correctly rounded floating-point conversions
in new package strconv.

move atoi etc to strconv too.

update fmt, etc to use strconv.

R=r
DELTA=2232  (1691 added, 424 deleted, 117 changed)
OCL=19286
CL=19380
diff --git a/src/lib/strconv/ftoa.go b/src/lib/strconv/ftoa.go
new file mode 100644
index 0000000..f785c85
--- /dev/null
+++ b/src/lib/strconv/ftoa.go
@@ -0,0 +1,379 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Binary to decimal floating point conversion.
+// Algorithm:
+//   1) store mantissa in multiprecision decimal
+//   2) shift decimal by exponent
+//   3) read digits out & format
+
+package strconv
+
+import "strconv"
+
+// TODO: move elsewhere?
+package type FloatInfo struct {
+	mantbits uint;
+	expbits uint;
+	bias int;
+}
+package var float32info = FloatInfo{ 23, 8, -127 }
+package var float64info = FloatInfo{ 52, 11, -1023 }
+
+func FmtB(neg bool, mant uint64, exp int, flt *FloatInfo) string
+func FmtE(neg bool, d *Decimal, prec int) string
+func FmtF(neg bool, d *Decimal, prec int) string
+func GenericFtoa(bits uint64, fmt byte, prec int, flt *FloatInfo) string
+func Max(a, b int) int
+func RoundShortest(d *Decimal, mant uint64, exp int, flt *FloatInfo)
+
+func FloatSize() int {
+	// Figure out whether float is float32 or float64.
+	// 1e-35 is representable in both, but 1e-70
+	// is too small for a float32.
+	var f float = 1e-35;
+	if f*f == 0 {
+		return 32;
+	}
+	return 64;
+}
+export var floatsize = FloatSize()
+
+export func ftoa32(f float32, fmt byte, prec int) string {
+	return GenericFtoa(uint64(sys.float32bits(f)), fmt, prec, &float32info);
+}
+
+export func ftoa64(f float64, fmt byte, prec int) string {
+	return GenericFtoa(sys.float64bits(f), fmt, prec, &float64info);
+}
+
+export func ftoa(f float, fmt byte, prec int) string {
+	if floatsize == 32 {
+		return ftoa32(float32(f), fmt, prec);
+	}
+	return ftoa64(float64(f), fmt, prec);
+}
+
+func GenericFtoa(bits uint64, fmt byte, prec int, flt *FloatInfo) string {
+	neg := bits>>flt.expbits>>flt.mantbits != 0;
+	exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1);
+	mant := bits & (uint64(1)<<flt.mantbits - 1);
+
+	switch exp {
+	case 1<<flt.expbits - 1:
+		// Inf, NaN
+		if mant != 0 {
+			return "NaN";
+		}
+		if neg {
+			return "-Inf";
+		}
+		return "+Inf";
+
+	case 0:
+		// denormalized
+		exp++;
+
+	default:
+		// add implicit top bit
+		mant |= uint64(1)<<flt.mantbits;
+	}
+	exp += flt.bias;
+
+	// Pick off easy binary format.
+	if fmt == 'b' {
+		return FmtB(neg, mant, exp, flt);
+	}
+
+	// Create exact decimal representation.
+	// The shift is exp - flt.mantbits because mant is a 1-bit integer
+	// followed by a flt.mantbits fraction, and we are treating it as
+	// a 1+flt.mantbits-bit integer.
+	d := NewDecimal(mant).Shift(exp - int(flt.mantbits));
+
+	// Round appropriately.
+	// Negative precision means "only as much as needed to be exact."
+	if prec < 0 {
+		RoundShortest(d, mant, exp, flt);
+		switch fmt {
+		case 'e':
+			prec = d.nd - 1;
+		case 'f':
+			prec = Max(d.nd - d.dp, 0);
+		case 'g':
+			prec = d.nd;
+		}
+	} else {
+		switch fmt {
+		case 'e':
+			d.Round(prec+1);
+		case 'f':
+			d.Round(d.dp+prec);
+		case 'g':
+			if prec == 0 {
+				prec = 1;
+			}
+			d.Round(prec);
+		}
+	}
+
+	switch fmt {
+	case 'e':
+		return FmtE(neg, d, prec);
+	case 'f':
+		return FmtF(neg, d, prec);
+	case 'g':
+		// trailing zeros are removed.
+		if prec > d.nd {
+			prec = d.nd;
+		}
+		// %e is used if the exponent from the conversion
+		// is less than -4 or greater than or equal to the precision.
+		exp := d.dp - 1;
+		if exp < -4 || exp >= prec {
+			return FmtE(neg, d, prec - 1);
+		}
+		return FmtF(neg, d, Max(prec - d.dp, 0));
+	}
+
+	return "%" + string(fmt);
+}
+
+// Round d (= mant * 2^exp) to the shortest number of digits
+// that will let the original floating point value be precisely
+// reconstructed.  Size is original floating point size (64 or 32).
+func RoundShortest(d *Decimal, mant uint64, exp int, flt *FloatInfo) {
+	// TODO: Unless exp == minexp, if the number of digits in d
+	// is less than 17, it seems unlikely that it could not be
+	// the shortest possible number already.  So maybe we can
+	// bail out without doing the extra multiprecision math here.
+
+	// Compute upper and lower such that any decimal number
+	// between upper and lower (possibly inclusive)
+	// will round to the original floating point number.
+
+	// d = mant << (exp - mantbits)
+	// Next highest floating point number is mant+1 << exp-mantbits.
+	// Our upper bound is halfway inbetween, mant*2+1 << exp-mantbits-1.
+	upper := NewDecimal(mant*2+1).Shift(exp-int(flt.mantbits)-1);
+
+	// d = mant << (exp - mantbits)
+	// Next lowest floating point number is mant-1 << exp-mantbits,
+	// unless mant-1 drops the significant bit and exp is not the minimum exp,
+	// in which case the next lowest is mant*2-1 << exp-mantbits-1.
+	// Either way, call it mantlo << explo-mantbits.
+	// Our lower bound is halfway inbetween, mantlo*2+1 << explo-mantbits-1.
+	minexp := flt.bias + 1;	// minimum possible exponent
+	var mantlo uint64;
+	var explo int;
+	if mant > 1<<flt.mantbits || exp == minexp {
+		mantlo = mant - 1;
+		explo = exp;
+	} else {
+		mantlo = mant*2-1;
+		explo = exp-1;
+	}
+	lower := NewDecimal(mantlo*2+1).Shift(explo-int(flt.mantbits)-1);
+
+	// The upper and lower bounds are possible outputs only if
+	// the original mantissa is even, so that IEEE round-to-even
+	// would round to the original mantissa and not the neighbors.
+	inclusive := mant%2 == 0;
+
+	// Now we can figure out the minimum number of digits required.
+	// Walk along until d has distinguished itself from upper and lower.
+	for i := 0; i < d.nd; i++ {
+		var l, m, u byte;	// lower, middle, upper digits
+		if i < lower.nd {
+			l = lower.d[i];
+		} else {
+			l = '0';
+		}
+		m = d.d[i];
+		if i < upper.nd {
+			u = upper.d[i];
+		} else {
+			u = '0';
+		}
+
+		// Okay to round down (truncate) if lower has a different digit
+		// or if lower is inclusive and is exactly the result of rounding down.
+		okdown := l != m || (inclusive && l == m && i+1 == lower.nd);
+
+		// Okay to round up if upper has a different digit and
+		// either upper is inclusive or upper is bigger than the result of rounding up.
+		okup := m != u && (inclusive || i+1 < upper.nd);
+
+		// If it's okay to do either, then round to the nearest one.
+		// If it's okay to do only one, do it.
+		switch {
+		case okdown && okup:
+			d.Round(i+1);
+			return;
+		case okdown:
+			d.RoundDown(i+1);
+			return;
+		case okup:
+			d.RoundUp(i+1);
+			return;
+		}
+	}
+}
+
+// %e: -d.ddddde±dd
+func FmtE(neg bool, d *Decimal, prec int) string {
+	buf := new([]byte, 3+Max(prec, 0)+30);	// "-0." + prec digits + exp
+	w := 0;	// write index
+
+	// sign
+	if neg {
+		buf[w] = '-';
+		w++;
+	}
+
+	// first digit
+	if d.nd == 0 {
+		buf[w] = '0';
+	} else {
+		buf[w] = d.d[0];
+	}
+	w++;
+
+	// .moredigits
+	if prec > 0 {
+		buf[w] = '.';
+		w++;
+		for i := 0; i < prec; i++ {
+			if 1+i < d.nd {
+				buf[w] = d.d[1+i];
+			} else {
+				buf[w] = '0';
+			}
+			w++;
+		}
+	}
+
+	// e±
+	buf[w] = 'e';
+	w++;
+	exp := d.dp - 1;
+	if d.nd == 0 {	// special case: 0 has exponent 0
+		exp = 0;
+	}
+	if exp < 0 {
+		buf[w] = '-';
+		exp = -exp;
+	} else {
+		buf[w] = '+';
+	}
+	w++;
+
+	// dddd
+	// count digits
+	n := 0;
+	for e := exp; e > 0; e /= 10 {
+		n++;
+	}
+	// leading zeros
+	for i := n; i < 2; i++ {
+		buf[w] = '0';
+		w++;
+	}
+	// digits
+	w += n;
+	n = 0;
+	for e := exp; e > 0; e /= 10 {
+		n++;
+		buf[w-n] = byte(e%10 + '0');
+	}
+
+	return string(buf[0:w]);
+}
+
+// %f: -ddddddd.ddddd
+func FmtF(neg bool, d *Decimal, prec int) string {
+	buf := new([]byte, 1+Max(d.dp, 1)+1+Max(prec, 0));
+	w := 0;
+
+	// sign
+	if neg {
+		buf[w] = '-';
+		w++;
+	}
+
+	// integer, padded with zeros as needed.
+	if d.dp > 0 {
+		var i int;
+		for i = 0; i < d.dp && i < d.nd; i++ {
+			buf[w] = d.d[i];
+			w++;
+		}
+		for ; i < d.dp; i++ {
+			buf[w] = '0';
+			w++;
+		}
+	} else {
+		buf[w] = '0';
+		w++;
+	}
+
+	// fraction
+	if prec > 0 {
+		buf[w] = '.';
+		w++;
+		for i := 0; i < prec; i++ {
+			if d.dp+i < 0 || d.dp+i >= d.nd {
+				buf[w] = '0';
+			} else {
+				buf[w] = d.d[d.dp+i];
+			}
+			w++;
+		}
+	}
+
+	return string(buf[0:w]);
+}
+
+// %b: -ddddddddp+ddd
+func FmtB(neg bool, mant uint64, exp int, flt *FloatInfo) string {
+	var buf [50]byte;
+	w := len(buf);
+	exp -= int(flt.mantbits);
+	esign := byte('+');
+	if exp < 0 {
+		esign = '-';
+		exp = -exp;
+	}
+	n := 0;
+	for exp > 0 || n < 1 {
+		n++;
+		w--;
+		buf[w] = byte(exp%10 + '0');
+		exp /= 10
+	}
+	w--;
+	buf[w] = esign;
+	w--;
+	buf[w] = 'p';
+	n = 0;
+	for mant > 0 || n < 1 {
+		n++;
+		w--;
+		buf[w] = byte(mant%10 + '0');
+		mant /= 10;
+	}
+	if neg {
+		w--;
+		buf[w] = '-';
+	}
+	return string((&buf)[w:len(buf)]);
+}
+
+func Max(a, b int) int {
+	if a > b {
+		return a;
+	}
+	return b;
+}
+