| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package flate |
| |
| import ( |
| "errors" |
| "fmt" |
| "io" |
| "math" |
| ) |
| |
| const ( |
| NoCompression = 0 |
| BestSpeed = 1 |
| BestCompression = 9 |
| DefaultCompression = -1 |
| |
| // HuffmanOnly disables Lempel-Ziv match searching and only performs Huffman |
| // entropy encoding. This mode is useful in compressing data that has |
| // already been compressed with an LZ style algorithm (e.g. Snappy or LZ4) |
| // that lacks an entropy encoder. Compression gains are achieved when |
| // certain bytes in the input stream occur more frequently than others. |
| // |
| // Note that HuffmanOnly produces a compressed output that is |
| // RFC 1951 compliant. That is, any valid DEFLATE decompressor will |
| // continue to be able to decompress this output. |
| HuffmanOnly = -2 |
| ) |
| |
| const ( |
| logWindowSize = 15 |
| windowSize = 1 << logWindowSize |
| windowMask = windowSize - 1 |
| |
| // The LZ77 step produces a sequence of literal tokens and <length, offset> |
| // pair tokens. The offset is also known as distance. The underlying wire |
| // format limits the range of lengths and offsets. For example, there are |
| // 256 legitimate lengths: those in the range [3, 258]. This package's |
| // compressor uses a higher minimum match length, enabling optimizations |
| // such as finding matches via 32-bit loads and compares. |
| baseMatchLength = 3 // The smallest match length per the RFC section 3.2.5 |
| minMatchLength = 4 // The smallest match length that the compressor actually emits |
| maxMatchLength = 258 // The largest match length |
| baseMatchOffset = 1 // The smallest match offset |
| maxMatchOffset = 1 << 15 // The largest match offset |
| |
| // The maximum number of tokens we put into a single flate block, just to |
| // stop things from getting too large. |
| maxFlateBlockTokens = 1 << 14 |
| maxStoreBlockSize = 65535 |
| hashBits = 17 // After 17 performance degrades |
| hashSize = 1 << hashBits |
| hashMask = (1 << hashBits) - 1 |
| maxHashOffset = 1 << 24 |
| |
| skipNever = math.MaxInt32 |
| ) |
| |
| type compressionLevel struct { |
| level, good, lazy, nice, chain, fastSkipHashing int |
| } |
| |
| var levels = []compressionLevel{ |
| {0, 0, 0, 0, 0, 0}, // NoCompression. |
| {1, 0, 0, 0, 0, 0}, // BestSpeed uses a custom algorithm; see deflatefast.go. |
| // For levels 2-3 we don't bother trying with lazy matches. |
| {2, 4, 0, 16, 8, 5}, |
| {3, 4, 0, 32, 32, 6}, |
| // Levels 4-9 use increasingly more lazy matching |
| // and increasingly stringent conditions for "good enough". |
| {4, 4, 4, 16, 16, skipNever}, |
| {5, 8, 16, 32, 32, skipNever}, |
| {6, 8, 16, 128, 128, skipNever}, |
| {7, 8, 32, 128, 256, skipNever}, |
| {8, 32, 128, 258, 1024, skipNever}, |
| {9, 32, 258, 258, 4096, skipNever}, |
| } |
| |
| type compressor struct { |
| compressionLevel |
| |
| w *huffmanBitWriter |
| bulkHasher func([]byte, []uint32) |
| |
| // compression algorithm |
| fill func(*compressor, []byte) int // copy data to window |
| step func(*compressor) // process window |
| sync bool // requesting flush |
| bestSpeed *deflateFast // Encoder for BestSpeed |
| |
| // Input hash chains |
| // hashHead[hashValue] contains the largest inputIndex with the specified hash value |
| // If hashHead[hashValue] is within the current window, then |
| // hashPrev[hashHead[hashValue] & windowMask] contains the previous index |
| // with the same hash value. |
| chainHead int |
| hashHead [hashSize]uint32 |
| hashPrev [windowSize]uint32 |
| hashOffset int |
| |
| // input window: unprocessed data is window[index:windowEnd] |
| index int |
| window []byte |
| windowEnd int |
| blockStart int // window index where current tokens start |
| byteAvailable bool // if true, still need to process window[index-1]. |
| |
| // queued output tokens |
| tokens []token |
| |
| // deflate state |
| length int |
| offset int |
| maxInsertIndex int |
| err error |
| |
| // hashMatch must be able to contain hashes for the maximum match length. |
| hashMatch [maxMatchLength - 1]uint32 |
| } |
| |
| func (d *compressor) fillDeflate(b []byte) int { |
| if d.index >= 2*windowSize-(minMatchLength+maxMatchLength) { |
| // shift the window by windowSize |
| copy(d.window, d.window[windowSize:2*windowSize]) |
| d.index -= windowSize |
| d.windowEnd -= windowSize |
| if d.blockStart >= windowSize { |
| d.blockStart -= windowSize |
| } else { |
| d.blockStart = math.MaxInt32 |
| } |
| d.hashOffset += windowSize |
| if d.hashOffset > maxHashOffset { |
| delta := d.hashOffset - 1 |
| d.hashOffset -= delta |
| d.chainHead -= delta |
| |
| // Iterate over slices instead of arrays to avoid copying |
| // the entire table onto the stack (Issue #18625). |
| for i, v := range d.hashPrev[:] { |
| if int(v) > delta { |
| d.hashPrev[i] = uint32(int(v) - delta) |
| } else { |
| d.hashPrev[i] = 0 |
| } |
| } |
| for i, v := range d.hashHead[:] { |
| if int(v) > delta { |
| d.hashHead[i] = uint32(int(v) - delta) |
| } else { |
| d.hashHead[i] = 0 |
| } |
| } |
| } |
| } |
| n := copy(d.window[d.windowEnd:], b) |
| d.windowEnd += n |
| return n |
| } |
| |
| func (d *compressor) writeBlock(tokens []token, index int) error { |
| if index > 0 { |
| var window []byte |
| if d.blockStart <= index { |
| window = d.window[d.blockStart:index] |
| } |
| d.blockStart = index |
| d.w.writeBlock(tokens, false, window) |
| return d.w.err |
| } |
| return nil |
| } |
| |
| // fillWindow will fill the current window with the supplied |
| // dictionary and calculate all hashes. |
| // This is much faster than doing a full encode. |
| // Should only be used after a reset. |
| func (d *compressor) fillWindow(b []byte) { |
| // Do not fill window if we are in store-only mode. |
| if d.compressionLevel.level < 2 { |
| return |
| } |
| if d.index != 0 || d.windowEnd != 0 { |
| panic("internal error: fillWindow called with stale data") |
| } |
| |
| // If we are given too much, cut it. |
| if len(b) > windowSize { |
| b = b[len(b)-windowSize:] |
| } |
| // Add all to window. |
| n := copy(d.window, b) |
| |
| // Calculate 256 hashes at the time (more L1 cache hits) |
| loops := (n + 256 - minMatchLength) / 256 |
| for j := 0; j < loops; j++ { |
| index := j * 256 |
| end := index + 256 + minMatchLength - 1 |
| if end > n { |
| end = n |
| } |
| toCheck := d.window[index:end] |
| dstSize := len(toCheck) - minMatchLength + 1 |
| |
| if dstSize <= 0 { |
| continue |
| } |
| |
| dst := d.hashMatch[:dstSize] |
| d.bulkHasher(toCheck, dst) |
| for i, val := range dst { |
| di := i + index |
| hh := &d.hashHead[val&hashMask] |
| // Get previous value with the same hash. |
| // Our chain should point to the previous value. |
| d.hashPrev[di&windowMask] = *hh |
| // Set the head of the hash chain to us. |
| *hh = uint32(di + d.hashOffset) |
| } |
| } |
| // Update window information. |
| d.windowEnd = n |
| d.index = n |
| } |
| |
| // Try to find a match starting at index whose length is greater than prevSize. |
| // We only look at chainCount possibilities before giving up. |
| func (d *compressor) findMatch(pos int, prevHead int, prevLength int, lookahead int) (length, offset int, ok bool) { |
| minMatchLook := maxMatchLength |
| if lookahead < minMatchLook { |
| minMatchLook = lookahead |
| } |
| |
| win := d.window[0 : pos+minMatchLook] |
| |
| // We quit when we get a match that's at least nice long |
| nice := len(win) - pos |
| if d.nice < nice { |
| nice = d.nice |
| } |
| |
| // If we've got a match that's good enough, only look in 1/4 the chain. |
| tries := d.chain |
| length = prevLength |
| if length >= d.good { |
| tries >>= 2 |
| } |
| |
| wEnd := win[pos+length] |
| wPos := win[pos:] |
| minIndex := pos - windowSize |
| |
| for i := prevHead; tries > 0; tries-- { |
| if wEnd == win[i+length] { |
| n := matchLen(win[i:], wPos, minMatchLook) |
| |
| if n > length && (n > minMatchLength || pos-i <= 4096) { |
| length = n |
| offset = pos - i |
| ok = true |
| if n >= nice { |
| // The match is good enough that we don't try to find a better one. |
| break |
| } |
| wEnd = win[pos+n] |
| } |
| } |
| if i == minIndex { |
| // hashPrev[i & windowMask] has already been overwritten, so stop now. |
| break |
| } |
| i = int(d.hashPrev[i&windowMask]) - d.hashOffset |
| if i < minIndex || i < 0 { |
| break |
| } |
| } |
| return |
| } |
| |
| func (d *compressor) writeStoredBlock(buf []byte) error { |
| if d.w.writeStoredHeader(len(buf), false); d.w.err != nil { |
| return d.w.err |
| } |
| d.w.writeBytes(buf) |
| return d.w.err |
| } |
| |
| const hashmul = 0x1e35a7bd |
| |
| // hash4 returns a hash representation of the first 4 bytes |
| // of the supplied slice. |
| // The caller must ensure that len(b) >= 4. |
| func hash4(b []byte) uint32 { |
| return ((uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24) * hashmul) >> (32 - hashBits) |
| } |
| |
| // bulkHash4 will compute hashes using the same |
| // algorithm as hash4. |
| func bulkHash4(b []byte, dst []uint32) { |
| if len(b) < minMatchLength { |
| return |
| } |
| hb := uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24 |
| dst[0] = (hb * hashmul) >> (32 - hashBits) |
| end := len(b) - minMatchLength + 1 |
| for i := 1; i < end; i++ { |
| hb = (hb << 8) | uint32(b[i+3]) |
| dst[i] = (hb * hashmul) >> (32 - hashBits) |
| } |
| } |
| |
| // matchLen returns the number of matching bytes in a and b |
| // up to length 'max'. Both slices must be at least 'max' |
| // bytes in size. |
| func matchLen(a, b []byte, max int) int { |
| a = a[:max] |
| b = b[:len(a)] |
| for i, av := range a { |
| if b[i] != av { |
| return i |
| } |
| } |
| return max |
| } |
| |
| // encSpeed will compress and store the currently added data, |
| // if enough has been accumulated or we at the end of the stream. |
| // Any error that occurred will be in d.err |
| func (d *compressor) encSpeed() { |
| // We only compress if we have maxStoreBlockSize. |
| if d.windowEnd < maxStoreBlockSize { |
| if !d.sync { |
| return |
| } |
| |
| // Handle small sizes. |
| if d.windowEnd < 128 { |
| switch { |
| case d.windowEnd == 0: |
| return |
| case d.windowEnd <= 16: |
| d.err = d.writeStoredBlock(d.window[:d.windowEnd]) |
| default: |
| d.w.writeBlockHuff(false, d.window[:d.windowEnd]) |
| d.err = d.w.err |
| } |
| d.windowEnd = 0 |
| d.bestSpeed.reset() |
| return |
| } |
| |
| } |
| // Encode the block. |
| d.tokens = d.bestSpeed.encode(d.tokens[:0], d.window[:d.windowEnd]) |
| |
| // If we removed less than 1/16th, Huffman compress the block. |
| if len(d.tokens) > d.windowEnd-(d.windowEnd>>4) { |
| d.w.writeBlockHuff(false, d.window[:d.windowEnd]) |
| } else { |
| d.w.writeBlockDynamic(d.tokens, false, d.window[:d.windowEnd]) |
| } |
| d.err = d.w.err |
| d.windowEnd = 0 |
| } |
| |
| func (d *compressor) initDeflate() { |
| d.window = make([]byte, 2*windowSize) |
| d.hashOffset = 1 |
| d.tokens = make([]token, 0, maxFlateBlockTokens+1) |
| d.length = minMatchLength - 1 |
| d.offset = 0 |
| d.byteAvailable = false |
| d.index = 0 |
| d.chainHead = -1 |
| d.bulkHasher = bulkHash4 |
| } |
| |
| func (d *compressor) deflate() { |
| if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync { |
| return |
| } |
| |
| d.maxInsertIndex = d.windowEnd - (minMatchLength - 1) |
| |
| Loop: |
| for { |
| if d.index > d.windowEnd { |
| panic("index > windowEnd") |
| } |
| lookahead := d.windowEnd - d.index |
| if lookahead < minMatchLength+maxMatchLength { |
| if !d.sync { |
| break Loop |
| } |
| if d.index > d.windowEnd { |
| panic("index > windowEnd") |
| } |
| if lookahead == 0 { |
| // Flush current output block if any. |
| if d.byteAvailable { |
| // There is still one pending token that needs to be flushed |
| d.tokens = append(d.tokens, literalToken(uint32(d.window[d.index-1]))) |
| d.byteAvailable = false |
| } |
| if len(d.tokens) > 0 { |
| if d.err = d.writeBlock(d.tokens, d.index); d.err != nil { |
| return |
| } |
| d.tokens = d.tokens[:0] |
| } |
| break Loop |
| } |
| } |
| if d.index < d.maxInsertIndex { |
| // Update the hash |
| hash := hash4(d.window[d.index : d.index+minMatchLength]) |
| hh := &d.hashHead[hash&hashMask] |
| d.chainHead = int(*hh) |
| d.hashPrev[d.index&windowMask] = uint32(d.chainHead) |
| *hh = uint32(d.index + d.hashOffset) |
| } |
| prevLength := d.length |
| prevOffset := d.offset |
| d.length = minMatchLength - 1 |
| d.offset = 0 |
| minIndex := d.index - windowSize |
| if minIndex < 0 { |
| minIndex = 0 |
| } |
| |
| if d.chainHead-d.hashOffset >= minIndex && |
| (d.fastSkipHashing != skipNever && lookahead > minMatchLength-1 || |
| d.fastSkipHashing == skipNever && lookahead > prevLength && prevLength < d.lazy) { |
| if newLength, newOffset, ok := d.findMatch(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok { |
| d.length = newLength |
| d.offset = newOffset |
| } |
| } |
| if d.fastSkipHashing != skipNever && d.length >= minMatchLength || |
| d.fastSkipHashing == skipNever && prevLength >= minMatchLength && d.length <= prevLength { |
| // There was a match at the previous step, and the current match is |
| // not better. Output the previous match. |
| if d.fastSkipHashing != skipNever { |
| d.tokens = append(d.tokens, matchToken(uint32(d.length-baseMatchLength), uint32(d.offset-baseMatchOffset))) |
| } else { |
| d.tokens = append(d.tokens, matchToken(uint32(prevLength-baseMatchLength), uint32(prevOffset-baseMatchOffset))) |
| } |
| // Insert in the hash table all strings up to the end of the match. |
| // index and index-1 are already inserted. If there is not enough |
| // lookahead, the last two strings are not inserted into the hash |
| // table. |
| if d.length <= d.fastSkipHashing { |
| var newIndex int |
| if d.fastSkipHashing != skipNever { |
| newIndex = d.index + d.length |
| } else { |
| newIndex = d.index + prevLength - 1 |
| } |
| index := d.index |
| for index++; index < newIndex; index++ { |
| if index < d.maxInsertIndex { |
| hash := hash4(d.window[index : index+minMatchLength]) |
| // Get previous value with the same hash. |
| // Our chain should point to the previous value. |
| hh := &d.hashHead[hash&hashMask] |
| d.hashPrev[index&windowMask] = *hh |
| // Set the head of the hash chain to us. |
| *hh = uint32(index + d.hashOffset) |
| } |
| } |
| d.index = index |
| |
| if d.fastSkipHashing == skipNever { |
| d.byteAvailable = false |
| d.length = minMatchLength - 1 |
| } |
| } else { |
| // For matches this long, we don't bother inserting each individual |
| // item into the table. |
| d.index += d.length |
| } |
| if len(d.tokens) == maxFlateBlockTokens { |
| // The block includes the current character |
| if d.err = d.writeBlock(d.tokens, d.index); d.err != nil { |
| return |
| } |
| d.tokens = d.tokens[:0] |
| } |
| } else { |
| if d.fastSkipHashing != skipNever || d.byteAvailable { |
| i := d.index - 1 |
| if d.fastSkipHashing != skipNever { |
| i = d.index |
| } |
| d.tokens = append(d.tokens, literalToken(uint32(d.window[i]))) |
| if len(d.tokens) == maxFlateBlockTokens { |
| if d.err = d.writeBlock(d.tokens, i+1); d.err != nil { |
| return |
| } |
| d.tokens = d.tokens[:0] |
| } |
| } |
| d.index++ |
| if d.fastSkipHashing == skipNever { |
| d.byteAvailable = true |
| } |
| } |
| } |
| } |
| |
| func (d *compressor) fillStore(b []byte) int { |
| n := copy(d.window[d.windowEnd:], b) |
| d.windowEnd += n |
| return n |
| } |
| |
| func (d *compressor) store() { |
| if d.windowEnd > 0 && (d.windowEnd == maxStoreBlockSize || d.sync) { |
| d.err = d.writeStoredBlock(d.window[:d.windowEnd]) |
| d.windowEnd = 0 |
| } |
| } |
| |
| // storeHuff compresses and stores the currently added data |
| // when the d.window is full or we are at the end of the stream. |
| // Any error that occurred will be in d.err |
| func (d *compressor) storeHuff() { |
| if d.windowEnd < len(d.window) && !d.sync || d.windowEnd == 0 { |
| return |
| } |
| d.w.writeBlockHuff(false, d.window[:d.windowEnd]) |
| d.err = d.w.err |
| d.windowEnd = 0 |
| } |
| |
| func (d *compressor) write(b []byte) (n int, err error) { |
| if d.err != nil { |
| return 0, d.err |
| } |
| n = len(b) |
| for len(b) > 0 { |
| d.step(d) |
| b = b[d.fill(d, b):] |
| if d.err != nil { |
| return 0, d.err |
| } |
| } |
| return n, nil |
| } |
| |
| func (d *compressor) syncFlush() error { |
| if d.err != nil { |
| return d.err |
| } |
| d.sync = true |
| d.step(d) |
| if d.err == nil { |
| d.w.writeStoredHeader(0, false) |
| d.w.flush() |
| d.err = d.w.err |
| } |
| d.sync = false |
| return d.err |
| } |
| |
| func (d *compressor) init(w io.Writer, level int) (err error) { |
| d.w = newHuffmanBitWriter(w) |
| |
| switch { |
| case level == NoCompression: |
| d.window = make([]byte, maxStoreBlockSize) |
| d.fill = (*compressor).fillStore |
| d.step = (*compressor).store |
| case level == HuffmanOnly: |
| d.window = make([]byte, maxStoreBlockSize) |
| d.fill = (*compressor).fillStore |
| d.step = (*compressor).storeHuff |
| case level == BestSpeed: |
| d.compressionLevel = levels[level] |
| d.window = make([]byte, maxStoreBlockSize) |
| d.fill = (*compressor).fillStore |
| d.step = (*compressor).encSpeed |
| d.bestSpeed = newDeflateFast() |
| d.tokens = make([]token, maxStoreBlockSize) |
| case level == DefaultCompression: |
| level = 6 |
| fallthrough |
| case 2 <= level && level <= 9: |
| d.compressionLevel = levels[level] |
| d.initDeflate() |
| d.fill = (*compressor).fillDeflate |
| d.step = (*compressor).deflate |
| default: |
| return fmt.Errorf("flate: invalid compression level %d: want value in range [-2, 9]", level) |
| } |
| return nil |
| } |
| |
| func (d *compressor) reset(w io.Writer) { |
| d.w.reset(w) |
| d.sync = false |
| d.err = nil |
| switch d.compressionLevel.level { |
| case NoCompression: |
| d.windowEnd = 0 |
| case BestSpeed: |
| d.windowEnd = 0 |
| d.tokens = d.tokens[:0] |
| d.bestSpeed.reset() |
| default: |
| d.chainHead = -1 |
| for i := range d.hashHead { |
| d.hashHead[i] = 0 |
| } |
| for i := range d.hashPrev { |
| d.hashPrev[i] = 0 |
| } |
| d.hashOffset = 1 |
| d.index, d.windowEnd = 0, 0 |
| d.blockStart, d.byteAvailable = 0, false |
| d.tokens = d.tokens[:0] |
| d.length = minMatchLength - 1 |
| d.offset = 0 |
| d.maxInsertIndex = 0 |
| } |
| } |
| |
| func (d *compressor) close() error { |
| if d.err == errWriterClosed { |
| return nil |
| } |
| if d.err != nil { |
| return d.err |
| } |
| d.sync = true |
| d.step(d) |
| if d.err != nil { |
| return d.err |
| } |
| if d.w.writeStoredHeader(0, true); d.w.err != nil { |
| return d.w.err |
| } |
| d.w.flush() |
| if d.w.err != nil { |
| return d.w.err |
| } |
| d.err = errWriterClosed |
| return nil |
| } |
| |
| // NewWriter returns a new [Writer] compressing data at the given level. |
| // Following zlib, levels range from 1 ([BestSpeed]) to 9 ([BestCompression]); |
| // higher levels typically run slower but compress more. Level 0 |
| // ([NoCompression]) does not attempt any compression; it only adds the |
| // necessary DEFLATE framing. |
| // Level -1 ([DefaultCompression]) uses the default compression level. |
| // Level -2 ([HuffmanOnly]) will use Huffman compression only, giving |
| // a very fast compression for all types of input, but sacrificing considerable |
| // compression efficiency. |
| // |
| // If level is in the range [-2, 9] then the error returned will be nil. |
| // Otherwise the error returned will be non-nil. |
| func NewWriter(w io.Writer, level int) (*Writer, error) { |
| var dw Writer |
| if err := dw.d.init(w, level); err != nil { |
| return nil, err |
| } |
| return &dw, nil |
| } |
| |
| // NewWriterDict is like [NewWriter] but initializes the new |
| // [Writer] with a preset dictionary. The returned [Writer] behaves |
| // as if the dictionary had been written to it without producing |
| // any compressed output. The compressed data written to w |
| // can only be decompressed by a [Reader] initialized with the |
| // same dictionary. |
| func NewWriterDict(w io.Writer, level int, dict []byte) (*Writer, error) { |
| dw := &dictWriter{w} |
| zw, err := NewWriter(dw, level) |
| if err != nil { |
| return nil, err |
| } |
| zw.d.fillWindow(dict) |
| zw.dict = append(zw.dict, dict...) // duplicate dictionary for Reset method. |
| return zw, err |
| } |
| |
| type dictWriter struct { |
| w io.Writer |
| } |
| |
| func (w *dictWriter) Write(b []byte) (n int, err error) { |
| return w.w.Write(b) |
| } |
| |
| var errWriterClosed = errors.New("flate: closed writer") |
| |
| // A Writer takes data written to it and writes the compressed |
| // form of that data to an underlying writer (see [NewWriter]). |
| type Writer struct { |
| d compressor |
| dict []byte |
| } |
| |
| // Write writes data to w, which will eventually write the |
| // compressed form of data to its underlying writer. |
| func (w *Writer) Write(data []byte) (n int, err error) { |
| return w.d.write(data) |
| } |
| |
| // Flush flushes any pending data to the underlying writer. |
| // It is useful mainly in compressed network protocols, to ensure that |
| // a remote reader has enough data to reconstruct a packet. |
| // Flush does not return until the data has been written. |
| // Calling Flush when there is no pending data still causes the [Writer] |
| // to emit a sync marker of at least 4 bytes. |
| // If the underlying writer returns an error, Flush returns that error. |
| // |
| // In the terminology of the zlib library, Flush is equivalent to Z_SYNC_FLUSH. |
| func (w *Writer) Flush() error { |
| // For more about flushing: |
| // https://www.bolet.org/~pornin/deflate-flush.html |
| return w.d.syncFlush() |
| } |
| |
| // Close flushes and closes the writer. |
| func (w *Writer) Close() error { |
| return w.d.close() |
| } |
| |
| // Reset discards the writer's state and makes it equivalent to |
| // the result of [NewWriter] or [NewWriterDict] called with dst |
| // and w's level and dictionary. |
| func (w *Writer) Reset(dst io.Writer) { |
| if dw, ok := w.d.w.writer.(*dictWriter); ok { |
| // w was created with NewWriterDict |
| dw.w = dst |
| w.d.reset(dw) |
| w.d.fillWindow(w.dict) |
| } else { |
| // w was created with NewWriter |
| w.d.reset(dst) |
| } |
| } |