blob: 7f297e924e160682843cafd1178235548de810d3 [file] [log] [blame] [edit]
// Copyright 2025 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package strconv
import "math/bits"
var uint64pow10 = [...]uint64{
1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
}
// fixedFtoa formats a number of decimal digits of mant*(2^exp) into d,
// where mant > 0 and 1 ≤ digits ≤ 18.
// If fmt == 'f', digits is a conservative overestimate, and the final
// number of digits is prec past the decimal point.
func fixedFtoa(d *decimalSlice, mant uint64, exp, digits, prec int, fmt byte) {
// The strategy here is to multiply (mant * 2^exp) by a power of 10
// to make the resulting integer be the number of digits we want.
//
// Adams proved in the Ryu paper that 128-bit precision in the
// power-of-10 constant is sufficient to produce correctly
// rounded output for all float64s, up to 18 digits.
// https://dl.acm.org/doi/10.1145/3192366.3192369
//
// TODO(rsc): The paper is not focused on, nor terribly clear about,
// this fact in this context, and the proof seems too complicated.
// Post a shorter, more direct proof and link to it here.
if digits > 18 {
panic("fixedFtoa called with digits > 18")
}
// Shift mantissa to have 64 bits,
// so that the 192-bit product below will
// have at least 63 bits in its top word.
b := 64 - bits.Len64(mant)
mant <<= b
exp -= b
// We have f = mant * 2^exp ≥ 2^(63+exp)
// and we want to multiply it by some 10^p
// to make it have the number of digits plus one rounding bit:
//
// 2 * 10^(digits-1) ≤ f * 10^p < ~2 * 10^digits
//
// The lower bound is required, but the upper bound is approximate:
// we must not have too few digits, but we can round away extra ones.
//
// f * 10^p ≥ 2 * 10^(digits-1)
// 10^p ≥ 2 * 10^(digits-1) / f [dividing by f]
// p ≥ (log₁₀ 2) + (digits-1) - log₁₀ f [taking log₁₀]
// p ≥ (log₁₀ 2) + (digits-1) - log₁₀ (mant * 2^exp) [expanding f]
// p ≥ (log₁₀ 2) + (digits-1) - (log₁₀ 2) * (64 + exp) [mant < 2⁶⁴]
// p ≥ (digits - 1) - (log₁₀ 2) * (63 + exp) [refactoring]
//
// Once we have p, we can compute the scaled value:
//
// dm * 2^de = mant * 2^exp * 10^p
// = mant * 2^exp * pow/2^128 * 2^exp2.
// = (mant * pow/2^128) * 2^(exp+exp2).
p := (digits - 1) - mulLog10_2(63+exp)
pow, exp2, ok := pow10(p)
if !ok {
// This never happens due to the range of float32/float64 exponent
panic("fixedFtoa: pow10 out of range")
}
if -22 <= p && p < 0 {
// Special case: Let q=-p. q is in [1,22]. We are dividing by 10^q
// and the mantissa may be a multiple of 5^q (5^22 < 2^53),
// in which case the division must be computed exactly and
// recorded as exact for correct rounding. Our normal computation is:
//
// dm = floor(mant * floor(10^p * 2^s))
//
// for some scaling shift s. To make this an exact division,
// it suffices to change the inner floor to a ceil:
//
// dm = floor(mant * ceil(10^p * 2^s))
//
// In the range of values we are using, the floor and ceil
// cancel each other out and the high 64 bits of the product
// come out exactly right.
// (This is the same trick compilers use for division by constants.
// See Hacker's Delight, 2nd ed., Chapter 10.)
pow.Lo++
}
dm, lo1, lo0 := umul192(mant, pow)
de := exp + exp2
// Check whether any bits have been truncated from dm.
// If so, set dt != 0. If not, leave dt == 0 (meaning dm is exact).
var dt uint
switch {
default:
// Most powers of 10 use a truncated constant,
// meaning the result is also truncated.
dt = 1
case 0 <= p && p <= 55:
// Small positive powers of 10 (up to 10⁵⁵) can be represented
// precisely in a 128-bit mantissa (5⁵⁵ ≤ 2¹²⁸), so the only truncation
// comes from discarding the low bits of the 192-bit product.
//
// TODO(rsc): The new proof mentioned above should also
// prove that we can't have lo1 == 0 and lo0 != 0.
// After proving that, drop computation and use of lo0 here.
dt = bool2uint(lo1|lo0 != 0)
case -22 <= p && p < 0 && divisiblePow5(mant, -p):
// If the original mantissa was a multiple of 5^p,
// the result is exact. (See comment above for pow.Lo++.)
dt = 0
}
// The value we want to format is dm * 2^de, where de < 0.
// Multply by 2^de by shifting, but leave one extra bit for rounding.
// After the shift, the "integer part" of dm is dm>>1,
// the "rounding bit" (the first fractional bit) is dm&1,
// and the "truncated bit" (have any bits been discarded?) is dt.
shift := -de - 1
dt |= bool2uint(dm&(1<<shift-1) != 0)
dm >>= shift
// Set decimal point in eventual formatted digits,
// so we can update it as we adjust the digits.
d.dp = digits - p
// Trim excess digit if any, updating truncation and decimal point.
// The << 1 is leaving room for the rounding bit.
max := uint64pow10[digits] << 1
if dm >= max {
var r uint
dm, r = dm/10, uint(dm%10)
dt |= bool2uint(r != 0)
d.dp++
}
// If this is %.*f we may have overestimated the digits needed.
// Now that we know where the decimal point is,
// trim to the actual number of digits, which is d.dp+prec.
if fmt == 'f' && digits != d.dp+prec {
for digits > d.dp+prec {
var r uint
dm, r = dm/10, uint(dm%10)
dt |= bool2uint(r != 0)
digits--
}
// Dropping those digits can create a new leftmost
// non-zero digit, like if we are formatting %.1f and
// convert 0.09 -> 0.1. Detect and adjust for that.
if digits <= 0 {
digits = 1
d.dp++
}
max = uint64pow10[digits] << 1
}
// Round and shift away rounding bit.
// We want to round up when
// (a) the fractional part is > 0.5 (dm&1 != 0 and dt == 1)
// (b) or the fractional part is ≥ 0.5 and the integer part is odd
// (dm&1 != 0 and dm&2 != 0).
// The bitwise expression encodes that logic.
dm += uint64(uint(dm) & (dt | uint(dm)>>1) & 1)
dm >>= 1
if dm == max>>1 {
// 999... rolled over to 1000...
dm = uint64pow10[digits-1]
d.dp++
}
// Format digits into d.
if dm != 0 {
if formatBase10(d.d[:digits], dm) != 0 {
panic("formatBase10")
}
d.nd = digits
for d.d[d.nd-1] == '0' {
d.nd--
}
}
}