s.canSSA(left) {
if deref {
s.Fatalf("can SSA LHS %v but not RHS %s", left, right)
}
if left.Op() == ir.ODOT {
// We're assigning to a field of an ssa-able value.
// We need to build a new structure with the new value for the
// field we're assigning and the old values for the other fields.
// For instance:
// type T struct {a, b, c int}
// var T x
// x.b = 5
// For the x.b = 5 assignment we want to generate x = T{x.a, 5, x.c}
// Grab information about the structure type.
left := left.(*ir.SelectorExpr)
t := left.X.Type()
nf := t.NumFields()
idx := fieldIdx(left)
// Grab old value of structure.
old := s.expr(left.X)
// Make new structure.
new := s.newValue0(ssa.StructMakeOp(t.NumFields()), t)
// Add fields as args.
for i := 0; i < nf; i++ {
if i == idx {
new.AddArg(right)
} else {
new.AddArg(s.newValue1I(ssa.OpStructSelect, t.FieldType(i), int64(i), old))
}
}
// Recursively assign the new value we've made to the base of the dot op.
s.assign(left.X, new, false, 0)
// TODO: do we need to update named values here?
return
}
if left.Op() == ir.OINDEX && left.(*ir.IndexExpr).X.Type().IsArray() {
left := left.(*ir.IndexExpr)
s.pushLine(left.Pos())
defer s.popLine()
// We're assigning to an element of an ssa-able array.
// a[i] = v
t := left.X.Type()
n := t.NumElem()
i := s.expr(left.Index) // index
if n == 0 {
// The bounds check must fail. Might as well
// ignore the actual index and just use zeros.
z := s.constInt(types.Types[types.TINT], 0)
s.boundsCheck(z, z, ssa.BoundsIndex, false)
return
}
if n != 1 {
s.Fatalf("assigning to non-1-length array")
}
// Rewrite to a = [1]{v}
len := s.constInt(types.Types[types.TINT], 1)
s.boundsCheck(i, len, ssa.BoundsIndex, false) // checks i == 0
v := s.newValue1(ssa.OpArrayMake1, t, right)
s.assign(left.X, v, false, 0)
return
}
left := left.(*ir.Name)
// Update variable assignment.
s.vars[left] = right
s.addNamedValue(left, right)
return
}
// If this assignment clobbers an entire local variable, then emit
// OpVarDef so liveness analysis knows the variable is redefined.
if base, ok := clobberBase(left).(*ir.Name); ok && base.OnStack() && skip == 0 && t.HasPointers() {
s.vars[memVar] = s.newValue1Apos(ssa.OpVarDef, types.TypeMem, base, s.mem(), !ir.IsAutoTmp(base))
}
// Left is not ssa-able. Compute its address.
addr := s.addr(left)
if ir.IsReflectHeaderDataField(left) {
// Package unsafe's documentation says storing pointers into
// reflect.SliceHeader and reflect.StringHeader's Data fields
// is valid, even though they have type uintptr (#19168).
// Mark it pointer type to signal the writebarrier pass to
// insert a write barrier.
t = types.Types[types.TUNSAFEPTR]
}
if deref {
// Treat as a mem->mem move.
if right == nil {
s.zero(t, addr)
} else {
s.moveWhichMayOverlap(t, addr, right, mayOverlap)
}
return
}
// Treat as a store.
s.storeType(t, addr, right, skip, !ir.IsAutoTmp(left))
}
// zeroVal returns the zero value for type t.
func (s *state) zeroVal(t *types.Type) *ssa.Value {
switch {
case t.IsInteger():
switch t.Size() {
case 1:
return s.constInt8(t, 0)
case 2:
return s.constInt16(t, 0)
case 4:
return s.constInt32(t, 0)
case 8:
return s.constInt64(t, 0)
default:
s.Fatalf("bad sized integer type %v", t)
}
case t.IsFloat():
switch t.Size() {
case 4:
return s.constFloat32(t, 0)
case 8:
return s.constFloat64(t, 0)
default:
s.Fatalf("bad sized float type %v", t)
}
case t.IsComplex():
switch t.Size() {
case 8:
z := s.constFloat32(types.Types[types.TFLOAT32], 0)
return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
case 16:
z := s.constFloat64(types.Types[types.TFLOAT64], 0)
return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
default:
s.Fatalf("bad sized complex type %v", t)
}
case t.IsString():
return s.constEmptyString(t)
case t.IsPtrShaped():
return s.constNil(t)
case t.IsBoolean():
return s.constBool(false)
case t.IsInterface():
return s.constInterface(t)
case t.IsSlice():
return s.constSlice(t)
case t.IsStruct():
n := t.NumFields()
v := s.entryNewValue0(ssa.StructMakeOp(t.NumFields()), t)
for i := 0; i < n; i++ {
v.AddArg(s.zeroVal(t.FieldType(i)))
}
return v
case t.IsArray():
switch t.NumElem() {
case 0:
return s.entryNewValue0(ssa.OpArrayMake0, t)
case 1:
return s.entryNewValue1(ssa.OpArrayMake1, t, s.zeroVal(t.Elem()))
}
}
s.Fatalf("zero for type %v not implemented", t)
return nil
}
type callKind int8
const (
callNormal callKind = iota
callDefer
callDeferStack
callGo
callTail
)
type sfRtCallDef struct {
rtfn *obj.LSym
rtype types.Kind
}
var softFloatOps map[ssa.Op]sfRtCallDef
func softfloatInit() {
// Some of these operations get transformed by sfcall.
softFloatOps = map[ssa.Op]sfRtCallDef{
ssa.OpAdd32F: {typecheck.LookupRuntimeFunc("fadd32"), types.TFLOAT32},
ssa.OpAdd64F: {typecheck.LookupRuntimeFunc("fadd64"), types.TFLOAT64},
ssa.OpSub32F: {typecheck.LookupRuntimeFunc("fadd32"), types.TFLOAT32},
ssa.OpSub64F: {typecheck.LookupRuntimeFunc("fadd64"), types.TFLOAT64},
ssa.OpMul32F: {typecheck.LookupRuntimeFunc("fmul32"), types.TFLOAT32},
ssa.OpMul64F: {typecheck.LookupRuntimeFunc("fmul64"), types.TFLOAT64},
ssa.OpDiv32F: {typecheck.LookupRuntimeFunc("fdiv32"), types.TFLOAT32},
ssa.OpDiv64F: {typecheck.LookupRuntimeFunc("fdiv64"), types.TFLOAT64},
ssa.OpEq64F: {typecheck.LookupRuntimeFunc("feq64"), types.TBOOL},
ssa.OpEq32F: {typecheck.LookupRuntimeFunc("feq32"), types.TBOOL},
ssa.OpNeq64F: {typecheck.LookupRuntimeFunc("feq64"), types.TBOOL},
ssa.OpNeq32F: {typecheck.LookupRuntimeFunc("feq32"), types.TBOOL},
ssa.OpLess64F: {typecheck.LookupRuntimeFunc("fgt64"), types.TBOOL},
ssa.OpLess32F: {typecheck.LookupRuntimeFunc("fgt32"), types.TBOOL},
ssa.OpLeq64F: {typecheck.LookupRuntimeFunc("fge64"), types.TBOOL},
ssa.OpLeq32F: {typecheck.LookupRuntimeFunc("fge32"), types.TBOOL},
ssa.OpCvt32to32F: {typecheck.LookupRuntimeFunc("fint32to32"), types.TFLOAT32},
ssa.OpCvt32Fto32: {typecheck.LookupRuntimeFunc("f32toint32"), types.TINT32},
ssa.OpCvt64to32F: {typecheck.LookupRuntimeFunc("fint64to32"), types.TFLOAT32},
ssa.OpCvt32Fto64: {typecheck.LookupRuntimeFunc("f32toint64"), types.TINT64},
ssa.OpCvt64Uto32F: {typecheck.LookupRuntimeFunc("fuint64to32"), types.TFLOAT32},
ssa.OpCvt32Fto64U: {typecheck.LookupRuntimeFunc("f32touint64"), types.TUINT64},
ssa.OpCvt32to64F: {typecheck.LookupRuntimeFunc("fint32to64"), types.TFLOAT64},
ssa.OpCvt64Fto32: {typecheck.LookupRuntimeFunc("f64toint32"), types.TINT32},
ssa.OpCvt64to64F: {typecheck.LookupRuntimeFunc("fint64to64"), types.TFLOAT64},
ssa.OpCvt64Fto64: {typecheck.LookupRuntimeFunc("f64toint64"), types.TINT64},
ssa.OpCvt64Uto64F: {typecheck.LookupRuntimeFunc("fuint64to64"), types.TFLOAT64},
ssa.OpCvt64Fto64U: {typecheck.LookupRuntimeFunc("f64touint64"), types.TUINT64},
ssa.OpCvt32Fto64F: {typecheck.LookupRuntimeFunc("f32to64"), types.TFLOAT64},
ssa.OpCvt64Fto32F: {typecheck.LookupRuntimeFunc("f64to32"), types.TFLOAT32},
}
}
// TODO: do not emit sfcall if operation can be optimized to constant in later
// opt phase
func (s *state) sfcall(op ssa.Op, args ...*ssa.Value) (*ssa.Value, bool) {
f2i := func(t *types.Type) *types.Type {
switch t.Kind() {
case types.TFLOAT32:
return types.Types[types.TUINT32]
case types.TFLOAT64:
return types.Types[types.TUINT64]
}
return t
}
if callDef, ok := softFloatOps[op]; ok {
switch op {
case ssa.OpLess32F,
ssa.OpLess64F,
ssa.OpLeq32F,
ssa.OpLeq64F:
args[0], args[1] = args[1], args[0]
case ssa.OpSub32F,
ssa.OpSub64F:
args[1] = s.newValue1(s.ssaOp(ir.ONEG, types.Types[callDef.rtype]), args[1].Type, args[1])
}
// runtime functions take uints for floats and returns uints.
// Convert to uints so we use the right calling convention.
for i, a := range args {
if a.Type.IsFloat() {
args[i] = s.newValue1(ssa.OpCopy, f2i(a.Type), a)
}
}
rt := types.Types[callDef.rtype]
result := s.rtcall(callDef.rtfn, true, []*types.Type{f2i(rt)}, args...)[0]
if rt.IsFloat() {
result = s.newValue1(ssa.OpCopy, rt, result)
}
if op == ssa.OpNeq32F || op == ssa.OpNeq64F {
result = s.newValue1(ssa.OpNot, result.Type, result)
}
return result, true
}
return nil, false
}
var intrinsics map[intrinsicKey]intrinsicBuilder
// An intrinsicBuilder converts a call node n into an ssa value that
// implements that call as an intrinsic. args is a list of arguments to the func.
type intrinsicBuilder func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value
type intrinsicKey struct {
arch *sys.Arch
pkg string
fn string
}
func InitTables() {
intrinsics = map[intrinsicKey]intrinsicBuilder{}
var all []*sys.Arch
var p4 []*sys.Arch
var p8 []*sys.Arch
var lwatomics []*sys.Arch
for _, a := range &sys.Archs {
all = append(all, a)
if a.PtrSize == 4 {
p4 = append(p4, a)
} else {
p8 = append(p8, a)
}
if a.Family != sys.PPC64 {
lwatomics = append(lwatomics, a)
}
}
// add adds the intrinsic b for pkg.fn for the given list of architectures.
add := func(pkg, fn string, b intrinsicBuilder, archs ...*sys.Arch) {
for _, a := range archs {
intrinsics[intrinsicKey{a, pkg, fn}] = b
}
}
// addF does the same as add but operates on architecture families.
addF := func(pkg, fn string, b intrinsicBuilder, archFamilies ...sys.ArchFamily) {
m := 0
for _, f := range archFamilies {
if f >= 32 {
panic("too many architecture families")
}
m |= 1 << uint(f)
}
for _, a := range all {
if m>>uint(a.Family)&1 != 0 {
intrinsics[intrinsicKey{a, pkg, fn}] = b
}
}
}
// alias defines pkg.fn = pkg2.fn2 for all architectures in archs for which pkg2.fn2 exists.
alias := func(pkg, fn, pkg2, fn2 string, archs ...*sys.Arch) {
aliased := false
for _, a := range archs {
if b, ok := intrinsics[intrinsicKey{a, pkg2, fn2}]; ok {
intrinsics[intrinsicKey{a, pkg, fn}] = b
aliased = true
}
}
if !aliased {
panic(fmt.Sprintf("attempted to alias undefined intrinsic: %s.%s", pkg, fn))
}
}
/******** runtime ********/
if !base.Flag.Cfg.Instrumenting {
add("runtime", "slicebytetostringtmp",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
// Compiler frontend optimizations emit OBYTES2STRTMP nodes
// for the backend instead of slicebytetostringtmp calls
// when not instrumenting.
return s.newValue2(ssa.OpStringMake, n.Type(), args[0], args[1])
},
all...)
}
addF("runtime/internal/math", "MulUintptr",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
if s.config.PtrSize == 4 {
return s.newValue2(ssa.OpMul32uover, types.NewTuple(types.Types[types.TUINT], types.Types[types.TUINT]), args[0], args[1])
}
return s.newValue2(ssa.OpMul64uover, types.NewTuple(types.Types[types.TUINT], types.Types[types.TUINT]), args[0], args[1])
},
sys.AMD64, sys.I386, sys.Loong64, sys.MIPS64, sys.RISCV64, sys.ARM64)
alias("runtime", "mulUintptr", "runtime/internal/math", "MulUintptr", all...)
add("runtime", "KeepAlive",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
data := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, args[0])
s.vars[memVar] = s.newValue2(ssa.OpKeepAlive, types.TypeMem, data, s.mem())
return nil
},
all...)
add("runtime", "getclosureptr",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue0(ssa.OpGetClosurePtr, s.f.Config.Types.Uintptr)
},
all...)
add("runtime", "getcallerpc",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue0(ssa.OpGetCallerPC, s.f.Config.Types.Uintptr)
},
all...)
add("runtime", "getcallersp",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpGetCallerSP, s.f.Config.Types.Uintptr, s.mem())
},
all...)
addF("runtime", "publicationBarrier",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
s.vars[memVar] = s.newValue1(ssa.OpPubBarrier, types.TypeMem, s.mem())
return nil
},
sys.ARM64, sys.PPC64)
/* Use only on Power10 as the new byte reverse instructions that Power10 provide
make it worthwhile as an intrinsic */
brev_arch := []sys.ArchFamily{sys.AMD64, sys.ARM64, sys.ARM, sys.S390X}
if buildcfg.GOPPC64 >= 10 {
brev_arch = append(brev_arch, sys.PPC64)
}
/******** runtime/internal/sys ********/
addF("runtime/internal/sys", "Bswap32",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpBswap32, types.Types[types.TUINT32], args[0])
},
brev_arch...)
addF("runtime/internal/sys", "Bswap64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpBswap64, types.Types[types.TUINT64], args[0])
},
brev_arch...)
/****** Prefetch ******/
makePrefetchFunc := func(op ssa.Op) func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
s.vars[memVar] = s.newValue2(op, types.TypeMem, args[0], s.mem())
return nil
}
}
// Make Prefetch intrinsics for supported platforms
// On the unsupported platforms stub function will be eliminated
addF("runtime/internal/sys", "Prefetch", makePrefetchFunc(ssa.OpPrefetchCache),
sys.AMD64, sys.ARM64, sys.PPC64)
addF("runtime/internal/sys", "PrefetchStreamed", makePrefetchFunc(ssa.OpPrefetchCacheStreamed),
sys.AMD64, sys.ARM64, sys.PPC64)
/******** runtime/internal/atomic ********/
addF("runtime/internal/atomic", "Load",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
v := s.newValue2(ssa.OpAtomicLoad32, types.NewTuple(types.Types[types.TUINT32], types.TypeMem), args[0], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT32], v)
},
sys.AMD64, sys.ARM64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
addF("runtime/internal/atomic", "Load8",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
v := s.newValue2(ssa.OpAtomicLoad8, types.NewTuple(types.Types[types.TUINT8], types.TypeMem), args[0], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT8], v)
},
sys.AMD64, sys.ARM64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
addF("runtime/internal/atomic", "Load64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
v := s.newValue2(ssa.OpAtomicLoad64, types.NewTuple(types.Types[types.TUINT64], types.TypeMem), args[0], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT64], v)
},
sys.AMD64, sys.ARM64, sys.Loong64, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
addF("runtime/internal/atomic", "LoadAcq",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
v := s.newValue2(ssa.OpAtomicLoadAcq32, types.NewTuple(types.Types[types.TUINT32], types.TypeMem), args[0], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT32], v)
},
sys.PPC64, sys.S390X)
addF("runtime/internal/atomic", "LoadAcq64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
v := s.newValue2(ssa.OpAtomicLoadAcq64, types.NewTuple(types.Types[types.TUINT64], types.TypeMem), args[0], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT64], v)
},
sys.PPC64)
addF("runtime/internal/atomic", "Loadp",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
v := s.newValue2(ssa.OpAtomicLoadPtr, types.NewTuple(s.f.Config.Types.BytePtr, types.TypeMem), args[0], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
return s.newValue1(ssa.OpSelect0, s.f.Config.Types.BytePtr, v)
},
sys.AMD64, sys.ARM64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
addF("runtime/internal/atomic", "Store",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
s.vars[memVar] = s.newValue3(ssa.OpAtomicStore32, types.TypeMem, args[0], args[1], s.mem())
return nil
},
sys.AMD64, sys.ARM64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
addF("runtime/internal/atomic", "Store8",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
s.vars[memVar] = s.newValue3(ssa.OpAtomicStore8, types.TypeMem, args[0], args[1], s.mem())
return nil
},
sys.AMD64, sys.ARM64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
addF("runtime/internal/atomic", "Store64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
s.vars[memVar] = s.newValue3(ssa.OpAtomicStore64, types.TypeMem, args[0], args[1], s.mem())
return nil
},
sys.AMD64, sys.ARM64, sys.Loong64, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
addF("runtime/internal/atomic", "StorepNoWB",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
s.vars[memVar] = s.newValue3(ssa.OpAtomicStorePtrNoWB, types.TypeMem, args[0], args[1], s.mem())
return nil
},
sys.AMD64, sys.ARM64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.RISCV64, sys.S390X)
addF("runtime/internal/atomic", "StoreRel",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
s.vars[memVar] = s.newValue3(ssa.OpAtomicStoreRel32, types.TypeMem, args[0], args[1], s.mem())
return nil
},
sys.PPC64, sys.S390X)
addF("runtime/internal/atomic", "StoreRel64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
s.vars[memVar] = s.newValue3(ssa.OpAtomicStoreRel64, types.TypeMem, args[0], args[1], s.mem())
return nil
},
sys.PPC64)
addF("runtime/internal/atomic", "Xchg",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
v := s.newValue3(ssa.OpAtomicExchange32, types.NewTuple(types.Types[types.TUINT32], types.TypeMem), args[0], args[1], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT32], v)
},
sys.AMD64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
addF("runtime/internal/atomic", "Xchg64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
v := s.newValue3(ssa.OpAtomicExchange64, types.NewTuple(types.Types[types.TUINT64], types.TypeMem), args[0], args[1], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT64], v)
},
sys.AMD64, sys.Loong64, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
type atomicOpEmitter func(s *state, n *ir.CallExpr, args []*ssa.Value, op ssa.Op, typ types.Kind)
makeAtomicGuardedIntrinsicARM64 := func(op0, op1 ssa.Op, typ, rtyp types.Kind, emit atomicOpEmitter) intrinsicBuilder {
return func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
// Target Atomic feature is identified by dynamic detection
addr := s.entryNewValue1A(ssa.OpAddr, types.Types[types.TBOOL].PtrTo(), ir.Syms.ARM64HasATOMICS, s.sb)
v := s.load(types.Types[types.TBOOL], addr)
b := s.endBlock()
b.Kind = ssa.BlockIf
b.SetControl(v)
bTrue := s.f.NewBlock(ssa.BlockPlain)
bFalse := s.f.NewBlock(ssa.BlockPlain)
bEnd := s.f.NewBlock(ssa.BlockPlain)
b.AddEdgeTo(bTrue)
b.AddEdgeTo(bFalse)
b.Likely = ssa.BranchLikely
// We have atomic instructions - use it directly.
s.startBlock(bTrue)
emit(s, n, args, op1, typ)
s.endBlock().AddEdgeTo(bEnd)
// Use original instruction sequence.
s.startBlock(bFalse)
emit(s, n, args, op0, typ)
s.endBlock().AddEdgeTo(bEnd)
// Merge results.
s.startBlock(bEnd)
if rtyp == types.TNIL {
return nil
} else {
return s.variable(n, types.Types[rtyp])
}
}
}
atomicXchgXaddEmitterARM64 := func(s *state, n *ir.CallExpr, args []*ssa.Value, op ssa.Op, typ types.Kind) {
v := s.newValue3(op, types.NewTuple(types.Types[typ], types.TypeMem), args[0], args[1], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
s.vars[n] = s.newValue1(ssa.OpSelect0, types.Types[typ], v)
}
addF("runtime/internal/atomic", "Xchg",
makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicExchange32, ssa.OpAtomicExchange32Variant, types.TUINT32, types.TUINT32, atomicXchgXaddEmitterARM64),
sys.ARM64)
addF("runtime/internal/atomic", "Xchg64",
makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicExchange64, ssa.OpAtomicExchange64Variant, types.TUINT64, types.TUINT64, atomicXchgXaddEmitterARM64),
sys.ARM64)
addF("runtime/internal/atomic", "Xadd",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
v := s.newValue3(ssa.OpAtomicAdd32, types.NewTuple(types.Types[types.TUINT32], types.TypeMem), args[0], args[1], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT32], v)
},
sys.AMD64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
addF("runtime/internal/atomic", "Xadd64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
v := s.newValue3(ssa.OpAtomicAdd64, types.NewTuple(types.Types[types.TUINT64], types.TypeMem), args[0], args[1], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT64], v)
},
sys.AMD64, sys.Loong64, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
addF("runtime/internal/atomic", "Xadd",
makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicAdd32, ssa.OpAtomicAdd32Variant, types.TUINT32, types.TUINT32, atomicXchgXaddEmitterARM64),
sys.ARM64)
addF("runtime/internal/atomic", "Xadd64",
makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicAdd64, ssa.OpAtomicAdd64Variant, types.TUINT64, types.TUINT64, atomicXchgXaddEmitterARM64),
sys.ARM64)
addF("runtime/internal/atomic", "Cas",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
v := s.newValue4(ssa.OpAtomicCompareAndSwap32, types.NewTuple(types.Types[types.TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
return s.newValue1(ssa.OpSelect0, types.Types[types.TBOOL], v)
},
sys.AMD64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
addF("runtime/internal/atomic", "Cas64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
v := s.newValue4(ssa.OpAtomicCompareAndSwap64, types.NewTuple(types.Types[types.TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
return s.newValue1(ssa.OpSelect0, types.Types[types.TBOOL], v)
},
sys.AMD64, sys.Loong64, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
addF("runtime/internal/atomic", "CasRel",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
v := s.newValue4(ssa.OpAtomicCompareAndSwap32, types.NewTuple(types.Types[types.TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
return s.newValue1(ssa.OpSelect0, types.Types[types.TBOOL], v)
},
sys.PPC64)
atomicCasEmitterARM64 := func(s *state, n *ir.CallExpr, args []*ssa.Value, op ssa.Op, typ types.Kind) {
v := s.newValue4(op, types.NewTuple(types.Types[types.TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
s.vars[n] = s.newValue1(ssa.OpSelect0, types.Types[typ], v)
}
addF("runtime/internal/atomic", "Cas",
makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicCompareAndSwap32, ssa.OpAtomicCompareAndSwap32Variant, types.TUINT32, types.TBOOL, atomicCasEmitterARM64),
sys.ARM64)
addF("runtime/internal/atomic", "Cas64",
makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicCompareAndSwap64, ssa.OpAtomicCompareAndSwap64Variant, types.TUINT64, types.TBOOL, atomicCasEmitterARM64),
sys.ARM64)
addF("runtime/internal/atomic", "And8",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
s.vars[memVar] = s.newValue3(ssa.OpAtomicAnd8, types.TypeMem, args[0], args[1], s.mem())
return nil
},
sys.AMD64, sys.MIPS, sys.PPC64, sys.RISCV64, sys.S390X)
addF("runtime/internal/atomic", "And",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
s.vars[memVar] = s.newValue3(ssa.OpAtomicAnd32, types.TypeMem, args[0], args[1], s.mem())
return nil
},
sys.AMD64, sys.MIPS, sys.PPC64, sys.RISCV64, sys.S390X)
addF("runtime/internal/atomic", "Or8",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
s.vars[memVar] = s.newValue3(ssa.OpAtomicOr8, types.TypeMem, args[0], args[1], s.mem())
return nil
},
sys.AMD64, sys.ARM64, sys.MIPS, sys.PPC64, sys.RISCV64, sys.S390X)
addF("runtime/internal/atomic", "Or",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
s.vars[memVar] = s.newValue3(ssa.OpAtomicOr32, types.TypeMem, args[0], args[1], s.mem())
return nil
},
sys.AMD64, sys.MIPS, sys.PPC64, sys.RISCV64, sys.S390X)
atomicAndOrEmitterARM64 := func(s *state, n *ir.CallExpr, args []*ssa.Value, op ssa.Op, typ types.Kind) {
s.vars[memVar] = s.newValue3(op, types.TypeMem, args[0], args[1], s.mem())
}
addF("runtime/internal/atomic", "And8",
makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicAnd8, ssa.OpAtomicAnd8Variant, types.TNIL, types.TNIL, atomicAndOrEmitterARM64),
sys.ARM64)
addF("runtime/internal/atomic", "And",
makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicAnd32, ssa.OpAtomicAnd32Variant, types.TNIL, types.TNIL, atomicAndOrEmitterARM64),
sys.ARM64)
addF("runtime/internal/atomic", "Or8",
makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicOr8, ssa.OpAtomicOr8Variant, types.TNIL, types.TNIL, atomicAndOrEmitterARM64),
sys.ARM64)
addF("runtime/internal/atomic", "Or",
makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicOr32, ssa.OpAtomicOr32Variant, types.TNIL, types.TNIL, atomicAndOrEmitterARM64),
sys.ARM64)
// Aliases for atomic load operations
alias("runtime/internal/atomic", "Loadint32", "runtime/internal/atomic", "Load", all...)
alias("runtime/internal/atomic", "Loadint64", "runtime/internal/atomic", "Load64", all...)
alias("runtime/internal/atomic", "Loaduintptr", "runtime/internal/atomic", "Load", p4...)
alias("runtime/internal/atomic", "Loaduintptr", "runtime/internal/atomic", "Load64", p8...)
alias("runtime/internal/atomic", "Loaduint", "runtime/internal/atomic", "Load", p4...)
alias("runtime/internal/atomic", "Loaduint", "runtime/internal/atomic", "Load64", p8...)
alias("runtime/internal/atomic", "LoadAcq", "runtime/internal/atomic", "Load", lwatomics...)
alias("runtime/internal/atomic", "LoadAcq64", "runtime/internal/atomic", "Load64", lwatomics...)
alias("runtime/internal/atomic", "LoadAcquintptr", "runtime/internal/atomic", "LoadAcq", p4...)
alias("sync", "runtime_LoadAcquintptr", "runtime/internal/atomic", "LoadAcq", p4...) // linknamed
alias("runtime/internal/atomic", "LoadAcquintptr", "runtime/internal/atomic", "LoadAcq64", p8...)
alias("sync", "runtime_LoadAcquintptr", "runtime/internal/atomic", "LoadAcq64", p8...) // linknamed
// Aliases for atomic store operations
alias("runtime/internal/atomic", "Storeint32", "runtime/internal/atomic", "Store", all...)
alias("runtime/internal/atomic", "Storeint64", "runtime/internal/atomic", "Store64", all...)
alias("runtime/internal/atomic", "Storeuintptr", "runtime/internal/atomic", "Store", p4...)
alias("runtime/internal/atomic", "Storeuintptr", "runtime/internal/atomic", "Store64", p8...)
alias("runtime/internal/atomic", "StoreRel", "runtime/internal/atomic", "Store", lwatomics...)
alias("runtime/internal/atomic", "StoreRel64", "runtime/internal/atomic", "Store64", lwatomics...)
alias("runtime/internal/atomic", "StoreReluintptr", "runtime/internal/atomic", "StoreRel", p4...)
alias("sync", "runtime_StoreReluintptr", "runtime/internal/atomic", "StoreRel", p4...) // linknamed
alias("runtime/internal/atomic", "StoreReluintptr", "runtime/internal/atomic", "StoreRel64", p8...)
alias("sync", "runtime_StoreReluintptr", "runtime/internal/atomic", "StoreRel64", p8...) // linknamed
// Aliases for atomic swap operations
alias("runtime/internal/atomic", "Xchgint32", "runtime/internal/atomic", "Xchg", all...)
alias("runtime/internal/atomic", "Xchgint64", "runtime/internal/atomic", "Xchg64", all...)
alias("runtime/internal/atomic", "Xchguintptr", "runtime/internal/atomic", "Xchg", p4...)
alias("runtime/internal/atomic", "Xchguintptr", "runtime/internal/atomic", "Xchg64", p8...)
// Aliases for atomic add operations
alias("runtime/internal/atomic", "Xaddint32", "runtime/internal/atomic", "Xadd", all...)
alias("runtime/internal/atomic", "Xaddint64", "runtime/internal/atomic", "Xadd64", all...)
alias("runtime/internal/atomic", "Xadduintptr", "runtime/internal/atomic", "Xadd", p4...)
alias("runtime/internal/atomic", "Xadduintptr", "runtime/internal/atomic", "Xadd64", p8...)
// Aliases for atomic CAS operations
alias("runtime/internal/atomic", "Casint32", "runtime/internal/atomic", "Cas", all...)
alias("runtime/internal/atomic", "Casint64", "runtime/internal/atomic", "Cas64", all...)
alias("runtime/internal/atomic", "Casuintptr", "runtime/internal/atomic", "Cas", p4...)
alias("runtime/internal/atomic", "Casuintptr", "runtime/internal/atomic", "Cas64", p8...)
alias("runtime/internal/atomic", "Casp1", "runtime/internal/atomic", "Cas", p4...)
alias("runtime/internal/atomic", "Casp1", "runtime/internal/atomic", "Cas64", p8...)
alias("runtime/internal/atomic", "CasRel", "runtime/internal/atomic", "Cas", lwatomics...)
/******** math ********/
addF("math", "sqrt",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpSqrt, types.Types[types.TFLOAT64], args[0])
},
sys.I386, sys.AMD64, sys.ARM, sys.ARM64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X, sys.Wasm)
addF("math", "Trunc",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpTrunc, types.Types[types.TFLOAT64], args[0])
},
sys.ARM64, sys.PPC64, sys.S390X, sys.Wasm)
addF("math", "Ceil",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpCeil, types.Types[types.TFLOAT64], args[0])
},
sys.ARM64, sys.PPC64, sys.S390X, sys.Wasm)
addF("math", "Floor",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpFloor, types.Types[types.TFLOAT64], args[0])
},
sys.ARM64, sys.PPC64, sys.S390X, sys.Wasm)
addF("math", "Round",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpRound, types.Types[types.TFLOAT64], args[0])
},
sys.ARM64, sys.PPC64, sys.S390X)
addF("math", "RoundToEven",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpRoundToEven, types.Types[types.TFLOAT64], args[0])
},
sys.ARM64, sys.S390X, sys.Wasm)
addF("math", "Abs",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpAbs, types.Types[types.TFLOAT64], args[0])
},
sys.ARM64, sys.ARM, sys.PPC64, sys.RISCV64, sys.Wasm)
addF("math", "Copysign",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue2(ssa.OpCopysign, types.Types[types.TFLOAT64], args[0], args[1])
},
sys.PPC64, sys.RISCV64, sys.Wasm)
addF("math", "FMA",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue3(ssa.OpFMA, types.Types[types.TFLOAT64], args[0], args[1], args[2])
},
sys.ARM64, sys.PPC64, sys.RISCV64, sys.S390X)
addF("math", "FMA",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
if !s.config.UseFMA {
s.vars[n] = s.callResult(n, callNormal) // types.Types[TFLOAT64]
return s.variable(n, types.Types[types.TFLOAT64])
}
if buildcfg.GOAMD64 >= 3 {
return s.newValue3(ssa.OpFMA, types.Types[types.TFLOAT64], args[0], args[1], args[2])
}
v := s.entryNewValue0A(ssa.OpHasCPUFeature, types.Types[types.TBOOL], ir.Syms.X86HasFMA)
b := s.endBlock()
b.Kind = ssa.BlockIf
b.SetControl(v)
bTrue := s.f.NewBlock(ssa.BlockPlain)
bFalse := s.f.NewBlock(ssa.BlockPlain)
bEnd := s.f.NewBlock(ssa.BlockPlain)
b.AddEdgeTo(bTrue)
b.AddEdgeTo(bFalse)
b.Likely = ssa.BranchLikely // >= haswell cpus are common
// We have the intrinsic - use it directly.
s.startBlock(bTrue)
s.vars[n] = s.newValue3(ssa.OpFMA, types.Types[types.TFLOAT64], args[0], args[1], args[2])
s.endBlock().AddEdgeTo(bEnd)
// Call the pure Go version.
s.startBlock(bFalse)
s.vars[n] = s.callResult(n, callNormal) // types.Types[TFLOAT64]
s.endBlock().AddEdgeTo(bEnd)
// Merge results.
s.startBlock(bEnd)
return s.variable(n, types.Types[types.TFLOAT64])
},
sys.AMD64)
addF("math", "FMA",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
if !s.config.UseFMA {
s.vars[n] = s.callResult(n, callNormal) // types.Types[TFLOAT64]
return s.variable(n, types.Types[types.TFLOAT64])
}
addr := s.entryNewValue1A(ssa.OpAddr, types.Types[types.TBOOL].PtrTo(), ir.Syms.ARMHasVFPv4, s.sb)
v := s.load(types.Types[types.TBOOL], addr)
b := s.endBlock()
b.Kind = ssa.BlockIf
b.SetControl(v)
bTrue := s.f.NewBlock(ssa.BlockPlain)
bFalse := s.f.NewBlock(ssa.BlockPlain)
bEnd := s.f.NewBlock(ssa.BlockPlain)
b.AddEdgeTo(bTrue)
b.AddEdgeTo(bFalse)
b.Likely = ssa.BranchLikely
// We have the intrinsic - use it directly.
s.startBlock(bTrue)
s.vars[n] = s.newValue3(ssa.OpFMA, types.Types[types.TFLOAT64], args[0], args[1], args[2])
s.endBlock().AddEdgeTo(bEnd)
// Call the pure Go version.
s.startBlock(bFalse)
s.vars[n] = s.callResult(n, callNormal) // types.Types[TFLOAT64]
s.endBlock().AddEdgeTo(bEnd)
// Merge results.
s.startBlock(bEnd)
return s.variable(n, types.Types[types.TFLOAT64])
},
sys.ARM)
makeRoundAMD64 := func(op ssa.Op) func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
if buildcfg.GOAMD64 >= 2 {
return s.newValue1(op, types.Types[types.TFLOAT64], args[0])
}
v := s.entryNewValue0A(ssa.OpHasCPUFeature, types.Types[types.TBOOL], ir.Syms.X86HasSSE41)
b := s.endBlock()
b.Kind = ssa.BlockIf
b.SetControl(v)
bTrue := s.f.NewBlock(ssa.BlockPlain)
bFalse := s.f.NewBlock(ssa.BlockPlain)
bEnd := s.f.NewBlock(ssa.BlockPlain)
b.AddEdgeTo(bTrue)
b.AddEdgeTo(bFalse)
b.Likely = ssa.BranchLikely // most machines have sse4.1 nowadays
// We have the intrinsic - use it directly.
s.startBlock(bTrue)
s.vars[n] = s.newValue1(op, types.Types[types.TFLOAT64], args[0])
s.endBlock().AddEdgeTo(bEnd)
// Call the pure Go version.
s.startBlock(bFalse)
s.vars[n] = s.callResult(n, callNormal) // types.Types[TFLOAT64]
s.endBlock().AddEdgeTo(bEnd)
// Merge results.
s.startBlock(bEnd)
return s.variable(n, types.Types[types.TFLOAT64])
}
}
addF("math", "RoundToEven",
makeRoundAMD64(ssa.OpRoundToEven),
sys.AMD64)
addF("math", "Floor",
makeRoundAMD64(ssa.OpFloor),
sys.AMD64)
addF("math", "Ceil",
makeRoundAMD64(ssa.OpCeil),
sys.AMD64)
addF("math", "Trunc",
makeRoundAMD64(ssa.OpTrunc),
sys.AMD64)
/******** math/bits ********/
addF("math/bits", "TrailingZeros64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpCtz64, types.Types[types.TINT], args[0])
},
sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm)
addF("math/bits", "TrailingZeros32",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpCtz32, types.Types[types.TINT], args[0])
},
sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm)
addF("math/bits", "TrailingZeros16",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
x := s.newValue1(ssa.OpZeroExt16to32, types.Types[types.TUINT32], args[0])
c := s.constInt32(types.Types[types.TUINT32], 1<<16)
y := s.newValue2(ssa.OpOr32, types.Types[types.TUINT32], x, c)
return s.newValue1(ssa.OpCtz32, types.Types[types.TINT], y)
},
sys.MIPS)
addF("math/bits", "TrailingZeros16",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpCtz16, types.Types[types.TINT], args[0])
},
sys.AMD64, sys.I386, sys.ARM, sys.ARM64, sys.Wasm)
addF("math/bits", "TrailingZeros16",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
x := s.newValue1(ssa.OpZeroExt16to64, types.Types[types.TUINT64], args[0])
c := s.constInt64(types.Types[types.TUINT64], 1<<16)
y := s.newValue2(ssa.OpOr64, types.Types[types.TUINT64], x, c)
return s.newValue1(ssa.OpCtz64, types.Types[types.TINT], y)
},
sys.S390X, sys.PPC64)
addF("math/bits", "TrailingZeros8",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
x := s.newValue1(ssa.OpZeroExt8to32, types.Types[types.TUINT32], args[0])
c := s.constInt32(types.Types[types.TUINT32], 1<<8)
y := s.newValue2(ssa.OpOr32, types.Types[types.TUINT32], x, c)
return s.newValue1(ssa.OpCtz32, types.Types[types.TINT], y)
},
sys.MIPS)
addF("math/bits", "TrailingZeros8",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpCtz8, types.Types[types.TINT], args[0])
},
sys.AMD64, sys.ARM, sys.ARM64, sys.Wasm)
addF("math/bits", "TrailingZeros8",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
x := s.newValue1(ssa.OpZeroExt8to64, types.Types[types.TUINT64], args[0])
c := s.constInt64(types.Types[types.TUINT64], 1<<8)
y := s.newValue2(ssa.OpOr64, types.Types[types.TUINT64], x, c)
return s.newValue1(ssa.OpCtz64, types.Types[types.TINT], y)
},
sys.S390X)
alias("math/bits", "ReverseBytes64", "runtime/internal/sys", "Bswap64", all...)
alias("math/bits", "ReverseBytes32", "runtime/internal/sys", "Bswap32", all...)
// ReverseBytes inlines correctly, no need to intrinsify it.
// Nothing special is needed for targets where ReverseBytes16 lowers to a rotate
// On Power10, 16-bit rotate is not available so use BRH instruction
if buildcfg.GOPPC64 >= 10 {
addF("math/bits", "ReverseBytes16",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpBswap16, types.Types[types.TUINT], args[0])
},
sys.PPC64)
}
addF("math/bits", "Len64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpBitLen64, types.Types[types.TINT], args[0])
},
sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm)
addF("math/bits", "Len32",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpBitLen32, types.Types[types.TINT], args[0])
},
sys.AMD64, sys.ARM64, sys.PPC64)
addF("math/bits", "Len32",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
if s.config.PtrSize == 4 {
return s.newValue1(ssa.OpBitLen32, types.Types[types.TINT], args[0])
}
x := s.newValue1(ssa.OpZeroExt32to64, types.Types[types.TUINT64], args[0])
return s.newValue1(ssa.OpBitLen64, types.Types[types.TINT], x)
},
sys.ARM, sys.S390X, sys.MIPS, sys.Wasm)
addF("math/bits", "Len16",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
if s.config.PtrSize == 4 {
x := s.newValue1(ssa.OpZeroExt16to32, types.Types[types.TUINT32], args[0])
return s.newValue1(ssa.OpBitLen32, types.Types[types.TINT], x)
}
x := s.newValue1(ssa.OpZeroExt16to64, types.Types[types.TUINT64], args[0])
return s.newValue1(ssa.OpBitLen64, types.Types[types.TINT], x)
},
sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm)
addF("math/bits", "Len16",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpBitLen16, types.Types[types.TINT], args[0])
},
sys.AMD64)
addF("math/bits", "Len8",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
if s.config.PtrSize == 4 {
x := s.newValue1(ssa.OpZeroExt8to32, types.Types[types.TUINT32], args[0])
return s.newValue1(ssa.OpBitLen32, types.Types[types.TINT], x)
}
x := s.newValue1(ssa.OpZeroExt8to64, types.Types[types.TUINT64], args[0])
return s.newValue1(ssa.OpBitLen64, types.Types[types.TINT], x)
},
sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm)
addF("math/bits", "Len8",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpBitLen8, types.Types[types.TINT], args[0])
},
sys.AMD64)
addF("math/bits", "Len",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
if s.config.PtrSize == 4 {
return s.newValue1(ssa.OpBitLen32, types.Types[types.TINT], args[0])
}
return s.newValue1(ssa.OpBitLen64, types.Types[types.TINT], args[0])
},
sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm)
// LeadingZeros is handled because it trivially calls Len.
addF("math/bits", "Reverse64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpBitRev64, types.Types[types.TINT], args[0])
},
sys.ARM64)
addF("math/bits", "Reverse32",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpBitRev32, types.Types[types.TINT], args[0])
},
sys.ARM64)
addF("math/bits", "Reverse16",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpBitRev16, types.Types[types.TINT], args[0])
},
sys.ARM64)
addF("math/bits", "Reverse8",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpBitRev8, types.Types[types.TINT], args[0])
},
sys.ARM64)
addF("math/bits", "Reverse",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpBitRev64, types.Types[types.TINT], args[0])
},
sys.ARM64)
addF("math/bits", "RotateLeft8",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue2(ssa.OpRotateLeft8, types.Types[types.TUINT8], args[0], args[1])
},
sys.AMD64)
addF("math/bits", "RotateLeft16",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue2(ssa.OpRotateLeft16, types.Types[types.TUINT16], args[0], args[1])
},
sys.AMD64)
addF("math/bits", "RotateLeft32",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue2(ssa.OpRotateLeft32, types.Types[types.TUINT32], args[0], args[1])
},
sys.AMD64, sys.ARM, sys.ARM64, sys.S390X, sys.PPC64, sys.Wasm, sys.Loong64)
addF("math/bits", "RotateLeft64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue2(ssa.OpRotateLeft64, types.Types[types.TUINT64], args[0], args[1])
},
sys.AMD64, sys.ARM64, sys.S390X, sys.PPC64, sys.Wasm, sys.Loong64)
alias("math/bits", "RotateLeft", "math/bits", "RotateLeft64", p8...)
makeOnesCountAMD64 := func(op ssa.Op) func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
if buildcfg.GOAMD64 >= 2 {
return s.newValue1(op, types.Types[types.TINT], args[0])
}
v := s.entryNewValue0A(ssa.OpHasCPUFeature, types.Types[types.TBOOL], ir.Syms.X86HasPOPCNT)
b := s.endBlock()
b.Kind = ssa.BlockIf
b.SetControl(v)
bTrue := s.f.NewBlock(ssa.BlockPlain)
bFalse := s.f.NewBlock(ssa.BlockPlain)
bEnd := s.f.NewBlock(ssa.BlockPlain)
b.AddEdgeTo(bTrue)
b.AddEdgeTo(bFalse)
b.Likely = ssa.BranchLikely // most machines have popcnt nowadays
// We have the intrinsic - use it directly.
s.startBlock(bTrue)
s.vars[n] = s.newValue1(op, types.Types[types.TINT], args[0])
s.endBlock().AddEdgeTo(bEnd)
// Call the pure Go version.
s.startBlock(bFalse)
s.vars[n] = s.callResult(n, callNormal) // types.Types[TINT]
s.endBlock().AddEdgeTo(bEnd)
// Merge results.
s.startBlock(bEnd)
return s.variable(n, types.Types[types.TINT])
}
}
addF("math/bits", "OnesCount64",
makeOnesCountAMD64(ssa.OpPopCount64),
sys.AMD64)
addF("math/bits", "OnesCount64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpPopCount64, types.Types[types.TINT], args[0])
},
sys.PPC64, sys.ARM64, sys.S390X, sys.Wasm)
addF("math/bits", "OnesCount32",
makeOnesCountAMD64(ssa.OpPopCount32),
sys.AMD64)
addF("math/bits", "OnesCount32",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpPopCount32, types.Types[types.TINT], args[0])
},
sys.PPC64, sys.ARM64, sys.S390X, sys.Wasm)
addF("math/bits", "OnesCount16",
makeOnesCountAMD64(ssa.OpPopCount16),
sys.AMD64)
addF("math/bits", "OnesCount16",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpPopCount16, types.Types[types.TINT], args[0])
},
sys.ARM64, sys.S390X, sys.PPC64, sys.Wasm)
addF("math/bits", "OnesCount8",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpPopCount8, types.Types[types.TINT], args[0])
},
sys.S390X, sys.PPC64, sys.Wasm)
addF("math/bits", "OnesCount",
makeOnesCountAMD64(ssa.OpPopCount64),
sys.AMD64)
addF("math/bits", "Mul64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue2(ssa.OpMul64uhilo, types.NewTuple(types.Types[types.TUINT64], types.Types[types.TUINT64]), args[0], args[1])
},
sys.AMD64, sys.ARM64, sys.PPC64, sys.S390X, sys.MIPS64, sys.RISCV64, sys.Loong64)
alias("math/bits", "Mul", "math/bits", "Mul64", p8...)
alias("runtime/internal/math", "Mul64", "math/bits", "Mul64", p8...)
addF("math/bits", "Add64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue3(ssa.OpAdd64carry, types.NewTuple(types.Types[types.TUINT64], types.Types[types.TUINT64]), args[0], args[1], args[2])
},
sys.AMD64, sys.ARM64, sys.PPC64, sys.S390X, sys.RISCV64, sys.Loong64)
alias("math/bits", "Add", "math/bits", "Add64", p8...)
addF("math/bits", "Sub64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue3(ssa.OpSub64borrow, types.NewTuple(types.Types[types.TUINT64], types.Types[types.TUINT64]), args[0], args[1], args[2])
},
sys.AMD64, sys.ARM64, sys.PPC64, sys.S390X, sys.RISCV64, sys.Loong64)
alias("math/bits", "Sub", "math/bits", "Sub64", p8...)
addF("math/bits", "Div64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
// check for divide-by-zero/overflow and panic with appropriate message
cmpZero := s.newValue2(s.ssaOp(ir.ONE, types.Types[types.TUINT64]), types.Types[types.TBOOL], args[2], s.zeroVal(types.Types[types.TUINT64]))
s.check(cmpZero, ir.Syms.Panicdivide)
cmpOverflow := s.newValue2(s.ssaOp(ir.OLT, types.Types[types.TUINT64]), types.Types[types.TBOOL], args[0], args[2])
s.check(cmpOverflow, ir.Syms.Panicoverflow)
return s.newValue3(ssa.OpDiv128u, types.NewTuple(types.Types[types.TUINT64], types.Types[types.TUINT64]), args[0], args[1], args[2])
},
sys.AMD64)
alias("math/bits", "Div", "math/bits", "Div64", sys.ArchAMD64)
alias("runtime/internal/sys", "TrailingZeros8", "math/bits", "TrailingZeros8", all...)
alias("runtime/internal/sys", "TrailingZeros32", "math/bits", "TrailingZeros32", all...)
alias("runtime/internal/sys", "TrailingZeros64", "math/bits", "TrailingZeros64", all...)
alias("runtime/internal/sys", "Len8", "math/bits", "Len8", all...)
alias("runtime/internal/sys", "Len64", "math/bits", "Len64", all...)
alias("runtime/internal/sys", "OnesCount64", "math/bits", "OnesCount64", all...)
/******** sync/atomic ********/
// Note: these are disabled by flag_race in findIntrinsic below.
alias("sync/atomic", "LoadInt32", "runtime/internal/atomic", "Load", all...)
alias("sync/atomic", "LoadInt64", "runtime/internal/atomic", "Load64", all...)
alias("sync/atomic", "LoadPointer", "runtime/internal/atomic", "Loadp", all...)
alias("sync/atomic", "LoadUint32", "runtime/internal/atomic", "Load", all...)
alias("sync/atomic", "LoadUint64", "runtime/internal/atomic", "Load64", all...)
alias("sync/atomic", "LoadUintptr", "runtime/internal/atomic", "Load", p4...)
alias("sync/atomic", "LoadUintptr", "runtime/internal/atomic", "Load64", p8...)
alias("sync/atomic", "StoreInt32", "runtime/internal/atomic", "Store", all...)
alias("sync/atomic", "StoreInt64", "runtime/internal/atomic", "Store64", all...)
// Note: not StorePointer, that needs a write barrier. Same below for {CompareAnd}Swap.
alias("sync/atomic", "StoreUint32", "runtime/internal/atomic", "Store", all...)
alias("sync/atomic", "StoreUint64", "runtime/internal/atomic", "Store64", all...)
alias("sync/atomic", "StoreUintptr", "runtime/internal/atomic", "Store", p4...)
alias("sync/atomic", "StoreUintptr", "runtime/internal/atomic", "Store64", p8...)
alias("sync/atomic", "SwapInt32", "runtime/internal/atomic", "Xchg", all...)
alias("sync/atomic", "SwapInt64", "runtime/internal/atomic", "Xchg64", all...)
alias("sync/atomic", "SwapUint32", "runtime/internal/atomic", "Xchg", all...)
alias("sync/atomic", "SwapUint64", "runtime/internal/atomic", "Xchg64", all...)
alias("sync/atomic", "SwapUintptr", "runtime/internal/atomic", "Xchg", p4...)
alias("sync/atomic", "SwapUintptr", "runtime/internal/atomic", "Xchg64", p8...)
alias("sync/atomic", "CompareAndSwapInt32", "runtime/internal/atomic", "Cas", all...)
alias("sync/atomic", "CompareAndSwapInt64", "runtime/internal/atomic", "Cas64", all...)
alias("sync/atomic", "CompareAndSwapUint32", "runtime/internal/atomic", "Cas", all...)
alias("sync/atomic", "CompareAndSwapUint64", "runtime/internal/atomic", "Cas64", all...)
alias("sync/atomic", "CompareAndSwapUintptr", "runtime/internal/atomic", "Cas", p4...)
alias("sync/atomic", "CompareAndSwapUintptr", "runtime/internal/atomic", "Cas64", p8...)
alias("sync/atomic", "AddInt32", "runtime/internal/atomic", "Xadd", all...)
alias("sync/atomic", "AddInt64", "runtime/internal/atomic", "Xadd64", all...)
alias("sync/atomic", "AddUint32", "runtime/internal/atomic", "Xadd", all...)
alias("sync/atomic", "AddUint64", "runtime/internal/atomic", "Xadd64", all...)
alias("sync/atomic", "AddUintptr", "runtime/internal/atomic", "Xadd", p4...)
alias("sync/atomic", "AddUintptr", "runtime/internal/atomic", "Xadd64", p8...)
/******** math/big ********/
alias("math/big", "mulWW", "math/bits", "Mul64", p8...)
}
// findIntrinsic returns a function which builds the SSA equivalent of the
// function identified by the symbol sym. If sym is not an intrinsic call, returns nil.
func findIntrinsic(sym *types.Sym) intrinsicBuilder {
if sym == nil || sym.Pkg == nil {
return nil
}
pkg := sym.Pkg.Path
if sym.Pkg == ir.Pkgs.Runtime {
pkg = "runtime"
}
if base.Flag.Race && pkg == "sync/atomic" {
// The race detector needs to be able to intercept these calls.
// We can't intrinsify them.
return nil
}
// Skip intrinsifying math functions (which may contain hard-float
// instructions) when soft-float
if Arch.SoftFloat && pkg == "math" {
return nil
}
fn := sym.Name
if ssa.IntrinsicsDisable {
if pkg == "runtime" && (fn == "getcallerpc" || fn == "getcallersp" || fn == "getclosureptr") {
// These runtime functions don't have definitions, must be intrinsics.
} else {
return nil
}
}
return intrinsics[intrinsicKey{Arch.LinkArch.Arch, pkg, fn}]
}
func IsIntrinsicCall(n *ir.CallExpr) bool {
if n == nil {
return false
}
name, ok := n.X.(*ir.Name)
if !ok {
return false
}
return findIntrinsic(name.Sym()) != nil
}
// intrinsicCall converts a call to a recognized intrinsic function into the intrinsic SSA operation.
func (s *state) intrinsicCall(n *ir.CallExpr) *ssa.Value {
v := findIntrinsic(n.X.Sym())(s, n, s.intrinsicArgs(n))
if ssa.IntrinsicsDebug > 0 {
x := v
if x == nil {
x = s.mem()
}
if x.Op == ssa.OpSelect0 || x.Op == ssa.OpSelect1 {
x = x.Args[0]
}
base.WarnfAt(n.Pos(), "intrinsic substitution for %v with %s", n.X.Sym().Name, x.LongString())
}
return v
}
// intrinsicArgs extracts args from n, evaluates them to SSA values, and returns them.
func (s *state) intrinsicArgs(n *ir.CallExpr) []*ssa.Value {
args := make([]*ssa.Value, len(n.Args))
for i, n := range n.Args {
args[i] = s.expr(n)
}
return args
}
// openDeferRecord adds code to evaluate and store the function for an open-code defer
// call, and records info about the defer, so we can generate proper code on the
// exit paths. n is the sub-node of the defer node that is the actual function
// call. We will also record funcdata information on where the function is stored
// (as well as the deferBits variable), and this will enable us to run the proper
// defer calls during panics.
func (s *state) openDeferRecord(n *ir.CallExpr) {
if len(n.Args) != 0 || n.Op() != ir.OCALLFUNC || n.X.Type().NumResults() != 0 {
s.Fatalf("defer call with arguments or results: %v", n)
}
opendefer := &openDeferInfo{
n: n,
}
fn := n.X
// We must always store the function value in a stack slot for the
// runtime panic code to use. But in the defer exit code, we will
// call the function directly if it is a static function.
closureVal := s.expr(fn)
closure := s.openDeferSave(fn.Type(), closureVal)
opendefer.closureNode = closure.Aux.(*ir.Name)
if !(fn.Op() == ir.ONAME && fn.(*ir.Name).Class == ir.PFUNC) {
opendefer.closure = closure
}
index := len(s.openDefers)
s.openDefers = append(s.openDefers, opendefer)
// Update deferBits only after evaluation and storage to stack of
// the function is successful.
bitvalue := s.constInt8(types.Types[types.TUINT8], 1<<uint(index))
newDeferBits := s.newValue2(ssa.OpOr8, types.Types[types.TUINT8], s.variable(deferBitsVar, types.Types[types.TUINT8]), bitvalue)
s.vars[deferBitsVar] = newDeferBits
s.store(types.Types[types.TUINT8], s.deferBitsAddr, newDeferBits)
}
// openDeferSave generates SSA nodes to store a value (with type t) for an
// open-coded defer at an explicit autotmp location on the stack, so it can be
// reloaded and used for the appropriate call on exit. Type t must be a function type
// (therefore SSAable). val is the value to be stored. The function returns an SSA
// value representing a pointer to the autotmp location.
func (s *state) openDeferSave(t *types.Type, val *ssa.Value) *ssa.Value {
if !TypeOK(t) {
s.Fatalf("openDeferSave of non-SSA-able type %v val=%v", t, val)
}
if !t.HasPointers() {
s.Fatalf("openDeferSave of pointerless type %v val=%v", t, val)
}
pos := val.Pos
temp := typecheck.TempAt(pos.WithNotStmt(), s.curfn, t)
temp.SetOpenDeferSlot(true)
var addrTemp *ssa.Value
// Use OpVarLive to make sure stack slot for the closure is not removed by
// dead-store elimination
if s.curBlock.ID != s.f.Entry.ID {
// Force the tmp storing this defer function to be declared in the entry
// block, so that it will be live for the defer exit code (which will
// actually access it only if the associated defer call has been activated).
if t.HasPointers() {
s.defvars[s.f.Entry.ID][memVar] = s.f.Entry.NewValue1A(src.NoXPos, ssa.OpVarDef, types.TypeMem, temp, s.defvars[s.f.Entry.ID][memVar])
}
s.defvars[s.f.Entry.ID][memVar] = s.f.Entry.NewValue1A(src.NoXPos, ssa.OpVarLive, types.TypeMem, temp, s.defvars[s.f.Entry.ID][memVar])
addrTemp = s.f.Entry.NewValue2A(src.NoXPos, ssa.OpLocalAddr, types.NewPtr(temp.Type()), temp, s.sp, s.defvars[s.f.Entry.ID][memVar])
} else {
// Special case if we're still in the entry block. We can't use
// the above code, since s.defvars[s.f.Entry.ID] isn't defined
// until we end the entry block with s.endBlock().
if t.HasPointers() {
s.vars[memVar] = s.newValue1Apos(ssa.OpVarDef, types.TypeMem, temp, s.mem(), false)
}
s.vars[memVar] = s.newValue1Apos(ssa.OpVarLive, types.TypeMem, temp, s.mem(), false)
addrTemp = s.newValue2Apos(ssa.OpLocalAddr, types.NewPtr(temp.Type()), temp, s.sp, s.mem(), false)
}
// Since we may use this temp during exit depending on the
// deferBits, we must define it unconditionally on entry.
// Therefore, we must make sure it is zeroed out in the entry
// block if it contains pointers, else GC may wrongly follow an
// uninitialized pointer value.
temp.SetNeedzero(true)
// We are storing to the stack, hence we can avoid the full checks in
// storeType() (no write barrier) and do a simple store().
s.store(t, addrTemp, val)
return addrTemp
}
// openDeferExit generates SSA for processing all the open coded defers at exit.
// The code involves loading deferBits, and checking each of the bits to see if
// the corresponding defer statement was executed. For each bit that is turned
// on, the associated defer call is made.
func (s *state) openDeferExit() {
deferExit := s.f.NewBlock(ssa.BlockPlain)
s.endBlock().AddEdgeTo(deferExit)
s.startBlock(deferExit)
s.lastDeferExit = deferExit
s.lastDeferCount = len(s.openDefers)
zeroval := s.constInt8(types.Types[types.TUINT8], 0)
// Test for and run defers in reverse order
for i := len(s.openDefers) - 1; i >= 0; i-- {
r := s.openDefers[i]
bCond := s.f.NewBlock(ssa.BlockPlain)
bEnd := s.f.NewBlock(ssa.BlockPlain)
deferBits := s.variable(deferBitsVar, types.Types[types.TUINT8])
// Generate code to check if the bit associated with the current
// defer is set.
bitval := s.constInt8(types.Types[types.TUINT8], 1<<uint(i))
andval := s.newValue2(ssa.OpAnd8, types.Types[types.TUINT8], deferBits, bitval)
eqVal := s.newValue2(ssa.OpEq8, types.Types[types.TBOOL], andval, zeroval)
b := s.endBlock()
b.Kind = ssa.BlockIf
b.SetControl(eqVal)
b.AddEdgeTo(bEnd)
b.AddEdgeTo(bCond)
bCond.AddEdgeTo(bEnd)
s.startBlock(bCond)
// Clear this bit in deferBits and force store back to stack, so
// we will not try to re-run this defer call if this defer call panics.
nbitval := s.newValue1(ssa.OpCom8, types.Types[types.TUINT8], bitval)
maskedval := s.newValue2(ssa.OpAnd8, types.Types[types.TUINT8], deferBits, nbitval)
s.store(types.Types[types.TUINT8], s.deferBitsAddr, maskedval)
// Use this value for following tests, so we keep previous
// bits cleared.
s.vars[deferBitsVar] = maskedval
// Generate code to call the function call of the defer, using the
// closure that were stored in argtmps at the point of the defer
// statement.
fn := r.n.X
stksize := fn.Type().ArgWidth()
var callArgs []*ssa.Value
var call *ssa.Value
if r.closure != nil {
v := s.load(r.closure.Type.Elem(), r.closure)
s.maybeNilCheckClosure(v, callDefer)
codeptr := s.rawLoad(types.Types[types.TUINTPTR], v)
aux := ssa.ClosureAuxCall(s.f.ABIDefault.ABIAnalyzeTypes(nil, nil, nil))
call = s.newValue2A(ssa.OpClosureLECall, aux.LateExpansionResultType(), aux, codeptr, v)
} else {
aux := ssa.StaticAuxCall(fn.(*ir.Name).Linksym(), s.f.ABIDefault.ABIAnalyzeTypes(nil, nil, nil))
call = s.newValue0A(ssa.OpStaticLECall, aux.LateExpansionResultType(), aux)
}
callArgs = append(callArgs, s.mem())
call.AddArgs(callArgs...)
call.AuxInt = stksize
s.vars[memVar] = s.newValue1I(ssa.OpSelectN, types.TypeMem, 0, call)
// Make sure that the stack slots with pointers are kept live
// through the call (which is a pre-emption point). Also, we will
// use the first call of the last defer exit to compute liveness
// for the deferreturn, so we want all stack slots to be live.
if r.closureNode != nil {
s.vars[memVar] = s.newValue1Apos(ssa.OpVarLive, types.TypeMem, r.closureNode, s.mem(), false)
}
s.endBlock()
s.startBlock(bEnd)
}
}
func (s *state) callResult(n *ir.CallExpr, k callKind) *ssa.Value {
return s.call(n, k, false)
}
func (s *state) callAddr(n *ir.CallExpr, k callKind) *ssa.Value {
return s.call(n, k, true)
}
// Calls the function n using the specified call type.
// Returns the address of the return value (or nil if none).
func (s *state) call(n *ir.CallExpr, k callKind, returnResultAddr bool) *ssa.Value {
s.prevCall = nil
var callee *ir.Name // target function (if static)
var closure *ssa.Value // ptr to closure to run (if dynamic)
var codeptr *ssa.Value // ptr to target code (if dynamic)
var rcvr *ssa.Value // receiver to set
fn := n.X
var ACArgs []*types.Type // AuxCall args
var ACResults []*types.Type // AuxCall results
var callArgs []*ssa.Value // For late-expansion, the args themselves (not stored, args to the call instead).
callABI := s.f.ABIDefault
if k != callNormal && k != callTail && (len(n.Args) != 0 || n.Op() == ir.OCALLINTER || n.X.Type().NumResults() != 0) {
s.Fatalf("go/defer call with arguments: %v", n)
}
switch n.Op() {
case ir.OCALLFUNC:
if (k == callNormal || k == callTail) && fn.Op() == ir.ONAME && fn.(*ir.Name).Class == ir.PFUNC {
fn := fn.(*ir.Name)
callee = fn
if buildcfg.Experiment.RegabiArgs {
// This is a static call, so it may be
// a direct call to a non-ABIInternal
// function. fn.Func may be nil for
// some compiler-generated functions,
// but those are all ABIInternal.
if fn.Func != nil {
callABI = abiForFunc(fn.Func, s.f.ABI0, s.f.ABI1)
}
} else {
// TODO(register args) remove after register abi is working
inRegistersImported := fn.Pragma()&ir.RegisterParams != 0
inRegistersSamePackage := fn.Func != nil && fn.Func.Pragma&ir.RegisterParams != 0
if inRegistersImported || inRegistersSamePackage {
callABI = s.f.ABI1
}
}
break
}
closure = s.expr(fn)
if k != callDefer && k != callDeferStack {
// Deferred nil function needs to panic when the function is invoked,
// not the point of defer statement.
s.maybeNilCheckClosure(closure, k)
}
case ir.OCALLINTER:
if fn.Op() != ir.ODOTINTER {
s.Fatalf("OCALLINTER: n.Left not an ODOTINTER: %v", fn.Op())
}
fn := fn.(*ir.SelectorExpr)
var iclosure *ssa.Value
iclosure, rcvr = s.getClosureAndRcvr(fn)
if k == callNormal {
codeptr = s.load(types.Types[types.TUINTPTR], iclosure)
} else {
closure = iclosure
}
}
params := callABI.ABIAnalyze(n.X.Type(), false /* Do not set (register) nNames from caller side -- can cause races. */)
types.CalcSize(fn.Type())
stksize := params.ArgWidth() // includes receiver, args, and results
res := n.X.Type().Results()
if k == callNormal || k == callTail {
for _, p := range params.OutParams() {
ACResults = append(ACResults, p.Type)
}
}
var call *ssa.Value
if k == callDeferStack {
// Make a defer struct d on the stack.
if stksize != 0 {
s.Fatalf("deferprocStack with non-zero stack size %d: %v", stksize, n)
}
t := deferstruct()
d := typecheck.TempAt(n.Pos(), s.curfn, t)
if t.HasPointers() {
s.vars[memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, d, s.mem())
}
addr := s.addr(d)
// Must match deferstruct() below and src/runtime/runtime2.go:_defer.
// 0: started, set in deferprocStack
// 1: heap, set in deferprocStack
// 2: openDefer
// 3: sp, set in deferprocStack
// 4: pc, set in deferprocStack
// 5: fn
s.store(closure.Type,
s.newValue1I(ssa.OpOffPtr, closure.Type.PtrTo(), t.FieldOff(5), addr),
closure)
// 6: panic, set in deferprocStack
// 7: link, set in deferprocStack
// 8: fd
// 9: varp
// 10: framepc
// Call runtime.deferprocStack with pointer to _defer record.
ACArgs = append(ACArgs, types.Types[types.TUINTPTR])
aux := ssa.StaticAuxCall(ir.Syms.DeferprocStack, s.f.ABIDefault.ABIAnalyzeTypes(nil, ACArgs, ACResults))
callArgs = append(callArgs, addr, s.mem())
call = s.newValue0A(ssa.OpStaticLECall, aux.LateExpansionResultType(), aux)
call.AddArgs(callArgs...)
call.AuxInt = int64(types.PtrSize) // deferprocStack takes a *_defer arg
} else {
// Store arguments to stack, including defer/go arguments and receiver for method calls.
// These are written in SP-offset order.
argStart := base.Ctxt.Arch.FixedFrameSize
// Defer/go args.
if k != callNormal && k != callTail {
// Write closure (arg to newproc/deferproc).
ACArgs = append(ACArgs, types.Types[types.TUINTPTR]) // not argExtra
callArgs = append(callArgs, closure)
stksize += int64(types.PtrSize)
argStart += int64(types.PtrSize)
}
// Set receiver (for interface calls).
if rcvr != nil {
callArgs = append(callArgs, rcvr)
}
// Write args.
t := n.X.Type()
args := n.Args
for _, p := range params.InParams() { // includes receiver for interface calls
ACArgs = append(ACArgs, p.Type)
}
// Split the entry block if there are open defers, because later calls to
// openDeferSave may cause a mismatch between the mem for an OpDereference
// and the call site which uses it. See #49282.
if s.curBlock.ID == s.f.Entry.ID && s.hasOpenDefers {
b := s.endBlock()
b.Kind = ssa.BlockPlain
curb := s.f.NewBlock(ssa.BlockPlain)
b.AddEdgeTo(curb)
s.startBlock(curb)
}
for i, n := range args {
callArgs = append(callArgs, s.putArg(n, t.Params().Field(i).Type))
}
callArgs = append(callArgs, s.mem())
// call target
switch {
case k == callDefer:
aux := ssa.StaticAuxCall(ir.Syms.Deferproc, s.f.ABIDefault.ABIAnalyzeTypes(nil, ACArgs, ACResults)) // TODO paramResultInfo for DeferProc
call = s.newValue0A(ssa.OpStaticLECall, aux.LateExpansionResultType(), aux)
case k == callGo:
aux := ssa.StaticAuxCall(ir.Syms.Newproc, s.f.ABIDefault.ABIAnalyzeTypes(nil, ACArgs, ACResults))
call = s.newValue0A(ssa.OpStaticLECall, aux.LateExpansionResultType(), aux) // TODO paramResultInfo for NewProc
case closure != nil:
// rawLoad because loading the code pointer from a
// closure is always safe, but IsSanitizerSafeAddr
// can't always figure that out currently, and it's
// critical that we not clobber any arguments already
// stored onto the stack.
codeptr = s.rawLoad(types.Types[types.TUINTPTR], closure)
aux := ssa.ClosureAuxCall(callABI.ABIAnalyzeTypes(nil, ACArgs, ACResults))
call = s.newValue2A(ssa.OpClosureLECall, aux.LateExpansionResultType(), aux, codeptr, closure)
case codeptr != nil:
// Note that the "receiver" parameter is nil because the actual receiver is the first input parameter.
aux := ssa.InterfaceAuxCall(params)
call = s.newValue1A(ssa.OpInterLECall, aux.LateExpansionResultType(), aux, codeptr)
case callee != nil:
aux := ssa.StaticAuxCall(callTargetLSym(callee), params)
call = s.newValue0A(ssa.OpStaticLECall, aux.LateExpansionResultType(), aux)
if k == callTail {
call.Op = ssa.OpTailLECall
stksize = 0 // Tail call does not use stack. We reuse caller's frame.
}
default:
s.Fatalf("bad call type %v %v", n.Op(), n)
}
call.AddArgs(callArgs...)
call.AuxInt = stksize // Call operations carry the argsize of the callee along with them
}
s.prevCall = call
s.vars[memVar] = s.newValue1I(ssa.OpSelectN, types.TypeMem, int64(len(ACResults)), call)
// Insert VarLive opcodes.
for _, v := range n.KeepAlive {
if !v.Addrtaken() {
s.Fatalf("KeepAlive variable %v must have Addrtaken set", v)
}
switch v.Class {
case ir.PAUTO, ir.PPARAM, ir.PPARAMOUT:
default:
s.Fatalf("KeepAlive variable %v must be Auto or Arg", v)
}
s.vars[memVar] = s.newValue1A(ssa.OpVarLive, types.TypeMem, v, s.mem())
}
// Finish block for defers
if k == callDefer || k == callDeferStack {
b := s.endBlock()
b.Kind = ssa.BlockDefer
b.SetControl(call)
bNext := s.f.NewBlock(ssa.BlockPlain)
b.AddEdgeTo(bNext)
// Add recover edge to exit code.
r := s.f.NewBlock(ssa.BlockPlain)
s.startBlock(r)
s.exit()
b.AddEdgeTo(r)
b.Likely = ssa.BranchLikely
s.startBlock(bNext)
}
if res.NumFields() == 0 || k != callNormal {
// call has no return value. Continue with the next statement.
return nil
}
fp := res.Field(0)
if returnResultAddr {
return s.resultAddrOfCall(call, 0, fp.Type)
}
return s.newValue1I(ssa.OpSelectN, fp.Type, 0, call)
}
// maybeNilCheckClosure checks if a nil check of a closure is needed in some
// architecture-dependent situations and, if so, emits the nil check.
func (s *state) maybeNilCheckClosure(closure *ssa.Value, k callKind) {
if Arch.LinkArch.Family == sys.Wasm || buildcfg.GOOS == "aix" && k != callGo {
// On AIX, the closure needs to be verified as fn can be nil, except if it's a call go. This needs to be handled by the runtime to have the "go of nil func value" error.
// TODO(neelance): On other architectures this should be eliminated by the optimization steps
s.nilCheck(closure)
}
}
// getClosureAndRcvr returns values for the appropriate closure and receiver of an
// interface call
func (s *state) getClosureAndRcvr(fn *ir.SelectorExpr) (*ssa.Value, *ssa.Value) {
i := s.expr(fn.X)
itab := s.newValue1(ssa.OpITab, types.Types[types.TUINTPTR], i)
s.nilCheck(itab)
itabidx := fn.Offset() + 2*int64(types.PtrSize) + 8 // offset of fun field in runtime.itab
closure := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.UintptrPtr, itabidx, itab)
rcvr := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, i)
return closure, rcvr
}
// etypesign returns the signed-ness of e, for integer/pointer etypes.
// -1 means signed, +1 means unsigned, 0 means non-integer/non-pointer.
func etypesign(e types.Kind) int8 {
switch e {
case types.TINT8, types.TINT16, types.TINT32, types.TINT64, types.TINT:
return -1
case types.TUINT8, types.TUINT16, types.TUINT32, types.TUINT64, types.TUINT, types.TUINTPTR, types.TUNSAFEPTR:
return +1
}
return 0
}
// addr converts the address of the expression n to SSA, adds it to s and returns the SSA result.
// The value that the returned Value represents is guaranteed to be non-nil.
func (s *state) addr(n ir.Node) *ssa.Value {
if n.Op() != ir.ONAME {
s.pushLine(n.Pos())
defer s.popLine()
}
if s.canSSA(n) {
s.Fatalf("addr of canSSA expression: %+v", n)
}
t := types.NewPtr(n.Type())
linksymOffset := func(lsym *obj.LSym, offset int64) *ssa.Value {
v := s.entryNewValue1A(ssa.OpAddr, t, lsym, s.sb)
// TODO: Make OpAddr use AuxInt as well as Aux.
if offset != 0 {
v = s.entryNewValue1I(ssa.OpOffPtr, v.Type, offset, v)
}
return v
}
switch n.Op() {
case ir.OLINKSYMOFFSET:
no := n.(*ir.LinksymOffsetExpr)
return linksymOffset(no.Linksym, no.Offset_)
case ir.ONAME:
n := n.(*ir.Name)
if n.Heapaddr != nil {
return s.expr(n.Heapaddr)
}
switch n.Class {
case ir.PEXTERN:
// global variable
return linksymOffset(n.Linksym(), 0)
case ir.PPARAM:
// parameter slot
v := s.decladdrs[n]
if v != nil {
return v
}
s.Fatalf("addr of undeclared ONAME %v. declared: %v", n, s.decladdrs)
return nil
case ir.PAUTO:
return s.newValue2Apos(ssa.OpLocalAddr, t, n, s.sp, s.mem(), !ir.IsAutoTmp(n))
case ir.PPARAMOUT: // Same as PAUTO -- cannot generate LEA early.
// ensure that we reuse symbols for out parameters so
// that cse works on their addresses
return s.newValue2Apos(ssa.OpLocalAddr, t, n, s.sp, s.mem(), true)
default:
s.Fatalf("variable address class %v not implemented", n.Class)
return nil
}
case ir.ORESULT:
// load return from callee
n := n.(*ir.ResultExpr)
return s.resultAddrOfCall(s.prevCall, n.Index, n.Type())
case ir.OINDEX:
n := n.(*ir.IndexExpr)
if n.X.Type().IsSlice() {
a := s.expr(n.X)
i := s.expr(n.Index)
len := s.newValue1(ssa.OpSliceLen, types.Types[types.TINT], a)
i = s.boundsCheck(i, len, ssa.BoundsIndex, n.Bounded())
p := s.newValue1(ssa.OpSlicePtr, t, a)
return s.newValue2(ssa.OpPtrIndex, t, p, i)
} else { // array
a := s.addr(n.X)
i := s.expr(n.Index)
len := s.constInt(types.Types[types.TINT], n.X.Type().NumElem())
i = s.boundsCheck(i, len, ssa.BoundsIndex, n.Bounded())
return s.newValue2(ssa.OpPtrIndex, types.NewPtr(n.X.Type().Elem()), a, i)
}
case ir.ODEREF:
n := n.(*ir.StarExpr)
return s.exprPtr(n.X, n.Bounded(), n.Pos())
case ir.ODOT:
n := n.(*ir.SelectorExpr)
p := s.addr(n.X)
return s.newValue1I(ssa.OpOffPtr, t, n.Offset(), p)
case ir.ODOTPTR:
n := n.(*ir.SelectorExpr)
p := s.exprPtr(n.X, n.Bounded(), n.Pos())
return s.newValue1I(ssa.OpOffPtr, t, n.Offset(), p)
case ir.OCONVNOP:
n := n.(*ir.ConvExpr)
if n.Type() == n.X.Type() {
return s.addr(n.X)
}
addr := s.addr(n.X)
return s.newValue1(ssa.OpCopy, t, addr) // ensure that addr has the right type
case ir.OCALLFUNC, ir.OCALLINTER:
n := n.(*ir.CallExpr)
return s.callAddr(n, callNormal)
case ir.ODOTTYPE, ir.ODYNAMICDOTTYPE:
var v *ssa.Value
if n.Op() == ir.ODOTTYPE {
v, _ = s.dottype(n.(*ir.TypeAssertExpr), false)
} else {
v, _ = s.dynamicDottype(n.(*ir.DynamicTypeAssertExpr), false)
}
if v.Op != ssa.OpLoad {
s.Fatalf("dottype of non-load")
}
if v.Args[1] != s.mem() {
s.Fatalf("memory no longer live from dottype load")
}
return v.Args[0]
default:
s.Fatalf("unhandled addr %v", n.Op())
return nil
}
}
// canSSA reports whether n is SSA-able.
// n must be an ONAME (or an ODOT sequence with an ONAME base).
func (s *state) canSSA(n ir.Node) bool {
if base.Flag.N != 0 {
return false
}
for {
nn := n
if nn.Op() == ir.ODOT {
nn := nn.(*ir.SelectorExpr)
n = nn.X
continue
}
if nn.Op() == ir.OINDEX {
nn := nn.(*ir.IndexExpr)
if nn.X.Type().IsArray() {
n = nn.X
continue
}
}
break
}
if n.Op() != ir.ONAME {
return false
}
return s.canSSAName(n.(*ir.Name)) && TypeOK(n.Type())
}
func (s *state) canSSAName(name *ir.Name) bool {
if name.Addrtaken() || !name.OnStack() {
return false
}
switch name.Class {
case ir.PPARAMOUT:
if s.hasdefer {
// TODO: handle this case? Named return values must be
// in memory so that the deferred function can see them.
// Maybe do: if !strings.HasPrefix(n.String(), "~") { return false }
// Or maybe not, see issue 18860. Even unnamed return values
// must be written back so if a defer recovers, the caller can see them.
return false
}
if s.cgoUnsafeArgs {
// Cgo effectively takes the address of all result args,
// but the compiler can't see that.
return false
}
}
return true
// TODO: try to make more variables SSAable?
}
// TypeOK reports whether variables of type t are SSA-able.
func TypeOK(t *types.Type) bool {
types.CalcSize(t)
if t.Size() > int64(4*types.PtrSize) {
// 4*Widthptr is an arbitrary constant. We want it
// to be at least 3*Widthptr so slices can be registerized.
// Too big and we'll introduce too much register pressure.
return false
}
switch t.Kind() {
case types.TARRAY:
// We can't do larger arrays because dynamic indexing is
// not supported on SSA variables.
// TODO: allow if all indexes are constant.
if t.NumElem() <= 1 {
return TypeOK(t.Elem())
}
return false
case types.TSTRUCT:
if t.NumFields() > ssa.MaxStruct {
return false
}
for _, t1 := range t.Fields().Slice() {
if !TypeOK(t1.Type) {
return false
}
}
return true
default:
return true
}
}
// exprPtr evaluates n to a pointer and nil-checks it.
func (s *state) exprPtr(n ir.Node, bounded bool, lineno src.XPos) *ssa.Value {
p := s.expr(n)
if bounded || n.NonNil() {
if s.f.Frontend().Debug_checknil() && lineno.Line() > 1 {
s.f.Warnl(lineno, "removed nil check")
}
return p
}
s.nilCheck(p)
return p
}
// nilCheck generates nil pointer checking code.
// Used only for automatically inserted nil checks,
// not for user code like 'x != nil'.
func (s *state) nilCheck(ptr *ssa.Value) {
if base.Debug.DisableNil != 0 || s.curfn.NilCheckDisabled() {
return
}
s.newValue2(ssa.OpNilCheck, types.TypeVoid, ptr, s.mem())
}
// boundsCheck generates bounds checking code. Checks if 0 <= idx <[=] len, branches to exit if not.
// Starts a new block on return.
// On input, len must be converted to full int width and be nonnegative.
// Returns idx converted to full int width.
// If bounded is true then caller guarantees the index is not out of bounds
// (but boundsCheck will still extend the index to full int width).
func (s *state) boundsCheck(idx, len *ssa.Value, kind ssa.BoundsKind, bounded bool) *ssa.Value {
idx = s.extendIndex(idx, len, kind, bounded)
if bounded || base.Flag.B != 0 {
// If bounded or bounds checking is flag-disabled, then no check necessary,
// just return the extended index.
//
// Here, bounded == true if the compiler generated the index itself,
// such as in the expansion of a slice initializer. These indexes are
// compiler-generated, not Go program variables, so they cannot be
// attacker-controlled, so we can omit Spectre masking as well.
//
// Note that we do not want to omit Spectre masking in code like:
//
// if 0 <= i && i < len(x) {
// use(x[i])
// }
//
// Lucky for us, bounded==false for that code.
// In that case (handled below), we emit a bound check (and Spectre mask)
// and then the prove pass will remove the bounds check.
// In theory the prove pass could potentially remove certain
// Spectre masks, but it's very delicate and probably better
// to be conservative and leave them all in.
return idx
}
bNext := s.f.NewBlock(ssa.BlockPlain)
bPanic := s.f.NewBlock(ssa.BlockExit)
if !idx.Type.IsSigned() {
switch kind {
case ssa.BoundsIndex:
kind = ssa.BoundsIndexU
case ssa.BoundsSliceAlen:
kind = ssa.BoundsSliceAlenU
case ssa.BoundsSliceAcap:
kind = ssa.BoundsSliceAcapU
case ssa.BoundsSliceB:
kind = ssa.BoundsSliceBU
case ssa.BoundsSlice3Alen:
kind = ssa.BoundsSlice3AlenU
case ssa.BoundsSlice3Acap:
kind = ssa.BoundsSlice3AcapU
case ssa.BoundsSlice3B:
kind = ssa.BoundsSlice3BU
case ssa.BoundsSlice3C:
kind = ssa.BoundsSlice3CU
}
}
var cmp *ssa.Value
if kind == ssa.BoundsIndex || kind == ssa.BoundsIndexU {
cmp = s.newValue2(ssa.OpIsInBounds, types.Types[types.TBOOL], idx, len)
} else {
cmp = s.newValue2(ssa.OpIsSliceInBounds, types.Types[types.TBOOL], idx, len)
}
b := s.endBlock()
b.Kind = ssa.BlockIf
b.SetControl(cmp)
b.Likely = ssa.BranchLikely
b.AddEdgeTo(bNext)
b.AddEdgeTo(bPanic)
s.startBlock(bPanic)
if Arch.LinkArch.Family == sys.Wasm {
// TODO(khr): figure out how to do "register" based calling convention for bounds checks.
// Should be similar to gcWriteBarrier, but I can't make it work.
s.rtcall(BoundsCheckFunc[kind], false, nil, idx, len)
} else {
mem := s.newValue3I(ssa.OpPanicBounds, types.TypeMem, int64(kind), idx, len, s.mem())
s.endBlock().SetControl(mem)
}
s.startBlock(bNext)
// In Spectre index mode, apply an appropriate mask to avoid speculative out-of-bounds accesses.
if base.Flag.Cfg.SpectreIndex {
op := ssa.OpSpectreIndex
if kind != ssa.BoundsIndex && kind != ssa.BoundsIndexU {
op = ssa.OpSpectreSliceIndex
}
idx = s.newValue2(op, types.Types[types.TINT], idx, len)
}
return idx
}
// If cmp (a bool) is false, panic using the given function.
func (s *state) check(cmp *ssa.Value, fn *obj.LSym) {
b := s.endBlock()
b.Kind = ssa.BlockIf
b.SetControl(cmp)
b.Likely = ssa.BranchLikely
bNext := s.f.NewBlock(ssa.BlockPlain)
line := s.peekPos()
pos := base.Ctxt.PosTable.Pos(line)
fl := funcLine{f: fn, base: pos.Base(), line: pos.Line()}
bPanic := s.panics[fl]
if bPanic == nil {
bPanic = s.f.NewBlock(ssa.BlockPlain)
s.panics[fl] = bPanic
s.startBlock(bPanic)
// The panic call takes/returns memory to ensure that the right
// memory state is observed if the panic happens.
s.rtcall(fn, false, nil)
}
b.AddEdgeTo(bNext)
b.AddEdgeTo(bPanic)
s.startBlock(bNext)
}
func (s *state) intDivide(n ir.Node, a, b *ssa.Value) *ssa.Value {
needcheck := true
switch b.Op {
case ssa.OpConst8, ssa.OpConst16, ssa.OpConst32, ssa.OpConst64:
if b.AuxInt != 0 {
needcheck = false
}
}
if needcheck {
// do a size-appropriate check for zero
cmp := s.newValue2(s.ssaOp(ir.ONE, n.Type()), types.Types[types.TBOOL], b, s.zeroVal(n.Type()))
s.check(cmp, ir.Syms.Panicdivide)
}
return s.newValue2(s.ssaOp(n.Op(), n.Type()), a.Type, a, b)
}
// rtcall issues a call to the given runtime function fn with the listed args.
// Returns a slice of results of the given result types.
// The call is added to the end of the current block.
// If returns is false, the block is marked as an exit block.
func (s *state) rtcall(fn *obj.LSym, returns bool, results []*types.Type, args ...*ssa.Value) []*ssa.Value {
s.prevCall = nil
// Write args to the stack
off := base.Ctxt.Arch.FixedFrameSize
var callArgs []*ssa.Value
var callArgTypes []*types.Type
for _, arg := range args {
t := arg.Type
off = types.RoundUp(off, t.Alignment())
size := t.Size()
callArgs = append(callArgs, arg)
callArgTypes = append(callArgTypes, t)
off += size
}
off = types.RoundUp(off, int64(types.RegSize))
// Issue call
var call *ssa.Value
aux := ssa.StaticAuxCall(fn, s.f.ABIDefault.ABIAnalyzeTypes(nil, callArgTypes, results))
callArgs = append(callArgs, s.mem())
call = s.newValue0A(ssa.OpStaticLECall, aux.LateExpansionResultType(), aux)
call.AddArgs(callArgs...)
s.vars[memVar] = s.newValue1I(ssa.OpSelectN, types.TypeMem, int64(len(results)), call)
if !returns {
// Finish block
b := s.endBlock()
b.Kind = ssa.BlockExit
b.SetControl(call)
call.AuxInt = off - base.Ctxt.Arch.FixedFrameSize
if len(results) > 0 {
s.Fatalf("panic call can't have results")
}
return nil
}
// Load results
res := make([]*ssa.Value, len(results))
for i, t := range results {
off = types.RoundUp(off, t.Alignment())
res[i] = s.resultOfCall(call, int64(i), t)
off += t.Size()
}
off = types.RoundUp(off, int64(types.PtrSize))
// Remember how much callee stack space we needed.
call.AuxInt = off
return res
}
// do *left = right for type t.
func (s *state) storeType(t *types.Type, left, right *ssa.Value, skip skipMask, leftIsStmt bool) {
s.instrument(t, left, instrumentWrite)
if skip == 0 && (!t.HasPointers() || ssa.IsStackAddr(left)) {
// Known to not have write barrier. Store the whole type.
s.vars[memVar] = s.newValue3Apos(ssa.OpStore, types.TypeMem, t, left, right, s.mem(), leftIsStmt)
return
}
// store scalar fields first, so write barrier stores for
// pointer fields can be grouped together, and scalar values
// don't need to be live across the write barrier call.
// TODO: if the writebarrier pass knows how to reorder stores,
// we can do a single store here as long as skip==0.
s.storeTypeScalars(t, left, right, skip)
if skip&skipPtr == 0 && t.HasPointers() {
s.storeTypePtrs(t, left, right)
}
}
// do *left = right for all scalar (non-pointer) parts of t.
func (s *state) storeTypeScalars(t *types.Type, left, right *ssa.Value, skip skipMask) {
switch {
case t.IsBoolean() || t.IsInteger() || t.IsFloat() || t.IsComplex():
s.store(t, left, right)
case t.IsPtrShaped():
if t.IsPtr() && t.Elem().NotInHeap() {
s.store(t, left, right) // see issue 42032
}
// otherwise, no scalar fields.
case t.IsString():
if skip&skipLen != 0 {
return
}
len := s.newValue1(ssa.OpStringLen, types.Types[types.TINT], right)
lenAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, s.config.PtrSize, left)
s.store(types.Types[types.TINT], lenAddr, len)
case t.IsSlice():
if skip&skipLen == 0 {
len := s.newValue1(ssa.OpSliceLen, types.Types[types.TINT], right)
lenAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, s.config.PtrSize, left)
s.store(types.Types[types.TINT], lenAddr, len)
}
if skip&skipCap == 0 {
cap := s.newValue1(ssa.OpSliceCap, types.Types[types.TINT], right)
capAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, 2*s.config.PtrSize, left)
s.store(types.Types[types.TINT], capAddr, cap)
}
case t.IsInterface():
// itab field doesn't need a write barrier (even though it is a pointer).
itab := s.newValue1(ssa.OpITab, s.f.Config.Types.BytePtr, right)
s.store(types.Types[types.TUINTPTR], left, itab)
case t.IsStruct():
n := t.NumFields()
for i := 0; i < n; i++ {
ft := t.FieldType(i)
addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
s.storeTypeScalars(ft, addr, val, 0)
}
case t.IsArray() && t.NumElem() == 0:
// nothing
case t.IsArray() && t.NumElem() == 1:
s.storeTypeScalars(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right), 0)
default:
s.Fatalf("bad write barrier type %v", t)
}
}
// do *left = right for all pointer parts of t.
func (s *state) storeTypePtrs(t *types.Type, left, right *ssa.Value) {
switch {
case t.IsPtrShaped():
if t.IsPtr() && t.Elem().NotInHeap() {
break // see issue 42032
}
s.store(t, left, right)
case t.IsString():
ptr := s.newValue1(ssa.OpStringPtr, s.f.Config.Types.BytePtr, right)
s.store(s.f.Config.Types.BytePtr, left, ptr)
case t.IsSlice():
elType := types.NewPtr(t.Elem())
ptr := s.newValue1(ssa.OpSlicePtr, elType, right)
s.store(elType, left, ptr)
case t.IsInterface():
// itab field is treated as a scalar.
idata := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, right)
idataAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.BytePtrPtr, s.config.PtrSize, left)
s.store(s.f.Config.Types.BytePtr, idataAddr, idata)
case t.IsStruct():
n := t.NumFields()
for i := 0; i < n; i++ {
ft := t.FieldType(i)
if !ft.HasPointers() {
continue
}
addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
s.storeTypePtrs(ft, addr, val)
}
case t.IsArray() && t.NumElem() == 0:
// nothing
case t.IsArray() && t.NumElem() == 1:
s.storeTypePtrs(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right))
default:
s.Fatalf("bad write barrier type %v", t)
}
}
// putArg evaluates n for the purpose of passing it as an argument to a function and returns the value for the call.
func (s *state) putArg(n ir.Node, t *types.Type) *ssa.Value {
var a *ssa.Value
if !TypeOK(t) {
a = s.newValue2(ssa.OpDereference, t, s.addr(n), s.mem())
} else {
a = s.expr(n)
}
return a
}
func (s *state) storeArgWithBase(n ir.Node, t *types.Type, base *ssa.Value, off int64) {
pt := types.NewPtr(t)
var addr *ssa.Value
if base == s.sp {
// Use special routine that avoids allocation on duplicate offsets.
addr = s.constOffPtrSP(pt, off)
} else {
addr = s.newValue1I(ssa.OpOffPtr, pt, off, base)
}
if !TypeOK(t) {
a := s.addr(n)
s.move(t, addr, a)
return
}
a := s.expr(n)
s.storeType(t, addr, a, 0, false)
}
// slice computes the slice v[i:j:k] and returns ptr, len, and cap of result.
// i,j,k may be nil, in which case they are set to their default value.
// v may be a slice, string or pointer to an array.
func (s *state) slice(v, i, j, k *ssa.Value, bounded bool) (p, l, c *ssa.Value) {
t := v.Type
var ptr, len, cap *ssa.Value
switch {
case t.IsSlice():
ptr = s.newValue1(ssa.OpSlicePtr, types.NewPtr(t.Elem()), v)
len = s.newValue1(ssa.OpSliceLen, types.Types[types.TINT], v)
cap = s.newValue1(ssa.OpSliceCap, types.Types[types.TINT], v)
case t.IsString():
ptr = s.newValue1(ssa.OpStringPtr, types.NewPtr(types.Types[types.TUINT8]), v)
len = s.newValue1(ssa.OpStringLen, types.Types[types.TINT], v)
cap = len
case t.IsPtr():
if !t.Elem().IsArray() {
s.Fatalf("bad ptr to array in slice %v\n", t)
}
s.nilCheck(v)
ptr = s.newValue1(ssa.OpCopy, types.NewPtr(t.Elem().Elem()), v)
len = s.constInt(types.Types[types.TINT], t.Elem().NumElem())
cap = len
default:
s.Fatalf("bad type in slice %v\n", t)
}
// Set default values
if i == nil {
i = s.constInt(types.Types[types.TINT], 0)
}
if j == nil {
j = len
}
three := true
if k == nil {
three = false
k = cap
}
// Panic if slice indices are not in bounds.
// Make sure we check these in reverse order so that we're always
// comparing against a value known to be nonnegative. See issue 28797.
if three {
if k != cap {
kind := ssa.BoundsSlice3Alen
if t.IsSlice() {
kind = ssa.BoundsSlice3Acap
}
k = s.boundsCheck(k, cap, kind, bounded)
}
if j != k {
j = s.boundsCheck(j, k, ssa.BoundsSlice3B, bounded)
}
i = s.boundsCheck(i, j, ssa.BoundsSlice3C, bounded)
} else {
if j != k {
kind := ssa.BoundsSliceAlen
if t.IsSlice() {
kind = ssa.BoundsSliceAcap
}
j = s.boundsCheck(j, k, kind, bounded)
}
i = s.boundsCheck(i, j, ssa.BoundsSliceB, bounded)
}
// Word-sized integer operations.
subOp := s.ssaOp(ir.OSUB, types.Types[types.TINT])
mulOp := s.ssaOp(ir.OMUL, types.Types[types.TINT])
andOp := s.ssaOp(ir.OAND, types.Types[types.TINT])
// Calculate the length (rlen) and capacity (rcap) of the new slice.
// For strings the capacity of the result is unimportant. However,
// we use rcap to test if we've generated a zero-length slice.
// Use length of strings for that.
rlen := s.newValue2(subOp, types.Types[types.TINT], j, i)
rcap := rlen
if j != k && !t.IsString() {
rcap = s.newValue2(subOp, types.Types[types.TINT], k, i)
}
if (i.Op == ssa.OpConst64 || i.Op == ssa.OpConst32) && i.AuxInt == 0 {
// No pointer arithmetic necessary.
return ptr, rlen, rcap
}
// Calculate the base pointer (rptr) for the new slice.
//
// Generate the following code assuming that indexes are in bounds.
// The masking is to make sure that we don't generate a slice
// that points to the next object in memory. We cannot just set
// the pointer to nil because then we would create a nil slice or
// string.
//
// rcap = k - i
// rlen = j - i
// rptr = ptr + (mask(rcap) & (i * stride))
//
// Where mask(x) is 0 if x==0 and -1 if x>0 and stride is the width
// of the element type.
stride := s.constInt(types.Types[types.TINT], ptr.Type.Elem().Size())
// The delta is the number of bytes to offset ptr by.
delta := s.newValue2(mulOp, types.Types[types.TINT], i, stride)
// If we're slicing to the point where the capacity is zero,
// zero out the delta.
mask := s.newValue1(ssa.OpSlicemask, types.Types[types.TINT], rcap)
delta = s.newValue2(andOp, types.Types[types.TINT], delta, mask)
// Compute rptr = ptr + delta.
rptr := s.newValue2(ssa.OpAddPtr, ptr.Type, ptr, delta)
return rptr, rlen, rcap
}
type u642fcvtTab struct {
leq, cvt2F, and, rsh, or, add ssa.Op
one func(*state, *types.Type, int64) *ssa.Value
}
var u64_f64 = u642fcvtTab{
leq: ssa.OpLeq64,
cvt2F: ssa.OpCvt64to64F,
and: ssa.OpAnd64,
rsh: ssa.OpRsh64Ux64,
or: ssa.OpOr64,
add: ssa.OpAdd64F,
one: (*state).constInt64,
}
var u64_f32 = u642fcvtTab{
leq: ssa.OpLeq64,
cvt2F: ssa.OpCvt64to32F,
and: ssa.OpAnd64,
rsh: ssa.OpRsh64Ux64,
or: ssa.OpOr64,
add: ssa.OpAdd32F,
one: (*state).constInt64,
}
func (s *state) uint64Tofloat64(n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
return s.uint64Tofloat(&u64_f64, n, x, ft, tt)
}
func (s *state) uint64Tofloat32(n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
return s.uint64Tofloat(&u64_f32, n, x, ft, tt)
}
func (s *state) uint64Tofloat(cvttab *u642fcvtTab, n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
// if x >= 0 {
// result = (floatY) x
// } else {
// y = uintX(x) ; y = x & 1
// z = uintX(x) ; z = z >> 1
// z = z | y
// result = floatY(z)
// result = result + result
// }
//
// Code borrowed from old code generator.
// What's going on: large 64-bit "unsigned" looks like
// negative number to hardware's integer-to-float
// conversion. However, because the mantissa is only
// 63 bits, we don't need the LSB, so instead we do an
// unsigned right shift (divide by two), convert, and
// double. However, before we do that, we need to be
// sure that we do not lose a "1" if that made the
// difference in the resulting rounding. Therefore, we
// preserve it, and OR (not ADD) it back in. The case
// that matters is when the eleven discarded bits are
// equal to 10000000001; that rounds up, and the 1 cannot
// be lost else it would round down if the LSB of the
// candidate mantissa is 0.
cmp := s.newValue2(cvttab.leq, types.Types[types.TBOOL], s.zeroVal(ft), x)
b := s.endBlock()
b.Kind = ssa.BlockIf
b.SetControl(cmp)
b.Likely = ssa.BranchLikely
bThen := s.f.NewBlock(ssa.BlockPlain)
bElse := s.f.NewBlock(ssa.BlockPlain)
bAfter := s.f.NewBlock(ssa.BlockPlain)
b.AddEdgeTo(bThen)
s.startBlock(bThen)
a0 := s.newValue1(cvttab.cvt2F, tt, x)
s.vars[n] = a0
s.endBlock()
bThen.AddEdgeTo(bAfter)
b.AddEdgeTo(bElse)
s.startBlock(bElse)
one := cvttab.one(s, ft, 1)
y := s.newValue2(cvttab.and, ft, x, one)
z := s.newValue2(cvttab.rsh, ft, x, one)
z = s.newValue2(cvttab.or, ft, z, y)
a := s.newValue1(cvttab.cvt2F, tt, z)
a1 := s.newValue2(cvttab.add, tt, a, a)
s.vars[n] = a1
s.endBlock()
bElse.AddEdgeTo(bAfter)
s.startBlock(bAfter)
return s.variable(n, n.Type())
}
type u322fcvtTab struct {
cvtI2F, cvtF2F ssa.Op
}
var u32_f64 = u322fcvtTab{
cvtI2F: ssa.OpCvt32to64F,
cvtF2F: ssa.OpCopy,
}
var u32_f32 = u322fcvtTab{
cvtI2F: ssa.OpCvt32to32F,
cvtF2F: ssa.OpCvt64Fto32F,
}
func (s *state) uint32Tofloat64(n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
return s.uint32Tofloat(&u32_f64, n, x, ft, tt)
}
func (s *state) uint32Tofloat32(n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
return s.uint32Tofloat(&u32_f32, n, x, ft, tt)
}
func (s *state) uint32Tofloat(cvttab *u322fcvtTab, n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
// if x >= 0 {
// result = floatY(x)
// } else {
// result = floatY(float64(x) + (1<<32))
// }
cmp := s.newValue2(ssa.OpLeq32, types.Types[types.TBOOL], s.zeroVal(ft), x)
b := s.endBlock()
b.Kind = ssa.BlockIf
b.SetControl(cmp)
b.Likely = ssa.BranchLikely
bThen := s.f.NewBlock(ssa.BlockPlain)
bElse := s.f.NewBlock(ssa.BlockPlain)
bAfter := s.f.NewBlock(ssa.BlockPlain)
b.AddEdgeTo(bThen)
s.startBlock(bThen)
a0 := s.newValue1(cvttab.cvtI2F, tt, x)
s.vars[n] = a0
s.endBlock()
bThen.AddEdgeTo(bAfter)
b.AddEdgeTo(bElse)
s.startBlock(bElse)
a1 := s.newValue1(ssa.OpCvt32to64F, types.Types[types.TFLOAT64], x)
twoToThe32 := s.constFloat64(types.Types[types.TFLOAT64], float64(1<<32))
a2 := s.newValue2(ssa.OpAdd64F, types.Types[types.TFLOAT64], a1, twoToThe32)
a3 := s.newValue1(cvttab.cvtF2F, tt, a2)
s.vars[n] = a3
s.endBlock()
bElse.AddEdgeTo(bAfter)
s.startBlock(bAfter)
return s.variable(n, n.Type())
}
// referenceTypeBuiltin generates code for the len/cap builtins for maps and channels.
func (s *state) referenceTypeBuiltin(n *ir.UnaryExpr, x *ssa.Value) *ssa.Value {
if !n.X.Type().IsMap() && !n.X.Type().IsChan() {
s.Fatalf("node must be a map or a channel")
}
// if n == nil {
// return 0
// } else {
// // len
// return *((*int)n)
// // cap
// return *(((*int)n)+1)
// }
lenType := n.Type()
nilValue := s.constNil(types.Types[types.TUINTPTR])
cmp := s.newValue2(ssa.OpEqPtr, types.Types[types.TBOOL], x, nilValue)
b := s.endBlock()
b.Kind = ssa.BlockIf
b.SetControl(cmp)
b.Likely = ssa.BranchUnlikely
bThen := s.f.NewBlock(ssa.BlockPlain)
bElse := s.f.NewBlock(ssa.BlockPlain)
bAfter := s.f.NewBlock(ssa.BlockPlain)
// length/capacity of a nil map/chan is zero
b.AddEdgeTo(bThen)
s.startBlock(bThen)
s.vars[n] = s.zeroVal(lenType)
s.endBlock()
bThen.AddEdgeTo(bAfter)
b.AddEdgeTo(bElse)
s.startBlock(bElse)
switch n.Op() {
case ir.OLEN:
// length is stored in the first word for map/chan
s.vars[n] = s.load(lenType, x)
case ir.OCAP:
// capacity is stored in the second word for chan
sw := s.newValue1I(ssa.OpOffPtr, lenType.PtrTo(), lenType.Size(), x)
s.vars[n] = s.load(lenType, sw)
default:
s.Fatalf("op must be OLEN or OCAP")
}
s.endBlock()
bElse.AddEdgeTo(bAfter)
s.startBlock(bAfter)
return s.variable(n, lenType)
}
type f2uCvtTab struct {
ltf, cvt2U, subf, or ssa.Op
floatValue func(*state, *types.Type, float64) *ssa.Value
intValue func(*state, *types.Type, int64) *ssa.Value
cutoff uint64
}
var f32_u64 = f2uCvtTab{
ltf: ssa.OpLess32F,
cvt2U: ssa.OpCvt32Fto64,
subf: ssa.OpSub32F,
or: ssa.OpOr64,
floatValue: (*state).constFloat32,
intValue: (*state).constInt64,
cutoff: 1 << 63,
}
var f64_u64 = f2uCvtTab{
ltf: ssa.OpLess64F,
cvt2U: ssa.OpCvt64Fto64,
subf: ssa.OpSub64F,
or: ssa.OpOr64,
floatValue: (*state).constFloat64,
intValue: (*state).constInt64,
cutoff: 1 << 63,
}
var f32_u32 = f2uCvtTab{
ltf: ssa.OpLess32F,
cvt2U: ssa.OpCvt32Fto32,
subf: ssa.OpSub32F,
or: ssa.OpOr32,
floatValue: (*state).constFloat32,
intValue: func(s *state, t *types.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) },
cutoff: 1 << 31,
}
var f64_u32 = f2uCvtTab{
ltf: ssa.OpLess64F,
cvt2U: ssa.OpCvt64Fto32,
subf: ssa.OpSub64F,
or: ssa.OpOr32,
floatValue: (*state).constFloat64,
intValue: func(s *state, t *types.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) },
cutoff: 1 << 31,
}
func (s *state) float32ToUint64(n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
return s.floatToUint(&f32_u64, n, x, ft, tt)
}
func (s *state) float64ToUint64(n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
return s.floatToUint(&f64_u64, n, x, ft, tt)
}
func (s *state) float32ToUint32(n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
return s.floatToUint(&f32_u32, n, x, ft, tt)
}
func (s *state) float64ToUint32(n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
return s.floatToUint(&f64_u32, n, x, ft, tt)
}
func (s *state) floatToUint(cvttab *f2uCvtTab, n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
// cutoff:=1<<(intY_Size-1)
// if x < floatX(cutoff) {
// result = uintY(x)
// } else {
// y = x - floatX(cutoff)
// z = uintY(y)
// result = z | -(cutoff)
// }
cutoff := cvttab.floatValue(s, ft, float64(cvttab.cutoff))
cmp := s.newValue2(cvttab.ltf, types.Types[types.TBOOL], x, cutoff)
b := s.endBlock()
b.Kind = ssa.BlockIf
b.SetControl(cmp)
b.Likely = ssa.BranchLikely
bThen := s.f.NewBlock(ssa.BlockPlain)
bElse := s.f.NewBlock(ssa.BlockPlain)
bAfter := s.f.NewBlock(ssa.BlockPlain)
b.AddEdgeTo(bThen)
s.startBlock(bThen)
a0 := s.newValue1(cvttab.cvt2U, tt, x)
s.vars[n] = a0
s.endBlock()
bThen.AddEdgeTo(bAfter)
b.AddEdgeTo(bElse)
s.startBlock(bElse)
y := s.newValue2(cvttab.subf, ft, x, cutoff)
y = s.newValue1(cvttab.cvt2U, tt, y)
z := cvttab.intValue(s, tt, int64(-cvttab.cutoff))
a1 := s.newValue2(cvttab.or, tt, y, z)
s.vars[n] = a1
s.endBlock()
bElse.AddEdgeTo(bAfter)
s.startBlock(bAfter)
return s.variable(n, n.Type())
}
// dottype generates SSA for a type assertion node.
// commaok indicates whether to panic or return a bool.
// If commaok is false, resok will be nil.
func (s *state) dottype(n *ir.TypeAssertExpr, commaok bool) (res, resok *ssa.Value) {
iface := s.expr(n.X) // input interface
target := s.reflectType(n.Type()) // target type
var targetItab *ssa.Value
if n.ITab != nil {
targetItab = s.expr(n.ITab)
}
return s.dottype1(n.Pos(), n.X.Type(), n.Type(), iface, nil, target, targetItab, commaok)
}
func (s *state) dynamicDottype(n *ir.DynamicTypeAssertExpr, commaok bool) (res, resok *ssa.Value) {
iface := s.expr(n.X)
var source, target, targetItab *ssa.Value
if n.SrcRType != nil {
source = s.expr(n.SrcRType)
}
if !n.X.Type().IsEmptyInterface() && !n.Type().IsInterface() {
byteptr := s.f.Config.Types.BytePtr
targetItab = s.expr(n.ITab)
// TODO(mdempsky): Investigate whether compiling n.RType could be
// better than loading itab.typ.
target = s.load(byteptr, s.newValue1I(ssa.OpOffPtr, byteptr, int64(types.PtrSize), targetItab)) // itab.typ
} else {
target = s.expr(n.RType)
}
return s.dottype1(n.Pos(), n.X.Type(), n.Type(), iface, source, target, targetItab, commaok)
}
// dottype1 implements a x.(T) operation. iface is the argument (x), dst is the type we're asserting to (T)
// and src is the type we're asserting from.
// source is the *runtime._type of src
// target is the *runtime._type of dst.
// If src is a nonempty interface and dst is not an interface, targetItab is an itab representing (dst, src). Otherwise it is nil.
// commaok is true if the caller wants a boolean success value. Otherwise, the generated code panics if the conversion fails.
func (s *state) dottype1(pos src.XPos, src, dst *types.Type, iface, source, target, targetItab *ssa.Value, commaok bool) (res, resok *ssa.Value) {
byteptr := s.f.Config.Types.BytePtr
if dst.IsInterface() {
if dst.IsEmptyInterface() {
// Converting to an empty interface.
// Input could be an empty or nonempty interface.
if base.Debug.TypeAssert > 0 {
base.WarnfAt(pos, "type assertion inlined")
}
// Get itab/type field from input.
itab := s.newValue1(ssa.OpITab, byteptr, iface)
// Conversion succeeds iff that field is not nil.
cond := s.newValue2(ssa.OpNeqPtr, types.Types[types.TBOOL], itab, s.constNil(byteptr))
if src.IsEmptyInterface() && commaok {
// Converting empty interface to empty interface with ,ok is just a nil check.
return iface, cond
}
// Branch on nilness.
b := s.endBlock()
b.Kind = ssa.BlockIf
b.SetControl(cond)
b.Likely = ssa.BranchLikely
bOk := s.f.NewBlock(ssa.BlockPlain)
bFail := s.f.NewBlock(ssa.BlockPlain)
b.AddEdgeTo(bOk)
b.AddEdgeTo(bFail)
if !commaok {
// On failure, panic by calling panicnildottype.
s.startBlock(bFail)
s.rtcall(ir.Syms.Panicnildottype, false, nil, target)
// On success, return (perhaps modified) input interface.
s.startBlock(bOk)
if src.IsEmptyInterface() {
res = iface // Use input interface unchanged.
return
}
// Load type out of itab, build interface with existing idata.
off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(types.PtrSize), itab)
typ := s.load(byteptr, off)
idata := s.newValue1(ssa.OpIData, byteptr, iface)
res = s.newValue2(ssa.OpIMake, dst, typ, idata)
return
}
s.startBlock(bOk)
// nonempty -> empty
// Need to load type from itab
off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(types.PtrSize), itab)
s.vars[typVar] = s.load(byteptr, off)
s.endBlock()
// itab is nil, might as well use that as the nil result.
s.startBlock(bFail)
s.vars[typVar] = itab
s.endBlock()
// Merge point.
bEnd := s.f.NewBlock(ssa.BlockPlain)
bOk.AddEdgeTo(bEnd)
bFail.AddEdgeTo(bEnd)
s.startBlock(bEnd)
idata := s.newValue1(ssa.OpIData, byteptr, iface)
res = s.newValue2(ssa.OpIMake, dst, s.variable(typVar, byteptr), idata)
resok = cond
delete(s.vars, typVar)
return
}
// converting to a nonempty interface needs a runtime call.
if base.Debug.TypeAssert > 0 {
base.WarnfAt(pos, "type assertion not inlined")
}
if !commaok {
fn := ir.Syms.AssertI2I
if src.IsEmptyInterface() {
fn = ir.Syms.AssertE2I
}
data := s.newValue1(ssa.OpIData, types.Types[types.TUNSAFEPTR], iface)
tab := s.newValue1(ssa.OpITab, byteptr, iface)
tab = s.rtcall(fn, true, []*types.Type{byteptr}, target, tab)[0]
return s.newValue2(ssa.OpIMake, dst, tab, data), nil
}
fn := ir.Syms.AssertI2I2
if src.IsEmptyInterface() {
fn = ir.Syms.AssertE2I2
}
res = s.rtcall(fn, true, []*types.Type{dst}, target, iface)[0]
resok = s.newValue2(ssa.OpNeqInter, types.Types[types.TBOOL], res, s.constInterface(dst))
return
}
if base.Debug.TypeAssert > 0 {
base.WarnfAt(pos, "type assertion inlined")
}
// Converting to a concrete type.
direct := types.IsDirectIface(dst)
itab := s.newValue1(ssa.OpITab, byteptr, iface) // type word of interface
if base.Debug.TypeAssert > 0 {
base.WarnfAt(pos, "type assertion inlined")
}
var wantedFirstWord *ssa.Value
if src.IsEmptyInterface() {
// Looking for pointer to target type.
wantedFirstWord = target
} else {
// Looking for pointer to itab for target type and source interface.
wantedFirstWord = targetItab
}
var tmp ir.Node // temporary for use with large types
var addr *ssa.Value // address of tmp
if commaok && !TypeOK(dst) {
// unSSAable type, use temporary.
// TODO: get rid of some of these temporaries.
tmp, addr = s.temp(pos, dst)
}
cond := s.newValue2(ssa.OpEqPtr, types.Types[types.TBOOL], itab, wantedFirstWord)
b := s.endBlock()
b.Kind = ssa.BlockIf
b.SetControl(cond)
b.Likely = ssa.BranchLikely
bOk := s.f.NewBlock(ssa.BlockPlain)
bFail := s.f.NewBlock(ssa.BlockPlain)
b.AddEdgeTo(bOk)
b.AddEdgeTo(bFail)
if !commaok {
// on failure, panic by calling panicdottype
s.startBlock(bFail)
taddr := source
if taddr == nil {
taddr = s.reflectType(src)
}
if src.IsEmptyInterface() {
s.rtcall(ir.Syms.PanicdottypeE, false, nil, itab, target, taddr)
} else {
s.rtcall(ir.Syms.PanicdottypeI, false, nil, itab, target, taddr)
}
// on success, return data from interface
s.startBlock(bOk)
if direct {
return s.newValue1(ssa.OpIData, dst, iface), nil
}
p := s.newValue1(ssa.OpIData, types.NewPtr(dst), iface)
return s.load(dst, p), nil
}
// commaok is the more complicated case because we have
// a control flow merge point.
bEnd := s.f.NewBlock(ssa.BlockPlain)
// Note that we need a new valVar each time (unlike okVar where we can
// reuse the variable) because it might have a different type every time.
valVar := ssaMarker("val")
// type assertion succeeded
s.startBlock(bOk)
if tmp == nil {
if direct {
s.vars[valVar] = s.newValue1(ssa.OpIData, dst, iface)
} else {
p := s.newValue1(ssa.OpIData, types.NewPtr(dst), iface)
s.vars[valVar] = s.load(dst, p)
}
} else {
p := s.newValue1(ssa.OpIData, types.NewPtr(dst), iface)
s.move(dst, addr, p)
}
s.vars[okVar] = s.constBool(true)
s.endBlock()
bOk.AddEdgeTo(bEnd)
// type assertion failed
s.startBlock(bFail)
if tmp == nil {
s.vars[valVar] = s.zeroVal(dst)
} else {
s.zero(dst, addr)
}
s.vars[okVar] = s.constBool(false)
s.endBlock()
bFail.AddEdgeTo(bEnd)
// merge point
s.startBlock(bEnd)
if tmp == nil {
res = s.variable(valVar, dst)
delete(s.vars, valVar)
} else {
res = s.load(dst, addr)
}
resok = s.variable(okVar, types.Types[types.TBOOL])
delete(s.vars, okVar)
return res, resok
}
// temp allocates a temp of type t at position pos
func (s *state) temp(pos src.XPos, t *types.Type) (*ir.Name, *ssa.Value) {
tmp := typecheck.TempAt(pos, s.curfn, t)
if t.HasPointers() {
s.vars[memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, tmp, s.mem())
}
addr := s.addr(tmp)
return tmp, addr
}
// variable returns the value of a variable at the current location.
func (s *state) variable(n ir.Node, t *types.Type) *ssa.Value {
v := s.vars[n]
if v != nil {
return v
}
v = s.fwdVars[n]
if v != nil {
return v
}
if s.curBlock == s.f.Entry {
// No variable should be live at entry.
s.f.Fatalf("value %v (%v) incorrectly live at entry", n, v)
}
// Make a FwdRef, which records a value that's live on block input.
// We'll find the matching definition as part of insertPhis.
v = s.newValue0A(ssa.OpFwdRef, t, fwdRefAux{N: n})
s.fwdVars[n] = v
if n.Op() == ir.ONAME {
s.addNamedValue(n.(*ir.Name), v)
}
return v
}
func (s *state) mem() *ssa.Value {
return s.variable(memVar, types.TypeMem)
}
func (s *state) addNamedValue(n *ir.Name, v *ssa.Value) {
if n.Class == ir.Pxxx {
// Don't track our marker nodes (memVar etc.).
return
}
if ir.IsAutoTmp(n) {
// Don't track temporary variables.
return
}
if n.Class == ir.PPARAMOUT {
// Don't track named output values. This prevents return values
// from being assigned too early. See #14591 and #14762. TODO: allow this.
return
}
loc := ssa.LocalSlot{N: n, Type: n.Type(), Off: 0}
values, ok := s.f.NamedValues[loc]
if !ok {
s.f.Names = append(s.f.Names, &loc)
s.f.CanonicalLocalSlots[loc] = &loc
}
s.f.NamedValues[loc] = append(values, v)
}
// Branch is an unresolved branch.
type Branch struct {
P *obj.Prog // branch instruction
B *ssa.Block // target
}
// State contains state needed during Prog generation.
type State struct {
ABI obj.ABI
pp *objw.Progs
// Branches remembers all the branch instructions we've seen
// and where they would like to go.
Branches []Branch
// JumpTables remembers all the jump tables we've seen.
JumpTables []*ssa.Block
// bstart remembers where each block starts (indexed by block ID)
bstart []*obj.Prog
maxarg int64 // largest frame size for arguments to calls made by the function
// Map from GC safe points to liveness index, generated by
// liveness analysis.
livenessMap liveness.Map
// partLiveArgs includes arguments that may be partially live, for which we
// need to generate instructions that spill the argument registers.
partLiveArgs map[*ir.Name]bool
// lineRunStart records the beginning of the current run of instructions
// within a single block sharing the same line number
// Used to move statement marks to the beginning of such runs.
lineRunStart *obj.Prog
// wasm: The number of values on the WebAssembly stack. This is only used as a safeguard.
OnWasmStackSkipped int
}
func (s *State) FuncInfo() *obj.FuncInfo {
return s.pp.CurFunc.LSym.Func()
}
// Prog appends a new Prog.
func (s *State) Prog(as obj.As) *obj.Prog {
p := s.pp.Prog(as)
if objw.LosesStmtMark(as) {
return p
}
// Float a statement start to the beginning of any same-line run.
// lineRunStart is reset at block boundaries, which appears to work well.
if s.lineRunStart == nil || s.lineRunStart.Pos.Line() != p.Pos.Line() {
s.lineRunStart = p
} else if p.Pos.IsStmt() == src.PosIsStmt {
s.lineRunStart.Pos = s.lineRunStart.Pos.WithIsStmt()
p.Pos = p.Pos.WithNotStmt()
}
return p
}
// Pc returns the current Prog.
func (s *State) Pc() *obj.Prog {
return s.pp.Next
}
// SetPos sets the current source position.
func (s *State) SetPos(pos src.XPos) {
s.pp.Pos = pos
}
// Br emits a single branch instruction and returns the instruction.
// Not all architectures need the returned instruction, but otherwise
// the boilerplate is common to all.
func (s *State) Br(op obj.As, target *ssa.Block) *obj.Prog {
p := s.Prog(op)
p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, Branch{P: p, B: target})
return p
}
// DebugFriendlySetPosFrom adjusts Pos.IsStmt subject to heuristics
// that reduce "jumpy" line number churn when debugging.
// Spill/fill/copy instructions from the register allocator,
// phi functions, and instructions with a no-pos position
// are examples of instructions that can cause churn.
func (s *State) DebugFriendlySetPosFrom(v *ssa.Value) {
switch v.Op {
case ssa.OpPhi, ssa.OpCopy, ssa.OpLoadReg, ssa.OpStoreReg:
// These are not statements
s.SetPos(v.Pos.WithNotStmt())
default:
p := v.Pos
if p != src.NoXPos {
// If the position is defined, update the position.
// Also convert default IsStmt to NotStmt; only
// explicit statement boundaries should appear
// in the generated code.
if p.IsStmt() != src.PosIsStmt {
if s.pp.Pos.IsStmt() == src.PosIsStmt && s.pp.Pos.SameFileAndLine(p) {
// If s.pp.Pos already has a statement mark, then it was set here (below) for
// the previous value. If an actual instruction had been emitted for that
// value, then the statement mark would have been reset. Since the statement
// mark of s.pp.Pos was not reset, this position (file/line) still needs a
// statement mark on an instruction. If file and line for this value are
// the same as the previous value, then the first instruction for this
// value will work to take the statement mark. Return early to avoid
// resetting the statement mark.
//
// The reset of s.pp.Pos occurs in (*Progs).Prog() -- if it emits
// an instruction, and the instruction's statement mark was set,
// and it is not one of the LosesStmtMark instructions,
// then Prog() resets the statement mark on the (*Progs).Pos.
return
}
p = p.WithNotStmt()
// Calls use the pos attached to v, but copy the statement mark from State
}
s.SetPos(p)
} else {
s.SetPos(s.pp.Pos.WithNotStmt())
}
}
}
// emit argument info (locations on stack) for traceback.
func emitArgInfo(e *ssafn, f *ssa.Func, pp *objw.Progs) {
ft := e.curfn.Type()
if ft.NumRecvs() == 0 && ft.NumParams() == 0 {
return
}
x := EmitArgInfo(e.curfn, f.OwnAux.ABIInfo())
x.Set(obj.AttrContentAddressable, true)
e.curfn.LSym.Func().ArgInfo = x
// Emit a funcdata pointing at the arg info data.
p := pp.Prog(obj.AFUNCDATA)
p.From.SetConst(objabi.FUNCDATA_ArgInfo)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = x
}
// emit argument info (locations on stack) of f for traceback.
func EmitArgInfo(f *ir.Func, abiInfo *abi.ABIParamResultInfo) *obj.LSym {
x := base.Ctxt.Lookup(fmt.Sprintf("%s.arginfo%d", f.LSym.Name, f.ABI))
// NOTE: do not set ContentAddressable here. This may be referenced from
// assembly code by name (in this case f is a declaration).
// Instead, set it in emitArgInfo above.
PtrSize := int64(types.PtrSize)
uintptrTyp := types.Types[types.TUINTPTR]
isAggregate := func(t *types.Type) bool {
return t.IsStruct() || t.IsArray() || t.IsComplex() || t.IsInterface() || t.IsString() || t.IsSlice()
}
// Populate the data.
// The data is a stream of bytes, which contains the offsets and sizes of the
// non-aggregate arguments or non-aggregate fields/elements of aggregate-typed
// arguments, along with special "operators". Specifically,
// - for each non-aggrgate arg/field/element, its offset from FP (1 byte) and
// size (1 byte)
// - special operators:
// - 0xff - end of sequence
// - 0xfe - print { (at the start of an aggregate-typed argument)
// - 0xfd - print } (at the end of an aggregate-typed argument)
// - 0xfc - print ... (more args/fields/elements)
// - 0xfb - print _ (offset too large)
// These constants need to be in sync with runtime.traceback.go:printArgs.
const (
_endSeq = 0xff
_startAgg = 0xfe
_endAgg = 0xfd
_dotdotdot = 0xfc
_offsetTooLarge = 0xfb
_special = 0xf0 // above this are operators, below this are ordinary offsets
)
const (
limit = 10 // print no more than 10 args/components
maxDepth = 5 // no more than 5 layers of nesting
// maxLen is a (conservative) upper bound of the byte stream length. For
// each arg/component, it has no more than 2 bytes of data (size, offset),
// and no more than one {, }, ... at each level (it cannot have both the
// data and ... unless it is the last one, just be conservative). Plus 1
// for _endSeq.
maxLen = (maxDepth*3+2)*limit + 1
)
wOff := 0
n := 0
writebyte := func(o uint8) { wOff = objw.Uint8(x, wOff, o) }
// Write one non-aggrgate arg/field/element.
write1 := func(sz, offset int64) {
if offset >= _special {
writebyte(_offsetTooLarge)
} else {
writebyte(uint8(offset))
writebyte(uint8(sz))
}
n++
}
// Visit t recursively and write it out.
// Returns whether to continue visiting.
var visitType func(baseOffset int64, t *types.Type, depth int) bool
visitType = func(baseOffset int64, t *types.Type, depth int) bool {
if n >= limit {
writebyte(_dotdotdot)
return false
}
if !isAggregate(t) {
write1(t.Size(), baseOffset)
return true
}
writebyte(_startAgg)
depth++
if depth >= maxDepth {
writebyte(_dotdotdot)
writebyte(_endAgg)
n++
return true
}
switch {
case t.IsInterface(), t.IsString():
_ = visitType(baseOffset, uintptrTyp, depth) &&
visitType(baseOffset+PtrSize, uintptrTyp, depth)
case t.IsSlice():
_ = visitType(baseOffset, uintptrTyp, depth) &&
visitType(baseOffset+PtrSize, uintptrTyp, depth) &&
visitType(baseOffset+PtrSize*2, uintptrTyp, depth)
case t.IsComplex():
_ = visitType(baseOffset, types.FloatForComplex(t), depth) &&
visitType(baseOffset+t.Size()/2, types.FloatForComplex(t), depth)
case t.IsArray():
if t.NumElem() == 0 {
n++ // {} counts as a component
break
}
for i := int64(0); i < t.NumElem(); i++ {
if !visitType(baseOffset, t.Elem(), depth) {
break
}
baseOffset += t.Elem().Size()
}
case t.IsStruct():
if t.NumFields() == 0 {
n++ // {} counts as a component
break
}
for _, field := range t.Fields().Slice() {
if !visitType(baseOffset+field.Offset, field.Type, depth) {
break
}
}
}
writebyte(_endAgg)
return true
}
start := 0
if strings.Contains(f.LSym.Name, "[") {
// Skip the dictionary argument - it is implicit and the user doesn't need to see it.
start = 1
}
for _, a := range abiInfo.InParams()[start:] {
if !visitType(a.FrameOffset(abiInfo), a.Type, 0) {
break
}
}
writebyte(_endSeq)
if wOff > maxLen {
base.Fatalf("ArgInfo too large")
}
return x
}
// for wrapper, emit info of wrapped function.
func emitWrappedFuncInfo(e *ssafn, pp *objw.Progs) {
if base.Ctxt.Flag_linkshared {
// Relative reference (SymPtrOff) to another shared object doesn't work.
// Unfortunate.
return
}
wfn := e.curfn.WrappedFunc
if wfn == nil {
return
}
wsym := wfn.Linksym()
x := base.Ctxt.LookupInit(fmt.Sprintf("%s.wrapinfo", wsym.Name), func(x *obj.LSym) {
objw.SymPtrOff(x, 0, wsym)
x.Set(obj.AttrContentAddressable, true)
})
e.curfn.LSym.Func().WrapInfo = x
// Emit a funcdata pointing at the wrap info data.
p := pp.Prog(obj.AFUNCDATA)
p.From.SetConst(objabi.FUNCDATA_WrapInfo)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = x
}
// genssa appends entries to pp for each instruction in f.
func genssa(f *ssa.Func, pp *objw.Progs) {
var s State
s.ABI = f.OwnAux.Fn.ABI()
e := f.Frontend().(*ssafn)
s.livenessMap, s.partLiveArgs = liveness.Compute(e.curfn, f, e.stkptrsize, pp)
emitArgInfo(e, f, pp)
argLiveBlockMap, argLiveValueMap := liveness.ArgLiveness(e.curfn, f, pp)
openDeferInfo := e.curfn.LSym.Func().OpenCodedDeferInfo
if openDeferInfo != nil {
// This function uses open-coded defers -- write out the funcdata
// info that we computed at the end of genssa.
p := pp.Prog(obj.AFUNCDATA)
p.From.SetConst(objabi.FUNCDATA_OpenCodedDeferInfo)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = openDeferInfo
}
emitWrappedFuncInfo(e, pp)
// Remember where each block starts.
s.bstart = make([]*obj.Prog, f.NumBlocks())
s.pp = pp
var progToValue map[*obj.Prog]*ssa.Value
var progToBlock map[*obj.Prog]*ssa.Block
var valueToProgAfter []*obj.Prog // The first Prog following computation of a value v; v is visible at this point.
gatherPrintInfo := f.PrintOrHtmlSSA || ssa.GenssaDump[f.Name]
if gatherPrintInfo {
progToValue = make(map[*obj.Prog]*ssa.Value, f.NumValues())
progToBlock = make(map[*obj.Prog]*ssa.Block, f.NumBlocks())
f.Logf("genssa %s\n", f.Name)
progToBlock[s.pp.Next] = f.Blocks[0]
}
if base.Ctxt.Flag_locationlists {
if cap(f.Cache.ValueToProgAfter) < f.NumValues() {
f.Cache.ValueToProgAfter = make([]*obj.Prog, f.NumValues())
}
valueToProgAfter = f.Cache.ValueToProgAfter[:f.NumValues()]
for i := range valueToProgAfter {
valueToProgAfter[i] = nil
}
}
// If the very first instruction is not tagged as a statement,
// debuggers may attribute it to previous function in program.
firstPos := src.NoXPos
for _, v := range f.Entry.Values {
if v.Pos.IsStmt() == src.PosIsStmt && v.Op != ssa.OpArg && v.Op != ssa.OpArgIntReg && v.Op != ssa.OpArgFloatReg && v.Op != ssa.OpLoadReg && v.Op != ssa.OpStoreReg {
firstPos = v.Pos
v.Pos = firstPos.WithDefaultStmt()
break
}
}
// inlMarks has an entry for each Prog that implements an inline mark.
// It maps from that Prog to the global inlining id of the inlined body
// which should unwind to this Prog's location.
var inlMarks map[*obj.Prog]int32
var inlMarkList []*obj.Prog
// inlMarksByPos maps from a (column 1) source position to the set of
// Progs that are in the set above and have that source position.
var inlMarksByPos map[src.XPos][]*obj.Prog
var argLiveIdx int = -1 // argument liveness info index
// Emit basic blocks
for i, b := range f.Blocks {
s.bstart[b.ID] = s.pp.Next
s.lineRunStart = nil
s.SetPos(s.pp.Pos.WithNotStmt()) // It needs a non-empty Pos, but cannot be a statement boundary (yet).
// Attach a "default" liveness info. Normally this will be
// overwritten in the Values loop below for each Value. But
// for an empty block this will be used for its control
// instruction. We won't use the actual liveness map on a
// control instruction. Just mark it something that is
// preemptible, unless this function is "all unsafe".
s.pp.NextLive = objw.LivenessIndex{StackMapIndex: -1, IsUnsafePoint: liveness.IsUnsafe(f)}
if idx, ok := argLiveBlockMap[b.ID]; ok && idx != argLiveIdx {
argLiveIdx = idx
p := s.pp.Prog(obj.APCDATA)
p.From.SetConst(objabi.PCDATA_ArgLiveIndex)
p.To.SetConst(int64(idx))
}
// Emit values in block
Arch.SSAMarkMoves(&s, b)
for _, v := range b.Values {
x := s.pp.Next
s.DebugFriendlySetPosFrom(v)
if v.Op.ResultInArg0() && v.ResultReg() != v.Args[0].Reg() {
v.Fatalf("input[0] and output not in same register %s", v.LongString())
}
switch v.Op {
case ssa.OpInitMem:
// memory arg needs no code
case ssa.OpArg:
// input args need no code
case ssa.OpSP, ssa.OpSB:
// nothing to do
case ssa.OpSelect0, ssa.OpSelect1, ssa.OpSelectN, ssa.OpMakeResult:
// nothing to do
case ssa.OpGetG:
// nothing to do when there's a g register,
// and checkLower complains if there's not
case ssa.OpVarDef, ssa.OpVarLive, ssa.OpKeepAlive:
// nothing to do; already used by liveness
case ssa.OpPhi:
CheckLoweredPhi(v)
case ssa.OpConvert:
// nothing to do; no-op conversion for liveness
if v.Args[0].Reg() != v.Reg() {
v.Fatalf("OpConvert should be a no-op: %s; %s", v.Args[0].LongString(), v.LongString())
}
case ssa.OpInlMark:
p := Arch.Ginsnop(s.pp)
if inlMarks == nil {
inlMarks = map[*obj.Prog]int32{}
inlMarksByPos = map[src.XPos][]*obj.Prog{}
}
inlMarks[p] = v.AuxInt32()
inlMarkList = append(inlMarkList, p)
pos := v.Pos.AtColumn1()
inlMarksByPos[pos] = append(inlMarksByPos[pos], p)
firstPos = src.NoXPos
default:
// Special case for first line in function; move it to the start (which cannot be a register-valued instruction)
if firstPos != src.NoXPos && v.Op != ssa.OpArgIntReg && v.Op != ssa.OpArgFloatReg && v.Op != ssa.OpLoadReg && v.Op != ssa.OpStoreReg {
s.SetPos(firstPos)
firstPos = src.NoXPos
}
// Attach this safe point to the next
// instruction.
s.pp.NextLive = s.livenessMap.Get(v)
// let the backend handle it
Arch.SSAGenValue(&s, v)
}
if idx, ok := argLiveValueMap[v.ID]; ok && idx != argLiveIdx {
argLiveIdx = idx
p := s.pp.Prog(obj.APCDATA)
p.From.SetConst(objabi.PCDATA_ArgLiveIndex)
p.To.SetConst(int64(idx))
}
if base.Ctxt.Flag_locationlists {
valueToProgAfter[v.ID] = s.pp.Next
}
if gatherPrintInfo {
for ; x != s.pp.Next; x = x.Link {
progToValue[x] = v
}
}
}
// If this is an empty infinite loop, stick a hardware NOP in there so that debuggers are less confused.
if s.bstart[b.ID] == s.pp.Next && len(b.Succs) == 1 && b.Succs[0].Block() == b {
p := Arch.Ginsnop(s.pp)
p.Pos = p.Pos.WithIsStmt()
if b.Pos == src.NoXPos {
b.Pos = p.Pos // It needs a file, otherwise a no-file non-zero line causes confusion. See #35652.
if b.Pos == src.NoXPos {
b.Pos = pp.Text.Pos // Sometimes p.Pos is empty. See #35695.
}
}
b.Pos = b.Pos.WithBogusLine() // Debuggers are not good about infinite loops, force a change in line number
}
// Emit control flow instructions for block
var next *ssa.Block
if i < len(f.Blocks)-1 && base.Flag.N == 0 {
// If -N, leave next==nil so every block with successors
// ends in a JMP (except call blocks - plive doesn't like
// select{send,recv} followed by a JMP call). Helps keep
// line numbers for otherwise empty blocks.
next = f.Blocks[i+1]
}
x := s.pp.Next
s.SetPos(b.Pos)
Arch.SSAGenBlock(&s, b, next)
if gatherPrintInfo {
for ; x != s.pp.Next; x = x.Link {
progToBlock[x] = b
}
}
}
if f.Blocks[len(f.Blocks)-1].Kind == ssa.BlockExit {
// We need the return address of a panic call to
// still be inside the function in question. So if
// it ends in a call which doesn't return, add a
// nop (which will never execute) after the call.
Arch.Ginsnop(pp)
}
if openDeferInfo != nil {
// When doing open-coded defers, generate a disconnected call to
// deferreturn and a return. This will be used to during panic
// recovery to unwind the stack and return back to the runtime.
s.pp.NextLive = s.livenessMap.DeferReturn
p := pp.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = ir.Syms.Deferreturn
// Load results into registers. So when a deferred function
// recovers a panic, it will return to caller with right results.
// The results are already in memory, because they are not SSA'd
// when the function has defers (see canSSAName).
for _, o := range f.OwnAux.ABIInfo().OutParams() {
n := o.Name.(*ir.Name)
rts, offs := o.RegisterTypesAndOffsets()
for i := range o.Registers {
Arch.LoadRegResult(&s, f, rts[i], ssa.ObjRegForAbiReg(o.Registers[i], f.Config), n, offs[i])
}
}
pp.Prog(obj.ARET)
}
if inlMarks != nil {
hasCall := false
// We have some inline marks. Try to find other instructions we're
// going to emit anyway, and use those instructions instead of the
// inline marks.
for p := pp.Text; p != nil; p = p.Link {
if p.As == obj.ANOP || p.As == obj.AFUNCDATA || p.As == obj.APCDATA || p.As == obj.ATEXT || p.As == obj.APCALIGN || Arch.LinkArch.Family == sys.Wasm {
// Don't use 0-sized instructions as inline marks, because we need
// to identify inline mark instructions by pc offset.
// (Some of these instructions are sometimes zero-sized, sometimes not.
// We must not use anything that even might be zero-sized.)
// TODO: are there others?
continue
}
if _, ok := inlMarks[p]; ok {
// Don't use inline marks themselves. We don't know
// whether they will be zero-sized or not yet.
continue
}
if p.As == obj.ACALL || p.As == obj.ADUFFCOPY || p.As == obj.ADUFFZERO {
hasCall = true
}
pos := p.Pos.AtColumn1()
s := inlMarksByPos[pos]
if len(s) == 0 {
continue
}
for _, m := range s {
// We found an instruction with the same source position as
// some of the inline marks.
// Use this instruction instead.
p.Pos = p.Pos.WithIsStmt() // promote position to a statement
pp.CurFunc.LSym.Func().AddInlMark(p, inlMarks[m])
// Make the inline mark a real nop, so it doesn't generate any code.
m.As = obj.ANOP
m.Pos = src.NoXPos
m.From = obj.Addr{}
m.To = obj.Addr{}
}
delete(inlMarksByPos, pos)
}
// Any unmatched inline marks now need to be added to the inlining tree (and will generate a nop instruction).
for _, p := range inlMarkList {
if p.As != obj.ANOP {
pp.CurFunc.LSym.Func().AddInlMark(p, inlMarks[p])
}
}
if e.stksize == 0 && !hasCall {
// Frameless leaf function. It doesn't need any preamble,
// so make sure its first instruction isn't from an inlined callee.
// If it is, add a nop at the start of the function with a position
// equal to the start of the function.
// This ensures that runtime.FuncForPC(uintptr(reflect.ValueOf(fn).Pointer())).Name()
// returns the right answer. See issue 58300.
for p := pp.Text; p != nil; p = p.Link {
if p.As == obj.AFUNCDATA || p.As == obj.APCDATA || p.As == obj.ATEXT {
continue
}
if base.Ctxt.PosTable.Pos(p.Pos).Base().InliningIndex() >= 0 {
// Make a real (not 0-sized) nop.
nop := Arch.Ginsnop(pp)
nop.Pos = e.curfn.Pos().WithIsStmt()
// Unfortunately, Ginsnop puts the instruction at the
// end of the list. Move it up to just before p.
// Unlink from the current list.
for x := pp.Text; x != nil; x = x.Link {
if x.Link == nop {
x.Link = nop.Link
break
}
}
// Splice in right before p.
for x := pp.Text; x != nil; x = x.Link {
if x.Link == p {
nop.Link = p
x.Link = nop
break
}
}
}
break
}
}
}
if base.Ctxt.Flag_locationlists {
var debugInfo *ssa.FuncDebug
debugInfo = e.curfn.DebugInfo.(*ssa.FuncDebug)
if e.curfn.ABI == obj.ABIInternal && base.Flag.N != 0 {
ssa.BuildFuncDebugNoOptimized(base.Ctxt, f, base.Debug.LocationLists > 1, StackOffset, debugInfo)
} else {
ssa.BuildFuncDebug(base.Ctxt, f, base.Debug.LocationLists, StackOffset, debugInfo)
}
bstart := s.bstart
idToIdx := make([]int, f.NumBlocks())
for i, b := range f.Blocks {
idToIdx[b.ID] = i
}
// Note that at this moment, Prog.Pc is a sequence number; it's
// not a real PC until after assembly, so this mapping has to
// be done later.
debugInfo.GetPC = func(b, v ssa.ID) int64 {
switch v {
case ssa.BlockStart.ID:
if b == f.Entry.ID {
return 0 // Start at the very beginning, at the assembler-generated prologue.
// this should only happen for function args (ssa.OpArg)
}
return bstart[b].Pc
case ssa.BlockEnd.ID:
blk := f.Blocks[idToIdx[b]]
nv := len(blk.Values)
return valueToProgAfter[blk.Values[nv-1].ID].Pc
case ssa.FuncEnd.ID:
return e.curfn.LSym.Size
default:
return valueToProgAfter[v].Pc
}
}
}
// Resolve branches, and relax DefaultStmt into NotStmt
for _, br := range s.Branches {
br.P.To.SetTarget(s.bstart[br.B.ID])
if br.P.Pos.IsStmt() != src.PosIsStmt {
br.P.Pos = br.P.Pos.WithNotStmt()
} else if v0 := br.B.FirstPossibleStmtValue(); v0 != nil && v0.Pos.Line() == br.P.Pos.Line() && v0.Pos.IsStmt() == src.PosIsStmt {
br.P.Pos = br.P.Pos.WithNotStmt()
}
}
// Resolve jump table destinations.
for _, jt := range s.JumpTables {
// Convert from *Block targets to *Prog targets.
targets := make([]*obj.Prog, len(jt.Succs))
for i, e := range jt.Succs {
targets[i] = s.bstart[e.Block().ID]
}
// Add to list of jump tables to be resolved at assembly time.
// The assembler converts from *Prog entries to absolute addresses
// once it knows instruction byte offsets.
fi := pp.CurFunc.LSym.Func()
fi.JumpTables = append(fi.JumpTables, obj.JumpTable{Sym: jt.Aux.(*obj.LSym), Targets: targets})
}
if e.log { // spew to stdout
filename := ""
for p := pp.Text; p != nil; p = p.Link {
if p.Pos.IsKnown() && p.InnermostFilename() != filename {
filename = p.InnermostFilename()
f.Logf("# %s\n", filename)
}
var s string
if v, ok := progToValue[p]; ok {
s = v.String()
} else if b, ok := progToBlock[p]; ok {
s = b.String()
} else {
s = " " // most value and branch strings are 2-3 characters long
}
f.Logf(" %-6s\t%.5d (%s)\t%s\n", s, p.Pc, p.InnermostLineNumber(), p.InstructionString())
}
}
if f.HTMLWriter != nil { // spew to ssa.html
var buf strings.Builder
buf.WriteString("<code>")
buf.WriteString("<dl class=\"ssa-gen\">")
filename := ""
for p := pp.Text; p != nil; p = p.Link {
// Don't spam every line with the file name, which is often huge.
// Only print changes, and "unknown" is not a change.
if p.Pos.IsKnown() && p.InnermostFilename() != filename {
filename = p.InnermostFilename()
buf.WriteString("<dt class=\"ssa-prog-src\"></dt><dd class=\"ssa-prog\">")
buf.WriteString(html.EscapeString("# " + filename))
buf.WriteString("</dd>")
}
buf.WriteString("<dt class=\"ssa-prog-src\">")
if v, ok := progToValue[p]; ok {
buf.WriteString(v.HTML())
} else if b, ok := progToBlock[p]; ok {
buf.WriteString("<b>" + b.HTML() + "</b>")
}
buf.WriteString("</dt>")
buf.WriteString("<dd class=\"ssa-prog\">")
fmt.Fprintf(&buf, "%.5d <span class=\"l%v line-number\">(%s)</span> %s", p.Pc, p.InnermostLineNumber(), p.InnermostLineNumberHTML(), html.EscapeString(p.InstructionString()))
buf.WriteString("</dd>")
}
buf.WriteString("</dl>")
buf.WriteString("</code>")
f.HTMLWriter.WriteColumn("genssa", "genssa", "ssa-prog", buf.String())
}
if ssa.GenssaDump[f.Name] {
fi := f.DumpFileForPhase("genssa")
if fi != nil {
// inliningDiffers if any filename changes or if any line number except the innermost (index 0) changes.
inliningDiffers := func(a, b []src.Pos) bool {
if len(a) != len(b) {
return true
}
for i := range a {
if a[i].Filename() != b[i].Filename() {
return true
}
if i > 0 && a[i].Line() != b[i].Line() {
return true
}
}
return false
}
var allPosOld []src.Pos
var allPos []src.Pos
for p := pp.Text; p != nil; p = p.Link {
if p.Pos.IsKnown() {
allPos = p.AllPos(allPos)
if inliningDiffers(allPos, allPosOld) {
for i := len(allPos) - 1; i >= 0; i-- {
pos := allPos[i]
fmt.Fprintf(fi, "# %s:%d\n", pos.Filename(), pos.Line())
}
allPos, allPosOld = allPosOld, allPos // swap, not copy, so that they do not share slice storage.
}
}
var s string
if v, ok := progToValue[p]; ok {
s = v.String()
} else if b, ok := progToBlock[p]; ok {
s = b.String()
} else {
s = " " // most value and branch strings are 2-3 characters long
}
fmt.Fprintf(fi, " %-6s\t%.5d %s\t%s\n", s, p.Pc, ssa.StmtString(p.Pos), p.InstructionString())
}
fi.Close()
}
}
defframe(&s, e, f)
f.HTMLWriter.Close()
f.HTMLWriter = nil
}
func defframe(s *State, e *ssafn, f *ssa.Func) {
pp := s.pp
s.maxarg = types.RoundUp(s.maxarg, e.stkalign)
frame := s.maxarg + e.stksize
if Arch.PadFrame != nil {
frame = Arch.PadFrame(frame)
}
// Fill in argument and frame size.
pp.Text.To.Type = obj.TYPE_TEXTSIZE
pp.Text.To.Val = int32(types.RoundUp(f.OwnAux.ArgWidth(), int64(types.RegSize)))
pp.Text.To.Offset = frame
p := pp.Text
// Insert code to spill argument registers if the named slot may be partially
// live. That is, the named slot is considered live by liveness analysis,
// (because a part of it is live), but we may not spill all parts into the
// slot. This can only happen with aggregate-typed arguments that are SSA-able
// and not address-taken (for non-SSA-able or address-taken arguments we always
// spill upfront).
// Note: spilling is unnecessary in the -N/no-optimize case, since all values
// will be considered non-SSAable and spilled up front.
// TODO(register args) Make liveness more fine-grained to that partial spilling is okay.
if f.OwnAux.ABIInfo().InRegistersUsed() != 0 && base.Flag.N == 0 {
// First, see if it is already spilled before it may be live. Look for a spill
// in the entry block up to the first safepoint.
type nameOff struct {
n *ir.Name
off int64
}
partLiveArgsSpilled := make(map[nameOff]bool)
for _, v := range f.Entry.Values {
if v.Op.IsCall() {
break
}
if v.Op != ssa.OpStoreReg || v.Args[0].Op != ssa.OpArgIntReg {
continue
}
n, off := ssa.AutoVar(v)
if n.Class != ir.PPARAM || n.Addrtaken() || !TypeOK(n.Type()) || !s.partLiveArgs[n] {
continue
}
partLiveArgsSpilled[nameOff{n, off}] = true
}
// Then, insert code to spill registers if not already.
for _, a := range f.OwnAux.ABIInfo().InParams() {
n, ok := a.Name.(*ir.Name)
if !ok || n.Addrtaken() || !TypeOK(n.Type()) || !s.partLiveArgs[n] || len(a.Registers) <= 1 {
continue
}
rts, offs := a.RegisterTypesAndOffsets()
for i := range a.Registers {
if !rts[i].HasPointers() {
continue
}
if partLiveArgsSpilled[nameOff{n, offs[i]}] {
continue // already spilled
}
reg := ssa.ObjRegForAbiReg(a.Registers[i], f.Config)
p = Arch.SpillArgReg(pp, p, f, rts[i], reg, n, offs[i])
}
}
}
// Insert code to zero ambiguously live variables so that the
// garbage collector only sees initialized values when it
// looks for pointers.
var lo, hi int64
// Opaque state for backend to use. Current backends use it to
// keep track of which helper registers have been zeroed.
var state uint32
// Iterate through declarations. Autos are sorted in decreasing
// frame offset order.
for _, n := range e.curfn.Dcl {
if !n.Needzero() {
continue
}
if n.Class != ir.PAUTO {
e.Fatalf(n.Pos(), "needzero class %d", n.Class)
}
if n.Type().Size()%int64(types.PtrSize) != 0 || n.FrameOffset()%int64(types.PtrSize) != 0 || n.Type().Size() == 0 {
e.Fatalf(n.Pos(), "var %L has size %d offset %d", n, n.Type().Size(), n.Offset_)
}
if lo != hi && n.FrameOffset()+n.Type().Size() >= lo-int64(2*types.RegSize) {
// Merge with range we already have.
lo = n.FrameOffset()
continue
}
// Zero old range
p = Arch.ZeroRange(pp, p, frame+lo, hi-lo, &state)
// Set new range.
lo = n.FrameOffset()
hi = lo + n.Type().Size()
}
// Zero final range.
Arch.ZeroRange(pp, p, frame+lo, hi-lo, &state)
}
// For generating consecutive jump instructions to model a specific branching
type IndexJump struct {
Jump obj.As
Index int
}
func (s *State) oneJump(b *ssa.Block, jump *IndexJump) {
p := s.Br(jump.Jump, b.Succs[jump.Index].Block())
p.Pos = b.Pos
}
// CombJump generates combinational instructions (2 at present) for a block jump,
// thereby the behaviour of non-standard condition codes could be simulated
func (s *State) CombJump(b, next *ssa.Block, jumps *[2][2]IndexJump) {
switch next {
case b.Succs[0].Block():
s.oneJump(b, &jumps[0][0])
s.oneJump(b, &jumps[0][1])
case b.Succs[1].Block():
s.oneJump(b, &jumps[1][0])
s.oneJump(b, &jumps[1][1])
default:
var q *obj.Prog
if b.Likely != ssa.BranchUnlikely {
s.oneJump(b, &jumps[1][0])
s.oneJump(b, &jumps[1][1])
q = s.Br(obj.AJMP, b.Succs[1].Block())
} else {
s.oneJump(b, &jumps[0][0])
s.oneJump(b, &jumps[0][1])
q = s.Br(obj.AJMP, b.Succs[0].Block())
}
q.Pos = b.Pos
}
}
// AddAux adds the offset in the aux fields (AuxInt and Aux) of v to a.
func AddAux(a *obj.Addr, v *ssa.Value) {
AddAux2(a, v, v.AuxInt)
}
func AddAux2(a *obj.Addr, v *ssa.Value, offset int64) {
if a.Type != obj.TYPE_MEM && a.Type != obj.TYPE_ADDR {
v.Fatalf("bad AddAux addr %v", a)
}
// add integer offset
a.Offset += offset
// If no additional symbol offset, we're done.
if v.Aux == nil {
return
}
// Add symbol's offset from its base register.
switch n := v.Aux.(type) {
case *ssa.AuxCall:
a.Name = obj.NAME_EXTERN
a.Sym = n.Fn
case *obj.LSym:
a.Name = obj.NAME_EXTERN
a.Sym = n
case *ir.Name:
if n.Class == ir.PPARAM || (n.Class == ir.PPARAMOUT && !n.IsOutputParamInRegisters()) {
a.Name = obj.NAME_PARAM
a.Sym = ir.Orig(n).(*ir.Name).Linksym()
a.Offset += n.FrameOffset()
break
}
a.Name = obj.NAME_AUTO
if n.Class == ir.PPARAMOUT {
a.Sym = ir.Orig(n).(*ir.Name).Linksym()
} else {
a.Sym = n.Linksym()
}
a.Offset += n.FrameOffset()
default:
v.Fatalf("aux in %s not implemented %#v", v, v.Aux)
}
}
// extendIndex extends v to a full int width.
// panic with the given kind if v does not fit in an int (only on 32-bit archs).
func (s *state) extendIndex(idx, len *ssa.Value, kind ssa.BoundsKind, bounded bool) *ssa.Value {
size := idx.Type.Size()
if size == s.config.PtrSize {
return idx
}
if size > s.config.PtrSize {
// truncate 64-bit indexes on 32-bit pointer archs. Test the
// high word and branch to out-of-bounds failure if it is not 0.
var lo *ssa.Value
if idx.Type.IsSigned() {
lo = s.newValue1(ssa.OpInt64Lo, types.Types[types.TINT], idx)
} else {
lo = s.newValue1(ssa.OpInt64Lo, types.Types[types.TUINT], idx)
}
if bounded || base.Flag.B != 0 {
return lo
}
bNext := s.f.NewBlock(ssa.BlockPlain)
bPanic := s.f.NewBlock(ssa.BlockExit)
hi := s.newValue1(ssa.OpInt64Hi, types.Types[types.TUINT32], idx)
cmp := s.newValue2(ssa.OpEq32, types.Types[types.TBOOL], hi, s.constInt32(types.Types[types.TUINT32], 0))
if !idx.Type.IsSigned() {
switch kind {
case ssa.BoundsIndex:
kind = ssa.BoundsIndexU
case ssa.BoundsSliceAlen:
kind = ssa.BoundsSliceAlenU
case ssa.BoundsSliceAcap:
kind = ssa.BoundsSliceAcapU
case ssa.BoundsSliceB:
kind = ssa.BoundsSliceBU
case ssa.BoundsSlice3Alen:
kind = ssa.BoundsSlice3AlenU
case ssa.BoundsSlice3Acap:
kind = ssa.BoundsSlice3AcapU
case ssa.BoundsSlice3B:
kind = ssa.BoundsSlice3BU
case ssa.BoundsSlice3C:
kind = ssa.BoundsSlice3CU
}
}
b := s.endBlock()
b.Kind = ssa.BlockIf
b.SetControl(cmp)
b.Likely = ssa.BranchLikely
b.AddEdgeTo(bNext)
b.AddEdgeTo(bPanic)
s.startBlock(bPanic)
mem := s.newValue4I(ssa.OpPanicExtend, types.TypeMem, int64(kind), hi, lo, len, s.mem())
s.endBlock().SetControl(mem)
s.startBlock(bNext)
return lo
}
// Extend value to the required size
var op ssa.Op
if idx.Type.IsSigned() {
switch 10*size + s.config.PtrSize {
case 14:
op = ssa.OpSignExt8to32
case 18:
op = ssa.OpSignExt8to64
case 24:
op = ssa.OpSignExt16to32
case 28:
op = ssa.OpSignExt16to64
case 48:
op = ssa.OpSignExt32to64
default:
s.Fatalf("bad signed index extension %s", idx.Type)
}
} else {
switch 10*size + s.config.PtrSize {
case 14:
op = ssa.OpZeroExt8to32
case 18:
op = ssa.OpZeroExt8to64
case 24:
op = ssa.OpZeroExt16to32
case 28:
op = ssa.OpZeroExt16to64
case 48:
op = ssa.OpZeroExt32to64
default:
s.Fatalf("bad unsigned index extension %s", idx.Type)
}
}
return s.newValue1(op, types.Types[types.TINT], idx)
}
// CheckLoweredPhi checks that regalloc and stackalloc correctly handled phi values.
// Called during ssaGenValue.
func CheckLoweredPhi(v *ssa.Value) {
if v.Op != ssa.OpPhi {
v.Fatalf("CheckLoweredPhi called with non-phi value: %v", v.LongString())
}
if v.Type.IsMemory() {
return
}
f := v.Block.Func
loc := f.RegAlloc[v.ID]
for _, a := range v.Args {
if aloc := f.RegAlloc[a.ID]; aloc != loc { // TODO: .Equal() instead?
v.Fatalf("phi arg at different location than phi: %v @ %s, but arg %v @ %s\n%s\n", v, loc, a, aloc, v.Block.Func)
}
}
}
// CheckLoweredGetClosurePtr checks that v is the first instruction in the function's entry block,
// except for incoming in-register arguments.
// The output of LoweredGetClosurePtr is generally hardwired to the correct register.
// That register contains the closure pointer on closure entry.
func CheckLoweredGetClosurePtr(v *ssa.Value) {
entry := v.Block.Func.Entry
if entry != v.Block {
base.Fatalf("in %s, badly placed LoweredGetClosurePtr: %v %v", v.Block.Func.Name, v.Block, v)
}
for _, w := range entry.Values {
if w == v {
break
}
switch w.Op {
case ssa.OpArgIntReg, ssa.OpArgFloatReg:
// okay
default:
base.Fatalf("in %s, badly placed LoweredGetClosurePtr: %v %v", v.Block.Func.Name, v.Block, v)
}
}
}
// CheckArgReg ensures that v is in the function's entry block.
func CheckArgReg(v *ssa.Value) {
entry := v.Block.Func.Entry
if entry != v.Block {
base.Fatalf("in %s, badly placed ArgIReg or ArgFReg: %v %v", v.Block.Func.Name, v.Block, v)
}
}
func AddrAuto(a *obj.Addr, v *ssa.Value) {
n, off := ssa.AutoVar(v)
a.Type = obj.TYPE_MEM
a.Sym = n.Linksym()
a.Reg = int16(Arch.REGSP)
a.Offset = n.FrameOffset() + off
if n.Class == ir.PPARAM || (n.Class == ir.PPARAMOUT && !n.IsOutputParamInRegisters()) {
a.Name = obj.NAME_PARAM
} else {
a.Name = obj.NAME_AUTO
}
}
// Call returns a new CALL instruction for the SSA value v.
// It uses PrepareCall to prepare the call.
func (s *State) Call(v *ssa.Value) *obj.Prog {
pPosIsStmt := s.pp.Pos.IsStmt() // The statement-ness fo the call comes from ssaGenState
s.PrepareCall(v)
p := s.Prog(obj.ACALL)
if pPosIsStmt == src.PosIsStmt {
p.Pos = v.Pos.WithIsStmt()
} else {
p.Pos = v.Pos.WithNotStmt()
}
if sym, ok := v.Aux.(*ssa.AuxCall); ok && sym.Fn != nil {
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = sym.Fn
} else {
// TODO(mdempsky): Can these differences be eliminated?
switch Arch.LinkArch.Family {
case sys.AMD64, sys.I386, sys.PPC64, sys.RISCV64, sys.S390X, sys.Wasm:
p.To.Type = obj.TYPE_REG
case sys.ARM, sys.ARM64, sys.Loong64, sys.MIPS, sys.MIPS64:
p.To.Type = obj.TYPE_MEM
default:
base.Fatalf("unknown indirect call family")
}
p.To.Reg = v.Args[0].Reg()
}
return p
}
// TailCall returns a new tail call instruction for the SSA value v.
// It is like Call, but for a tail call.
func (s *State) TailCall(v *ssa.Value) *obj.Prog {
p := s.Call(v)
p.As = obj.ARET
return p
}
// PrepareCall prepares to emit a CALL instruction for v and does call-related bookkeeping.
// It must be called immediately before emitting the actual CALL instruction,
// since it emits PCDATA for the stack map at the call (calls are safe points).
func (s *State) PrepareCall(v *ssa.Value) {
idx := s.livenessMap.Get(v)
if !idx.StackMapValid() {
// See Liveness.hasStackMap.
if sym, ok := v.Aux.(*ssa.AuxCall); !ok || !(sym.Fn == ir.Syms.Typedmemclr || sym.Fn == ir.Syms.Typedmemmove) {
base.Fatalf("missing stack map index for %v", v.LongString())
}
}
call, ok := v.Aux.(*ssa.AuxCall)
if ok {
// Record call graph information for nowritebarrierrec
// analysis.
if nowritebarrierrecCheck != nil {
nowritebarrierrecCheck.recordCall(s.pp.CurFunc, call.Fn, v.Pos)
}
}
if s.maxarg < v.AuxInt {
s.maxarg = v.AuxInt
}
}
// UseArgs records the fact that an instruction needs a certain amount of
// callee args space for its use.
func (s *State) UseArgs(n int64) {
if s.maxarg < n {
s.maxarg = n
}
}
// fieldIdx finds the index of the field referred to by the ODOT node n.
func fieldIdx(n *ir.SelectorExpr) int {
t := n.X.Type()
if !t.IsStruct() {
panic("ODOT's LHS is not a struct")
}
for i, f := range t.Fields().Slice() {
if f.Sym == n.Sel {
if f.Offset != n.Offset() {
panic("field offset doesn't match")
}
return i
}
}
panic(fmt.Sprintf("can't find field in expr %v\n", n))
// TODO: keep the result of this function somewhere in the ODOT Node
// so we don't have to recompute it each time we need it.
}
// ssafn holds frontend information about a function that the backend is processing.
// It also exports a bunch of compiler services for the ssa backend.
type ssafn struct {
curfn *ir.Func
strings map[string]*obj.LSym // map from constant string to data symbols
stksize int64 // stack size for current frame
stkptrsize int64 // prefix of stack containing pointers
// alignment for current frame.
// NOTE: when stkalign > PtrSize, currently this only ensures the offsets of
// objects in the stack frame are aligned. The stack pointer is still aligned
// only PtrSize.
stkalign int64
log bool // print ssa debug to the stdout
}
// StringData returns a symbol which
// is the data component of a global string constant containing s.
func (e *ssafn) StringData(s string) *obj.LSym {
if aux, ok := e.strings[s]; ok {
return aux
}
if e.strings == nil {
e.strings = make(map[string]*obj.LSym)
}
data := staticdata.StringSym(e.curfn.Pos(), s)
e.strings[s] = data
return data
}
func (e *ssafn) Auto(pos src.XPos, t *types.Type) *ir.Name {
return typecheck.TempAt(pos, e.curfn, t) // Note: adds new auto to e.curfn.Func.Dcl list
}
// SplitSlot returns a slot representing the data of parent starting at offset.
func (e *ssafn) SplitSlot(parent *ssa.LocalSlot, suffix string, offset int64, t *types.Type) ssa.LocalSlot {
node := parent.N
if node.Class != ir.PAUTO || node.Addrtaken() {
// addressed things and non-autos retain their parents (i.e., cannot truly be split)
return ssa.LocalSlot{N: node, Type: t, Off: parent.Off + offset}
}
s := &types.Sym{Name: node.Sym().Name + suffix, Pkg: types.LocalPkg}
n := ir.NewNameAt(parent.N.Pos(), s)
s.Def = n
ir.AsNode(s.Def).Name().SetUsed(true)
n.SetType(t)
n.Class = ir.PAUTO
n.SetEsc(ir.EscNever)
n.Curfn = e.curfn
e.curfn.Dcl = append(e.curfn.Dcl, n)
types.CalcSize(t)
return ssa.LocalSlot{N: n, Type: t, Off: 0, SplitOf: parent, SplitOffset: offset}
}
func (e *ssafn) CanSSA(t *types.Type) bool {
return TypeOK(t)
}
func (e *ssafn) Line(pos src.XPos) string {
return base.FmtPos(pos)
}
// Logf logs a message from the compiler.
func (e *ssafn) Logf(msg string, args ...interface{}) {
if e.log {
fmt.Printf(msg, args...)
}
}
func (e *ssafn) Log() bool {
return e.log
}
// Fatalf reports a compiler error and exits.
func (e *ssafn) Fatalf(pos src.XPos, msg string, args ...interface{}) {
base.Pos = pos
nargs := append([]interface{}{ir.FuncName(e.curfn)}, args...)
base.Fatalf("'%s': "+msg, nargs...)
}
// Warnl reports a "warning", which is usually flag-triggered
// logging output for the benefit of tests.
func (e *ssafn) Warnl(pos src.XPos, fmt_ string, args ...interface{}) {
base.WarnfAt(pos, fmt_, args...)
}
func (e *ssafn) Debug_checknil() bool {
return base.Debug.Nil != 0
}
func (e *ssafn) UseWriteBarrier() bool {
return base.Flag.WB
}
func (e *ssafn) Syslook(name string) *obj.LSym {
switch name {
case "goschedguarded":
return ir.Syms.Goschedguarded
case "writeBarrier":
return ir.Syms.WriteBarrier
case "gcWriteBarrier":
return ir.Syms.GCWriteBarrier
case "typedmemmove":
return ir.Syms.Typedmemmove
case "typedmemclr":
return ir.Syms.Typedmemclr
}
e.Fatalf(src.NoXPos, "unknown Syslook func %v", name)
return nil
}
func (e *ssafn) SetWBPos(pos src.XPos) {
e.curfn.SetWBPos(pos)
}
func (e *ssafn) MyImportPath() string {
return base.Ctxt.Pkgpath
}
func (e *ssafn) LSym() string {
return e.curfn.LSym.Name
}
func clobberBase(n ir.Node) ir.Node {
if n.Op() == ir.ODOT {
n := n.(*ir.SelectorExpr)
if n.X.Type().NumFields() == 1 {
return clobberBase(n.X)
}
}
if n.Op() == ir.OINDEX {
n := n.(*ir.IndexExpr)
if n.X.Type().IsArray() && n.X.Type().NumElem() == 1 {
return clobberBase(n.X)
}
}
return n
}
// callTargetLSym returns the correct LSym to call 'callee' using its ABI.
func callTargetLSym(callee *ir.Name) *obj.LSym {
if callee.Func == nil {
// TODO(austin): This happens in a few cases of
// compiler-generated functions. These are all
// ABIInternal. It would be better if callee.Func was
// never nil and we didn't need this case.
return callee.Linksym()
}
return callee.LinksymABI(callee.Func.ABI)
}
func min8(a, b int8) int8 {
if a < b {
return a
}
return b
}
func max8(a, b int8) int8 {
if a > b {
return a
}
return b
}
// deferstruct makes a runtime._defer structure.
func deferstruct() *types.Type {
makefield := func(name string, typ *types.Type) *types.Field {
// Unlike the global makefield function, this one needs to set Pkg
// because these types might be compared (in SSA CSE sorting).
// TODO: unify this makefield and the global one above.
sym := &types.Sym{Name: name, Pkg: types.LocalPkg}
return types.NewField(src.NoXPos, sym, typ)
}
// These fields must match the ones in runtime/runtime2.go:_defer and
// (*state).call above.
fields := []*types.Field{
makefield("started", types.Types[types.TBOOL]),
makefield("heap", types.Types[types.TBOOL]),
makefield("openDefer", types.Types[types.TBOOL]),
makefield("sp", types.Types[types.TUINTPTR]),
makefield("pc", types.Types[types.TUINTPTR]),
// Note: the types here don't really matter. Defer structures
// are always scanned explicitly during stack copying and GC,
// so we make them uintptr type even though they are real pointers.
makefield("fn", types.Types[types.TUINTPTR]),
makefield("_panic", types.Types[types.TUINTPTR]),
makefield("link", types.Types[types.TUINTPTR]),
makefield("fd", types.Types[types.TUINTPTR]),
makefield("varp", types.Types[types.TUINTPTR]),
makefield("framepc", types.Types[types.TUINTPTR]),
}
// build struct holding the above fields
s := types.NewStruct(fields)
s.SetNoalg(true)
types.CalcStructSize(s)
return s
}
// SpillSlotAddr uses LocalSlot information to initialize an obj.Addr
// The resulting addr is used in a non-standard context -- in the prologue
// of a function, before the frame has been constructed, so the standard
// addressing for the parameters will be wrong.
func SpillSlotAddr(spill ssa.Spill, baseReg int16, extraOffset int64) obj.Addr {
return obj.Addr{
Name: obj.NAME_NONE,
Type: obj.TYPE_MEM,
Reg: baseReg,
Offset: spill.Offset + extraOffset,
}
}
var (
BoundsCheckFunc [ssa.BoundsKindCount]*obj.LSym
ExtendCheckFunc [ssa.BoundsKindCount]*obj.LSym
)
// GCWriteBarrierReg maps from registers to gcWriteBarrier implementation LSyms.
var GCWriteBarrierReg map[int16]*obj.LSym