image/jpeg: move the level-shift and clip out of the idct function,
to be consistent with the fdct function, and to ease any future
idct rewrites in assembly.
The BenchmarkIDCT delta is obviously just an accounting change and not
a real saving, but it does give an indication of what proportion of
time was spent in the actual IDCT and what proportion was in shift and
clip. The idct time taken is now comparable to fdct.
The BenchmarkFDCT delta is an estimate of benchmark noise.
benchmark old ns/op new ns/op delta
BenchmarkFDCT 3842 3837 -0.13%
BenchmarkIDCT 5611 3478 -38.01%
BenchmarkDecodeRGBOpaque 2932785 2929751 -0.10%
R=r
CC=golang-dev
https://golang.org/cl/6625057
diff --git a/src/pkg/image/jpeg/idct.go b/src/pkg/image/jpeg/idct.go
index 1808beb..92ff1e4 100644
--- a/src/pkg/image/jpeg/idct.go
+++ b/src/pkg/image/jpeg/idct.go
@@ -59,9 +59,7 @@
r2 = 181 // 256/sqrt(2)
)
-// idct performs a 2-D Inverse Discrete Cosine Transformation, followed by a
-// +128 level shift and a clip to [0, 255], writing the results to dst.
-// stride is the number of elements between successive rows of dst.
+// idct performs a 2-D Inverse Discrete Cosine Transformation.
//
// The input coefficients should already have been multiplied by the
// appropriate quantization table. We use fixed-point computation, with the
@@ -71,7 +69,7 @@
// For more on the actual algorithm, see Z. Wang, "Fast algorithms for the
// discrete W transform and for the discrete Fourier transform", IEEE Trans. on
// ASSP, Vol. ASSP- 32, pp. 803-816, Aug. 1984.
-func idct(dst []byte, stride int, src *block) {
+func idct(src *block) {
// Horizontal 1-D IDCT.
for y := 0; y < 8; y++ {
y8 := y * 8
@@ -191,21 +189,4 @@
src[8*6+x] = (y3 - y2) >> 14
src[8*7+x] = (y7 - y1) >> 14
}
-
- // Level shift by +128, clip to [0, 255], and write to dst.
- for y := 0; y < 8; y++ {
- y8 := y * 8
- yStride := y * stride
- for x := 0; x < 8; x++ {
- c := src[y8+x]
- if c < -128 {
- c = 0
- } else if c > 127 {
- c = 255
- } else {
- c += 128
- }
- dst[yStride+x] = uint8(c)
- }
- }
}