blob: 45c71e2a062981c55c8f2b3323a86a6957f5e866 [file] [log] [blame]
package ssa
// This package defines a high-level intermediate representation for
// Go programs using static single-assignment (SSA) form.
import (
"fmt"
"go/ast"
"go/token"
"sync"
"code.google.com/p/go.exp/go/exact"
"code.google.com/p/go.exp/go/types"
)
// A Program is a partial or complete Go program converted to SSA form.
// Each Builder creates and populates a single Program during its
// lifetime.
//
type Program struct {
Files *token.FileSet // position information for the files of this Program
Packages map[string]*Package // all loaded Packages, keyed by import path
Builtins map[types.Object]*Builtin // all built-in functions, keyed by typechecker objects.
methodSets map[types.Type]MethodSet // concrete method sets for all needed types [TODO(adonovan): de-dup]
methodSetsMu sync.Mutex // serializes all accesses to methodSets
concreteMethods map[*types.Func]*Function // maps named concrete methods to their code
mode BuilderMode // set of mode bits
}
// A Package is a single analyzed Go package containing Members for
// all package-level functions, variables, constants and types it
// declares. These may be accessed directly via Members, or via the
// type-specific accessor methods Func, Type, Var and Const.
//
type Package struct {
Prog *Program // the owning program
Types *types.Package // the type checker's package object for this package.
Members map[string]Member // all exported and unexported members of the package
Init *Function // the package's (concatenated) init function
// These fields are available between package creation and SSA
// building, but are then cleared unless Context.RetainAST(pkg).
Files []*ast.File // abstract syntax for the package's files
TypeInfo // type-checker intermediate results
// The following fields are set transiently during building,
// then cleared.
started int32 // atomically tested and set at start of build phase
nTo1Vars map[*ast.ValueSpec]bool // set of n:1 ValueSpecs already built
}
// A Member is a member of a Go package, implemented by *Constant,
// *Global, *Function, or *Type; they are created by package-level
// const, var, func and type declarations respectively.
//
type Member interface {
Name() string // the declared name of the package member
String() string // human-readable information about the value
Pos() token.Pos // position of member's declaration, if known
Type() types.Type // the type of the package member
ImplementsMember() // dummy method to indicate the "implements" relation.
}
// An Id identifies the name of a field of a struct type, or the name
// of a method of an interface or a named type.
//
// For exported names, i.e. those beginning with a Unicode upper-case
// letter, a simple string is unambiguous.
//
// However, a method set or struct may contain multiple unexported
// names with identical spelling that are logically distinct because
// they originate in different packages. Unexported names must
// therefore be disambiguated by their package too.
//
// The Pkg field of an Id is therefore nil iff the name is exported.
//
// This type is suitable for use as a map key because the equivalence
// relation == is consistent with identifier equality.
type Id struct {
Pkg *types.Package
Name string
}
// A MethodSet contains all the methods for a particular type.
// The method sets for T and *T are distinct entities.
// The methods for a non-pointer type T all have receiver type T, but
// the methods for pointer type *T may have receiver type *T or T.
//
type MethodSet map[Id]*Function
// A Type is a Member of a Package representing the name, underlying
// type and method set of a named type declared at package scope.
//
type Type struct {
NamedType *types.Named
Methods MethodSet // concrete method set of N
PtrMethods MethodSet // concrete method set of (*N)
}
// A Constant is a Member of Package representing a package-level
// constant value.
//
// Pos() returns the position of the declaring ast.ValueSpec.Names[*]
// identifier.
//
// NB: a Constant is not a Value; it contains a literal Value, which
// it augments with the name and position of its 'const' declaration.
//
type Constant struct {
Name_ string
Value *Literal
pos token.Pos
}
// An SSA value that can be referenced by an instruction.
type Value interface {
// Name returns the name of this value, and determines how
// this Value appears when used as an operand of an
// Instruction.
//
// This is the same as the source name for Parameters,
// Builtins, Functions, Captures, Globals and some Allocs.
// For literals, it is a representation of the literal's value
// and type. For all other Values this is the name of the
// virtual register defined by the instruction.
//
// The name of an SSA Value is not semantically significant,
// and may not even be unique within a function.
Name() string
// If this value is an Instruction, String returns its
// disassembled form; otherwise it returns unspecified
// human-readable information about the Value, such as its
// kind, name and type.
String() string
// Type returns the type of this value. Many instructions
// (e.g. IndexAddr) change the behaviour depending on the
// types of their operands.
Type() types.Type
// Referrers returns the list of instructions that have this
// value as one of their operands; it may contain duplicates
// if an instruction has a repeated operand.
//
// Referrers actually returns a pointer through which the
// caller may perform mutations to the object's state.
//
// Referrers is currently only defined for the function-local
// values Capture, Parameter and all value-defining instructions.
// It returns nil for Function, Builtin, Literal and Global.
//
// Instruction.Operands contains the inverse of this relation.
Referrers() *[]Instruction
// Dummy method to indicate the "implements" relation.
ImplementsValue()
}
// An Instruction is an SSA instruction that computes a new Value or
// has some effect.
//
// An Instruction that defines a value (e.g. BinOp) also implements
// the Value interface; an Instruction that only has an effect (e.g. Store)
// does not.
//
type Instruction interface {
// String returns the disassembled form of this value. e.g.
//
// Examples of Instructions that define a Value:
// e.g. "x + y" (BinOp)
// "len([])" (Call)
// Note that the name of the Value is not printed.
//
// Examples of Instructions that do define (are) Values:
// e.g. "ret x" (Ret)
// "*y = x" (Store)
//
// (This separation is useful for some analyses which
// distinguish the operation from the value it
// defines. e.g. 'y = local int' is both an allocation of
// memory 'local int' and a definition of a pointer y.)
String() string
// Block returns the basic block to which this instruction
// belongs.
Block() *BasicBlock
// SetBlock sets the basic block to which this instruction
// belongs.
SetBlock(*BasicBlock)
// Operands returns the operands of this instruction: the
// set of Values it references.
//
// Specifically, it appends their addresses to rands, a
// user-provided slice, and returns the resulting slice,
// permitting avoidance of memory allocation.
//
// The operands are appended in undefined order; the addresses
// are always non-nil but may point to a nil Value. Clients
// may store through the pointers, e.g. to effect a value
// renaming.
//
// Value.Referrers is a subset of the inverse of this
// relation. (Referrers are not tracked for all types of
// Values.)
Operands(rands []*Value) []*Value
// Pos returns the location of the source construct that
// gave rise to this instruction, or token.NoPos if it was not
// explicit in the source.
//
// For each ast.Expr type, a particular field is designated as
// the canonical location for the expression, e.g. the Lparen
// for an *ast.CallExpr. This enables us to find the
// instruction corresponding to a given piece of source
// syntax.
//
Pos() token.Pos
// Dummy method to indicate the "implements" relation.
ImplementsInstruction()
}
// Function represents the parameters, results and code of a function
// or method.
//
// If Blocks is nil, this indicates an external function for which no
// Go source code is available. In this case, Captures and Locals
// will be nil too. Clients performing whole-program analysis must
// handle external functions specially.
//
// Functions are immutable values; they do not have addresses.
//
// Blocks[0] is the function entry point; block order is not otherwise
// semantically significant, though it may affect the readability of
// the disassembly.
//
// A nested function that refers to one or more lexically enclosing
// local variables ("free variables") has Capture parameters. Such
// functions cannot be called directly but require a value created by
// MakeClosure which, via its Bindings, supplies values for these
// parameters. Captures are always addresses.
//
// If the function is a method (Signature.Recv() != nil) then the first
// element of Params is the receiver parameter.
//
// Pos() returns the declaring ast.FuncLit.Type.Func or the position
// of the ast.FuncDecl.Name, if the function was explicit in the
// source.
//
// Type() returns the function's Signature.
//
type Function struct {
Name_ string
Signature *types.Signature
pos token.Pos
Enclosing *Function // enclosing function if anon; nil if global
Pkg *Package // enclosing package for Go source functions; otherwise nil
Prog *Program // enclosing program
Params []*Parameter // function parameters; for methods, includes receiver
FreeVars []*Capture // free variables whose values must be supplied by closure
Locals []*Alloc
Blocks []*BasicBlock // basic blocks of the function; nil => external
AnonFuncs []*Function // anonymous functions directly beneath this one
// The following fields are set transiently during building,
// then cleared.
currentBlock *BasicBlock // where to emit code
objects map[types.Object]Value // addresses of local variables
namedResults []*Alloc // tuple of named results
syntax *funcSyntax // abstract syntax trees for Go source functions
targets *targets // linked stack of branch targets
lblocks map[*ast.Object]*lblock // labelled blocks
}
// An SSA basic block.
//
// The final element of Instrs is always an explicit transfer of
// control (If, Jump, Ret or Panic).
//
// A block may contain no Instructions only if it is unreachable,
// i.e. Preds is nil. Empty blocks are typically pruned.
//
// BasicBlocks and their Preds/Succs relation form a (possibly cyclic)
// graph independent of the SSA Value graph. It is illegal for
// multiple edges to exist between the same pair of blocks.
//
// The order of Preds and Succs are significant (to Phi and If
// instructions, respectively).
//
type BasicBlock struct {
Index int // index of this block within Func.Blocks
Comment string // optional label; no semantic significance
Func *Function // containing function
Instrs []Instruction // instructions in order
Preds, Succs []*BasicBlock // predecessors and successors
succs2 [2]*BasicBlock // initial space for Succs.
dom *domNode // node in dominator tree; optional.
gaps int // number of nil Instrs (transient).
rundefers int // number of rundefers (transient)
}
// Pure values ----------------------------------------
// A Capture is a pointer to a lexically enclosing local variable.
//
// The referent of a capture is an Alloc or another Capture and is
// always considered potentially escaping, so Captures are always
// addresses in the heap, and have pointer types.
//
type Capture struct {
Outer Value // the Value captured from the enclosing context.
referrers []Instruction
}
// A Parameter represents an input parameter of a function.
//
type Parameter struct {
Name_ string
Type_ types.Type
referrers []Instruction
}
// A Literal represents the value of a constant expression.
//
// It may have a nil, boolean, string or numeric (integer, fraction or
// complex) value, or a []byte or []rune conversion of a string
// literal.
//
// Literals may be of named types. A literal's underlying type can be
// a basic type, possibly one of the "untyped" types, or a slice type
// whose elements' underlying type is byte or rune. A nil literal can
// have any reference type: interface, map, channel, pointer, slice,
// or function---but not "untyped nil".
//
// All source-level constant expressions are represented by a Literal
// of equal type and value.
//
// Value holds the exact value of the literal, independent of its
// Type(), using the same representation as package go/exact uses for
// constants.
//
// Example printed form:
// 42:int
// "hello":untyped string
// 3+4i:MyComplex
//
type Literal struct {
Type_ types.Type
Value exact.Value
}
// A Global is a named Value holding the address of a package-level
// variable.
//
// Pos() returns the position of the ast.ValueSpec.Names[*]
// identifier.
//
type Global struct {
Name_ string
Type_ types.Type
Pkg *Package
pos token.Pos
// The following fields are set transiently during building,
// then cleared.
spec *ast.ValueSpec // explained at buildGlobal
}
// A Builtin represents a built-in function, e.g. len.
//
// Builtins are immutable values. Builtins do not have addresses.
//
// Type() returns a *types.Builtin.
// Built-in functions may have polymorphic or variadic types that are
// not expressible in Go's type system.
//
type Builtin struct {
Object *types.Func // canonical types.Universe object for this built-in
}
// Value-defining instructions ----------------------------------------
// The Alloc instruction reserves space for a value of the given type,
// zero-initializes it, and yields its address.
//
// Alloc values are always addresses, and have pointer types, so the
// type of the allocated space is actually indirect(Type()).
//
// If Heap is false, Alloc allocates space in the function's
// activation record (frame); we refer to an Alloc(Heap=false) as a
// "local" alloc. Each local Alloc returns the same address each time
// it is executed within the same activation; the space is
// re-initialized to zero.
//
// If Heap is true, Alloc allocates space in the heap, and returns; we
// refer to an Alloc(Heap=true) as a "new" alloc. Each new Alloc
// returns a different address each time it is executed.
//
// When Alloc is applied to a channel, map or slice type, it returns
// the address of an uninitialized (nil) reference of that kind; store
// the result of MakeSlice, MakeMap or MakeChan in that location to
// instantiate these types.
//
// Pos() returns the ast.CompositeLit.Lbrace for a composite literal,
// or the ast.CallExpr.Lparen for a call to new() or for a call that
// allocates a varargs slice.
//
// Example printed form:
// t0 = local int
// t1 = new int
//
type Alloc struct {
anInstruction
Name_ string
Type_ types.Type
Heap bool
pos token.Pos
referrers []Instruction
index int // dense numbering; for lifting
}
// The Phi instruction represents an SSA φ-node, which combines values
// that differ across incoming control-flow edges and yields a new
// value. Within a block, all φ-nodes must appear before all non-φ
// nodes.
//
// Pos() returns NoPos.
//
// Example printed form:
// t2 = phi [0.start: t0, 1.if.then: t1, ...]
//
type Phi struct {
Register
Comment string // a hint as to its purpose
Edges []Value // Edges[i] is value for Block().Preds[i]
}
// The Call instruction represents a function or method call.
//
// The Call instruction yields the function result, if there is
// exactly one, or a tuple (empty or len>1) whose components are
// accessed via Extract.
//
// See CallCommon for generic function call documentation.
//
// Pos() returns the ast.CallExpr.Lparen, if explicit in the source.
//
// Example printed form:
// t2 = println(t0, t1)
// t4 = t3()
// t7 = invoke t5.Println(...t6)
//
type Call struct {
Register
Call CallCommon
}
// The BinOp instruction yields the result of binary operation X Op Y.
//
// Pos() returns the ast.BinaryExpr.OpPos, if explicit in the source.
// TODO(adonovan): implement.
//
// Example printed form:
// t1 = t0 + 1:int
//
type BinOp struct {
Register
// One of:
// ADD SUB MUL QUO REM + - * / %
// AND OR XOR SHL SHR AND_NOT & | ^ << >> &~
// EQL LSS GTR NEQ LEQ GEQ == != < <= < >=
Op token.Token
X, Y Value
}
// The UnOp instruction yields the result of Op X.
// ARROW is channel receive.
// MUL is pointer indirection (load).
// XOR is bitwise complement.
// SUB is negation.
//
// If CommaOk and Op=ARROW, the result is a 2-tuple of the value above
// and a boolean indicating the success of the receive. The
// components of the tuple are accessed using Extract.
//
// Pos() returns the ast.UnaryExpr.OpPos, if explicit in the source.
//
// Example printed form:
// t0 = *x
// t2 = <-t1,ok
//
type UnOp struct {
Register
Op token.Token // One of: NOT SUB ARROW MUL XOR ! - <- * ^
X Value
CommaOk bool
}
// The ChangeType instruction applies to X a value-preserving type
// change to Type().
//
// Type changes are permitted:
// - between a named type and its underlying type.
// - between two named types of the same underlying type.
// - between (possibly named) pointers to identical base types.
// - between f(T) functions and (T) func f() methods.
// - from a bidirectional channel to a read- or write-channel,
// optionally adding/removing a name.
//
// This operation cannot fail dynamically.
//
// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
// from an explicit conversion in the source.
//
// Example printed form:
// t1 = changetype *int <- IntPtr (t0)
//
type ChangeType struct {
Register
X Value
}
// The Convert instruction yields the conversion of value X to type
// Type().
//
// A conversion may change the value and representation of its operand.
// Conversions are permitted:
// - between real numeric types.
// - between complex numeric types.
// - between string and []byte or []rune.
// - from (Unicode) integer to (UTF-8) string.
// A conversion may imply a type name change also.
//
// This operation cannot fail dynamically.
//
// Conversions of untyped string/number/bool constants to a specific
// representation are eliminated during SSA construction.
//
// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
// from an explicit conversion in the source.
//
// Example printed form:
// t1 = convert []byte <- string (t0)
//
type Convert struct {
Register
X Value
}
// ChangeInterface constructs a value of one interface type from a
// value of another interface type known to be assignable to it.
//
// This operation cannot fail. Use TypeAssert for interface
// conversions that may fail dynamically.
//
// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
// from an explicit conversion in the source.
//
// Example printed form:
// t1 = change interface interface{} <- I (t0)
//
type ChangeInterface struct {
Register
X Value
}
// MakeInterface constructs an instance of an interface type from a
// value and its method-set.
//
// To construct the zero value of an interface type T, use:
// &Literal{exact.MakeNil(), T}
//
// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
// from an explicit conversion in the source.
//
// Example printed form:
// t1 = make interface interface{} <- int (42:int)
//
type MakeInterface struct {
Register
X Value
Methods MethodSet // method set of (non-interface) X
}
// The MakeClosure instruction yields an anonymous function value
// whose code is Fn and whose lexical capture slots are populated by
// Bindings.
//
// By construction, all captured variables are addresses of variables
// allocated with 'new', i.e. Alloc(Heap=true).
//
// Type() returns a (possibly named) *types.Signature.
//
// Pos() returns the ast.FuncLit.Type.Func of the function literal
// that created this closure.
//
// Example printed form:
// t0 = make closure anon@1.2 [x y z]
//
type MakeClosure struct {
Register
Fn Value // always a *Function
Bindings []Value // values for each free variable in Fn.FreeVars
}
// The MakeMap instruction creates a new hash-table-based map object
// and yields a value of kind map.
//
// Type() returns a (possibly named) *types.Map.
//
// Pos() returns the ast.CallExpr.Lparen, if created by make(map), or
// the ast.CompositeLit.Lbrack if created by a literal.
//
// Example printed form:
// t1 = make map[string]int t0
//
type MakeMap struct {
Register
Reserve Value // initial space reservation; nil => default
}
// The MakeChan instruction creates a new channel object and yields a
// value of kind chan.
//
// Type() returns a (possibly named) *types.Chan.
//
// Pos() returns the ast.CallExpr.Lparen for the make(chan) that
// created it.
//
// Example printed form:
// t0 = make chan int 0
//
type MakeChan struct {
Register
Size Value // int; size of buffer; zero => synchronous.
}
// The MakeSlice instruction yields a slice of length Len backed by a
// newly allocated array of length Cap.
//
// Both Len and Cap must be non-nil Values of integer type.
//
// (Alloc(types.Array) followed by Slice will not suffice because
// Alloc can only create arrays of statically known length.)
//
// Type() returns a (possibly named) *types.Slice.
//
// Pos() returns the ast.CallExpr.Lparen for the make([]T) that
// created it.
//
// Example printed form:
// t1 = make slice []string 1:int t0
//
type MakeSlice struct {
Register
Len Value
Cap Value
}
// The Slice instruction yields a slice of an existing string, slice
// or *array X between optional integer bounds Low and High.
//
// Type() returns string if the type of X was string, otherwise a
// *types.Slice with the same element type as X.
//
// Pos() returns the ast.SliceExpr.Lbrack if created by a x[:] slice
// operation, the ast.CompositeLit.Lbrace if created by a literal, or
// NoPos if not explicit in the source (e.g. a variadic argument slice).
//
// Example printed form:
// t1 = slice t0[1:]
//
type Slice struct {
Register
X Value // slice, string, or *array
Low, High Value // either may be nil
}
// The FieldAddr instruction yields the address of Field of *struct X.
//
// The field is identified by its index within the field list of the
// struct type of X.
//
// Type() returns a (possibly named) *types.Pointer.
//
// Pos() returns the position of the ast.SelectorExpr.Sel for the
// field, if explicit in the source.
//
// Example printed form:
// t1 = &t0.name [#1]
//
type FieldAddr struct {
Register
X Value // *struct
Field int // index into X.Type().(*types.Struct).Fields
}
// The Field instruction yields the Field of struct X.
//
// The field is identified by its index within the field list of the
// struct type of X; by using numeric indices we avoid ambiguity of
// package-local identifiers and permit compact representations.
//
// Pos() returns the position of the ast.SelectorExpr.Sel for the
// field, if explicit in the source.
//
// Example printed form:
// t1 = t0.name [#1]
//
type Field struct {
Register
X Value // struct
Field int // index into X.Type().(*types.Struct).Fields
}
// The IndexAddr instruction yields the address of the element at
// index Index of collection X. Index is an integer expression.
//
// The elements of maps and strings are not addressable; use Lookup or
// MapUpdate instead.
//
// Type() returns a (possibly named) *types.Pointer.
//
// Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
// explicit in the source.
//
// Example printed form:
// t2 = &t0[t1]
//
type IndexAddr struct {
Register
X Value // slice or *array,
Index Value // numeric index
}
// The Index instruction yields element Index of array X.
//
// Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
// explicit in the source.
//
// Example printed form:
// t2 = t0[t1]
//
type Index struct {
Register
X Value // array
Index Value // integer index
}
// The Lookup instruction yields element Index of collection X, a map
// or string. Index is an integer expression if X is a string or the
// appropriate key type if X is a map.
//
// If CommaOk, the result is a 2-tuple of the value above and a
// boolean indicating the result of a map membership test for the key.
// The components of the tuple are accessed using Extract.
//
// Pos() returns the ast.IndexExpr.Lbrack, if explicit in the source.
//
// Example printed form:
// t2 = t0[t1]
// t5 = t3[t4],ok
//
type Lookup struct {
Register
X Value // string or map
Index Value // numeric or key-typed index
CommaOk bool // return a value,ok pair
}
// SelectState is a helper for Select.
// It represents one goal state and its corresponding communication.
//
type SelectState struct {
Dir ast.ChanDir // direction of case
Chan Value // channel to use (for send or receive)
Send Value // value to send (for send)
}
// The Select instruction tests whether (or blocks until) one or more
// of the specified sent or received states is entered.
//
// It returns a triple (index int, recv interface{}, recvOk bool)
// whose components, described below, must be accessed via the Extract
// instruction.
//
// If Blocking, select waits until exactly one state holds, i.e. a
// channel becomes ready for the designated operation of sending or
// receiving; select chooses one among the ready states
// pseudorandomly, performs the send or receive operation, and sets
// 'index' to the index of the chosen channel.
//
// If !Blocking, select doesn't block if no states hold; instead it
// returns immediately with index equal to -1.
//
// If the chosen channel was used for a receive, 'recv' is set to the
// received value; otherwise it is nil.
//
// The third component of the triple, recvOk, is a boolean whose value
// is true iff the selected operation was a receive and the receive
// successfully yielded a value.
//
// Pos() returns the ast.SelectStmt.Select.
//
// Example printed form:
// t3 = select nonblocking [<-t0, t1<-t2, ...]
// t4 = select blocking []
//
type Select struct {
Register
States []SelectState
Blocking bool
}
// The Range instruction yields an iterator over the domain and range
// of X, which must be a string or map.
//
// Elements are accessed via Next.
//
// Type() returns a (possibly named) *types.Result (tuple type).
//
// Pos() returns the ast.RangeStmt.For.
//
// Example printed form:
// t0 = range "hello":string
//
type Range struct {
Register
X Value // string or map
}
// The Next instruction reads and advances the (map or string)
// iterator Iter and returns a 3-tuple value (ok, k, v). If the
// iterator is not exhausted, ok is true and k and v are the next
// elements of the domain and range, respectively. Otherwise ok is
// false and k and v are undefined.
//
// Components of the tuple are accessed using Extract.
//
// The IsString field distinguishes iterators over strings from those
// over maps, as the Type() alone is insufficient: consider
// map[int]rune.
//
// Type() returns a *types.Result (tuple type) for the triple
// (ok, k, v). The types of k and/or v may be types.Invalid.
//
// Example printed form:
// t1 = next t0
//
type Next struct {
Register
Iter Value
IsString bool // true => string iterator; false => map iterator.
}
// The TypeAssert instruction tests whether interface value X has type
// AssertedType.
//
// If !CommaOk, on success it returns v, the result of the conversion
// (defined below); on failure it panics.
//
// If CommaOk: on success it returns a pair (v, true) where v is the
// result of the conversion; on failure it returns (z, false) where z
// is AssertedType's zero value. The components of the pair must be
// accessed using the Extract instruction.
//
// If AssertedType is a concrete type, TypeAssert checks whether the
// dynamic type in interface X is equal to it, and if so, the result
// of the conversion is a copy of the value in the interface.
//
// If AssertedType is an interface, TypeAssert checks whether the
// dynamic type of the interface is assignable to it, and if so, the
// result of the conversion is a copy of the interface value X.
// If AssertedType is a superinterface of X.Type(), the operation
// cannot fail; ChangeInterface is preferred in this case.
//
// Type() reflects the actual type of the result, possibly a pair
// (types.Result); AssertedType is the asserted type.
//
// Example printed form:
// t1 = typeassert t0.(int)
// t3 = typeassert,ok t2.(T)
//
type TypeAssert struct {
Register
X Value
AssertedType types.Type
CommaOk bool
}
// The Extract instruction yields component Index of Tuple.
//
// This is used to access the results of instructions with multiple
// return values, such as Call, TypeAssert, Next, UnOp(ARROW) and
// IndexExpr(Map).
//
// Example printed form:
// t1 = extract t0 #1
//
type Extract struct {
Register
Tuple Value
Index int
}
// Instructions executed for effect. They do not yield a value. --------------------
// The Jump instruction transfers control to the sole successor of its
// owning block.
//
// A Jump must be the last instruction of its containing BasicBlock.
//
// Pos() returns NoPos.
//
// Example printed form:
// jump done
//
type Jump struct {
anInstruction
}
// The If instruction transfers control to one of the two successors
// of its owning block, depending on the boolean Cond: the first if
// true, the second if false.
//
// An If instruction must be the last instruction of its containing
// BasicBlock.
//
// Pos() returns NoPos.
//
// Example printed form:
// if t0 goto done else body
//
type If struct {
anInstruction
Cond Value
}
// The Ret instruction returns values and control back to the calling
// function.
//
// len(Results) is always equal to the number of results in the
// function's signature.
//
// If len(Results) > 1, Ret returns a tuple value with the specified
// components which the caller must access using Extract instructions.
//
// There is no instruction to return a ready-made tuple like those
// returned by a "value,ok"-mode TypeAssert, Lookup or UnOp(ARROW) or
// a tail-call to a function with multiple result parameters.
//
// Ret must be the last instruction of its containing BasicBlock.
// Such a block has no successors.
//
// Pos() returns the ast.ReturnStmt.Return, if explicit in the source.
//
// Example printed form:
// ret
// ret nil:I, 2:int
//
type Ret struct {
anInstruction
Results []Value
pos token.Pos
}
// The RunDefers instruction pops and invokes the entire stack of
// procedure calls pushed by Defer instructions in this function.
//
// It is legal to encounter multiple 'rundefers' instructions in a
// single control-flow path through a function; this is useful in
// the combined init() function, for example.
//
// Pos() returns NoPos.
//
// Example printed form:
// rundefers
//
type RunDefers struct {
anInstruction
}
// The Panic instruction initiates a panic with value X.
//
// A Panic instruction must be the last instruction of its containing
// BasicBlock, which must have no successors.
//
// NB: 'go panic(x)' and 'defer panic(x)' do not use this instruction;
// they are treated as calls to a built-in function.
//
// Pos() returns the ast.CallExpr.Lparen if this panic was explicit
// in the source.
//
// Example printed form:
// panic t0
//
type Panic struct {
anInstruction
X Value // an interface{}
pos token.Pos
}
// The Go instruction creates a new goroutine and calls the specified
// function within it.
//
// See CallCommon for generic function call documentation.
//
// Example printed form:
// go println(t0, t1)
// go t3()
// go invoke t5.Println(...t6)
//
type Go struct {
anInstruction
Call CallCommon
}
// The Defer instruction pushes the specified call onto a stack of
// functions to be called by a RunDefers instruction or by a panic.
//
// See CallCommon for generic function call documentation.
//
// Example printed form:
// defer println(t0, t1)
// defer t3()
// defer invoke t5.Println(...t6)
//
type Defer struct {
anInstruction
Call CallCommon
}
// The Send instruction sends X on channel Chan.
//
// Pos() returns the ast.SendStmt.Arrow, if explicit in the source.
//
// Example printed form:
// send t0 <- t1
//
type Send struct {
anInstruction
Chan, X Value
pos token.Pos
}
// The Store instruction stores Val at address Addr.
// Stores can be of arbitrary types.
//
// Pos() returns the ast.StarExpr.Star, if explicit in the source.
// TODO(addr): implement.
//
// Example printed form:
// *x = y
//
type Store struct {
anInstruction
Addr Value
Val Value
pos token.Pos
}
// The MapUpdate instruction updates the association of Map[Key] to
// Value.
//
// Pos() returns the ast.KeyValueExpr.Colon, if explicit in the source.
//
// Example printed form:
// t0[t1] = t2
//
type MapUpdate struct {
anInstruction
Map Value
Key Value
Value Value
pos token.Pos
}
// Embeddable mix-ins and helpers for common parts of other structs. -----------
// Register is a mix-in embedded by all SSA values that are also
// instructions, i.e. virtual registers, and provides implementations
// of the Value interface's Name() and Type() methods: the name is
// simply a numbered register (e.g. "t0") and the type is the Type_
// field.
//
// Temporary names are automatically assigned to each Register on
// completion of building a function in SSA form.
//
// Clients must not assume that the 'id' value (and the Name() derived
// from it) is unique within a function. As always in this API,
// semantics are determined only by identity; names exist only to
// facilitate debugging.
//
type Register struct {
anInstruction
num int // "name" of virtual register, e.g. "t0". Not guaranteed unique.
pos token.Pos // position of source expression, or NoPos
Type_ types.Type // type of virtual register
referrers []Instruction
}
// anInstruction is a mix-in embedded by all Instructions.
// It provides the implementations of the Block and SetBlock methods.
type anInstruction struct {
Block_ *BasicBlock // the basic block of this instruction
}
// CallCommon is contained by Go, Defer and Call to hold the
// common parts of a function or method call.
//
// Each CallCommon exists in one of two modes, function call and
// interface method invocation, or "call" and "invoke" for short.
//
// 1. "call" mode: when Recv is nil (!IsInvoke), a CallCommon
// represents an ordinary function call of the value in Func.
//
// In the common case in which Func is a *Function, this indicates a
// statically dispatched call to a package-level function, an
// anonymous function, or a method of a named type. Also statically
// dispatched, but less common, Func may be a *MakeClosure, indicating
// an immediately applied function literal with free variables. Any
// other Value of Func indicates a dynamically dispatched function
// call. The StaticCallee method returns the callee in these cases.
//
// Args contains the arguments to the call. If Func is a method,
// Args[0] contains the receiver parameter. Recv and Method are not
// used in this mode.
//
// Example printed form:
// t2 = println(t0, t1)
// go t3()
// defer t5(...t6)
//
// 2. "invoke" mode: when Recv is non-nil (IsInvoke), a CallCommon
// represents a dynamically dispatched call to an interface method.
// In this mode, Recv is the interface value and Method is the index
// of the method within the interface type of the receiver.
//
// Recv is implicitly supplied to the concrete method implementation
// as the receiver parameter; in other words, Args[0] holds not the
// receiver but the first true argument. Func is not used in this
// mode.
//
// If the called method's receiver has non-pointer type T, but the
// receiver supplied by the interface value has type *T, an implicit
// load (copy) operation is performed.
//
// Example printed form:
// t1 = invoke t0.String()
// go invoke t3.Run(t2)
// defer invoke t4.Handle(...t5)
//
// In both modes, HasEllipsis is true iff the last element of Args is
// a slice value containing zero or more arguments to a variadic
// function. (This is not semantically significant since the type of
// the called function is sufficient to determine this, but it aids
// readability of the printed form.)
//
type CallCommon struct {
Recv Value // receiver, iff interface method invocation
Method int // index of interface method; call MethodId() for its Id
Func Value // target of call, iff function call
Args []Value // actual parameters, including receiver in invoke mode
HasEllipsis bool // true iff last Args is a slice of '...' args (needed?)
pos token.Pos // position of CallExpr.Lparen, iff explicit in source
}
// IsInvoke returns true if this call has "invoke" (not "call") mode.
func (c *CallCommon) IsInvoke() bool {
return c.Recv != nil
}
func (c *CallCommon) Pos() token.Pos { return c.pos }
// StaticCallee returns the called function if this is a trivially
// static "call"-mode call.
func (c *CallCommon) StaticCallee() *Function {
switch fn := c.Func.(type) {
case *Function:
return fn
case *MakeClosure:
return fn.Fn.(*Function)
}
return nil
}
// MethodId returns the Id for the method called by c, which must
// have "invoke" mode.
func (c *CallCommon) MethodId() Id {
m := c.Recv.Type().Underlying().(*types.Interface).Method(c.Method)
return MakeId(m.Name(), m.Pkg())
}
// Description returns a description of the mode of this call suitable
// for a user interface, e.g. "static method call".
func (c *CallCommon) Description() string {
switch fn := c.Func.(type) {
case nil:
return "dynamic method call" // ("invoke" mode)
case *MakeClosure:
return "static function closure call"
case *Function:
if fn.Signature.Recv() != nil {
return "static method call"
}
return "static function call"
}
return "dynamic function call"
}
func (v *Builtin) Type() types.Type { return v.Object.Type() }
func (v *Builtin) Name() string { return v.Object.Name() }
func (*Builtin) Referrers() *[]Instruction { return nil }
func (v *Capture) Type() types.Type { return v.Outer.Type() }
func (v *Capture) Name() string { return v.Outer.Name() }
func (v *Capture) Referrers() *[]Instruction { return &v.referrers }
func (v *Global) Type() types.Type { return v.Type_ }
func (v *Global) Name() string { return v.Name_ }
func (v *Global) Pos() token.Pos { return v.pos }
func (*Global) Referrers() *[]Instruction { return nil }
func (v *Function) Name() string { return v.Name_ }
func (v *Function) Type() types.Type { return v.Signature }
func (v *Function) Pos() token.Pos { return v.pos }
func (*Function) Referrers() *[]Instruction { return nil }
func (v *Parameter) Type() types.Type { return v.Type_ }
func (v *Parameter) Name() string { return v.Name_ }
func (v *Parameter) Referrers() *[]Instruction { return &v.referrers }
func (v *Alloc) Type() types.Type { return v.Type_ }
func (v *Alloc) Name() string { return v.Name_ }
func (v *Alloc) Referrers() *[]Instruction { return &v.referrers }
func (v *Register) Type() types.Type { return v.Type_ }
func (v *Register) setType(typ types.Type) { v.Type_ = typ }
func (v *Register) Name() string { return fmt.Sprintf("t%d", v.num) }
func (v *Register) setNum(num int) { v.num = num }
func (v *Register) Referrers() *[]Instruction { return &v.referrers }
func (v *Register) asRegister() *Register { return v }
func (v *Register) Pos() token.Pos { return v.pos }
func (v *Register) setPos(pos token.Pos) { v.pos = pos }
func (v *anInstruction) Block() *BasicBlock { return v.Block_ }
func (v *anInstruction) SetBlock(block *BasicBlock) { v.Block_ = block }
func (t *Type) Name() string { return t.NamedType.Obj().Name() }
func (t *Type) Pos() token.Pos { return t.NamedType.Obj().Pos() }
func (t *Type) String() string { return t.Name() }
func (t *Type) Type() types.Type { return t.NamedType }
func (p *Package) Name() string { return p.Types.Name() }
func (c *Constant) Name() string { return c.Name_ }
func (c *Constant) Pos() token.Pos { return c.pos }
func (c *Constant) String() string { return c.Name() }
func (c *Constant) Type() types.Type { return c.Value.Type() }
// Func returns the package-level function of the specified name,
// or nil if not found.
//
func (p *Package) Func(name string) (f *Function) {
f, _ = p.Members[name].(*Function)
return
}
// Var returns the package-level variable of the specified name,
// or nil if not found.
//
func (p *Package) Var(name string) (g *Global) {
g, _ = p.Members[name].(*Global)
return
}
// Const returns the package-level constant of the specified name,
// or nil if not found.
//
func (p *Package) Const(name string) (c *Constant) {
c, _ = p.Members[name].(*Constant)
return
}
// Type returns the package-level type of the specified name,
// or nil if not found.
//
func (p *Package) Type(name string) (t *Type) {
t, _ = p.Members[name].(*Type)
return
}
// "Implements" relation boilerplate.
// Don't try to factor this using promotion and mix-ins: the long-hand
// form serves as better documentation, including in godoc.
func (*Alloc) ImplementsValue() {}
func (*BinOp) ImplementsValue() {}
func (*Builtin) ImplementsValue() {}
func (*Call) ImplementsValue() {}
func (*Capture) ImplementsValue() {}
func (*ChangeInterface) ImplementsValue() {}
func (*ChangeType) ImplementsValue() {}
func (*Convert) ImplementsValue() {}
func (*Extract) ImplementsValue() {}
func (*Field) ImplementsValue() {}
func (*FieldAddr) ImplementsValue() {}
func (*Function) ImplementsValue() {}
func (*Global) ImplementsValue() {}
func (*Index) ImplementsValue() {}
func (*IndexAddr) ImplementsValue() {}
func (*Literal) ImplementsValue() {}
func (*Lookup) ImplementsValue() {}
func (*MakeChan) ImplementsValue() {}
func (*MakeClosure) ImplementsValue() {}
func (*MakeInterface) ImplementsValue() {}
func (*MakeMap) ImplementsValue() {}
func (*MakeSlice) ImplementsValue() {}
func (*Next) ImplementsValue() {}
func (*Parameter) ImplementsValue() {}
func (*Phi) ImplementsValue() {}
func (*Range) ImplementsValue() {}
func (*Select) ImplementsValue() {}
func (*Slice) ImplementsValue() {}
func (*TypeAssert) ImplementsValue() {}
func (*UnOp) ImplementsValue() {}
func (*Constant) ImplementsMember() {}
func (*Function) ImplementsMember() {}
func (*Global) ImplementsMember() {}
func (*Type) ImplementsMember() {}
func (*Alloc) ImplementsInstruction() {}
func (*BinOp) ImplementsInstruction() {}
func (*Call) ImplementsInstruction() {}
func (*ChangeInterface) ImplementsInstruction() {}
func (*ChangeType) ImplementsInstruction() {}
func (*Convert) ImplementsInstruction() {}
func (*Defer) ImplementsInstruction() {}
func (*Extract) ImplementsInstruction() {}
func (*Field) ImplementsInstruction() {}
func (*FieldAddr) ImplementsInstruction() {}
func (*Go) ImplementsInstruction() {}
func (*If) ImplementsInstruction() {}
func (*Index) ImplementsInstruction() {}
func (*IndexAddr) ImplementsInstruction() {}
func (*Jump) ImplementsInstruction() {}
func (*Lookup) ImplementsInstruction() {}
func (*MakeChan) ImplementsInstruction() {}
func (*MakeClosure) ImplementsInstruction() {}
func (*MakeInterface) ImplementsInstruction() {}
func (*MakeMap) ImplementsInstruction() {}
func (*MakeSlice) ImplementsInstruction() {}
func (*MapUpdate) ImplementsInstruction() {}
func (*Next) ImplementsInstruction() {}
func (*Panic) ImplementsInstruction() {}
func (*Phi) ImplementsInstruction() {}
func (*Range) ImplementsInstruction() {}
func (*Ret) ImplementsInstruction() {}
func (*RunDefers) ImplementsInstruction() {}
func (*Select) ImplementsInstruction() {}
func (*Send) ImplementsInstruction() {}
func (*Slice) ImplementsInstruction() {}
func (*Store) ImplementsInstruction() {}
func (*TypeAssert) ImplementsInstruction() {}
func (*UnOp) ImplementsInstruction() {}
func (v *Alloc) Pos() token.Pos { return v.pos }
func (v *Call) Pos() token.Pos { return v.Call.pos }
func (s *Defer) Pos() token.Pos { return s.Call.pos }
func (s *Go) Pos() token.Pos { return s.Call.pos }
func (s *MapUpdate) Pos() token.Pos { return s.pos }
func (s *Panic) Pos() token.Pos { return s.pos }
func (s *Ret) Pos() token.Pos { return s.pos }
func (s *Send) Pos() token.Pos { return s.pos }
func (s *Store) Pos() token.Pos { return s.pos }
func (s *If) Pos() token.Pos { return token.NoPos }
func (s *Jump) Pos() token.Pos { return token.NoPos }
func (s *RunDefers) Pos() token.Pos { return token.NoPos }
// Operands.
func (v *Alloc) Operands(rands []*Value) []*Value {
return rands
}
func (v *BinOp) Operands(rands []*Value) []*Value {
return append(rands, &v.X, &v.Y)
}
func (c *CallCommon) Operands(rands []*Value) []*Value {
rands = append(rands, &c.Recv, &c.Func)
for i := range c.Args {
rands = append(rands, &c.Args[i])
}
return rands
}
func (s *Go) Operands(rands []*Value) []*Value {
return s.Call.Operands(rands)
}
func (s *Call) Operands(rands []*Value) []*Value {
return s.Call.Operands(rands)
}
func (s *Defer) Operands(rands []*Value) []*Value {
return s.Call.Operands(rands)
}
func (v *ChangeInterface) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *ChangeType) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *Convert) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *Extract) Operands(rands []*Value) []*Value {
return append(rands, &v.Tuple)
}
func (v *Field) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *FieldAddr) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (s *If) Operands(rands []*Value) []*Value {
return append(rands, &s.Cond)
}
func (v *Index) Operands(rands []*Value) []*Value {
return append(rands, &v.X, &v.Index)
}
func (v *IndexAddr) Operands(rands []*Value) []*Value {
return append(rands, &v.X, &v.Index)
}
func (*Jump) Operands(rands []*Value) []*Value {
return rands
}
func (v *Lookup) Operands(rands []*Value) []*Value {
return append(rands, &v.X, &v.Index)
}
func (v *MakeChan) Operands(rands []*Value) []*Value {
return append(rands, &v.Size)
}
func (v *MakeClosure) Operands(rands []*Value) []*Value {
rands = append(rands, &v.Fn)
for i := range v.Bindings {
rands = append(rands, &v.Bindings[i])
}
return rands
}
func (v *MakeInterface) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *MakeMap) Operands(rands []*Value) []*Value {
return append(rands, &v.Reserve)
}
func (v *MakeSlice) Operands(rands []*Value) []*Value {
return append(rands, &v.Len, &v.Cap)
}
func (v *MapUpdate) Operands(rands []*Value) []*Value {
return append(rands, &v.Map, &v.Key, &v.Value)
}
func (v *Next) Operands(rands []*Value) []*Value {
return append(rands, &v.Iter)
}
func (s *Panic) Operands(rands []*Value) []*Value {
return append(rands, &s.X)
}
func (v *Phi) Operands(rands []*Value) []*Value {
for i := range v.Edges {
rands = append(rands, &v.Edges[i])
}
return rands
}
func (v *Range) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (s *Ret) Operands(rands []*Value) []*Value {
for i := range s.Results {
rands = append(rands, &s.Results[i])
}
return rands
}
func (*RunDefers) Operands(rands []*Value) []*Value {
return rands
}
func (v *Select) Operands(rands []*Value) []*Value {
for i := range v.States {
rands = append(rands, &v.States[i].Chan, &v.States[i].Send)
}
return rands
}
func (s *Send) Operands(rands []*Value) []*Value {
return append(rands, &s.Chan, &s.X)
}
func (v *Slice) Operands(rands []*Value) []*Value {
return append(rands, &v.X, &v.Low, &v.High)
}
func (s *Store) Operands(rands []*Value) []*Value {
return append(rands, &s.Addr, &s.Val)
}
func (v *TypeAssert) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *UnOp) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}