| // Copyright 2012 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package ssh |
| |
| import ( |
| "bytes" |
| "crypto" |
| "crypto/aes" |
| "crypto/cipher" |
| "crypto/dsa" |
| "crypto/ecdsa" |
| "crypto/ed25519" |
| "crypto/elliptic" |
| "crypto/md5" |
| "crypto/rand" |
| "crypto/rsa" |
| "crypto/sha256" |
| "crypto/x509" |
| "encoding/asn1" |
| "encoding/base64" |
| "encoding/binary" |
| "encoding/hex" |
| "encoding/pem" |
| "errors" |
| "fmt" |
| "io" |
| "math/big" |
| "strings" |
| |
| "golang.org/x/crypto/ssh/internal/bcrypt_pbkdf" |
| ) |
| |
| // Public key algorithms names. These values can appear in PublicKey.Type, |
| // ClientConfig.HostKeyAlgorithms, Signature.Format, or as AlgorithmSigner |
| // arguments. |
| const ( |
| KeyAlgoRSA = "ssh-rsa" |
| KeyAlgoDSA = "ssh-dss" |
| KeyAlgoECDSA256 = "ecdsa-sha2-nistp256" |
| KeyAlgoSKECDSA256 = "sk-ecdsa-sha2-nistp256@openssh.com" |
| KeyAlgoECDSA384 = "ecdsa-sha2-nistp384" |
| KeyAlgoECDSA521 = "ecdsa-sha2-nistp521" |
| KeyAlgoED25519 = "ssh-ed25519" |
| KeyAlgoSKED25519 = "sk-ssh-ed25519@openssh.com" |
| |
| // KeyAlgoRSASHA256 and KeyAlgoRSASHA512 are only public key algorithms, not |
| // public key formats, so they can't appear as a PublicKey.Type. The |
| // corresponding PublicKey.Type is KeyAlgoRSA. See RFC 8332, Section 2. |
| KeyAlgoRSASHA256 = "rsa-sha2-256" |
| KeyAlgoRSASHA512 = "rsa-sha2-512" |
| ) |
| |
| const ( |
| // Deprecated: use KeyAlgoRSA. |
| SigAlgoRSA = KeyAlgoRSA |
| // Deprecated: use KeyAlgoRSASHA256. |
| SigAlgoRSASHA2256 = KeyAlgoRSASHA256 |
| // Deprecated: use KeyAlgoRSASHA512. |
| SigAlgoRSASHA2512 = KeyAlgoRSASHA512 |
| ) |
| |
| // parsePubKey parses a public key of the given algorithm. |
| // Use ParsePublicKey for keys with prepended algorithm. |
| func parsePubKey(in []byte, algo string) (pubKey PublicKey, rest []byte, err error) { |
| switch algo { |
| case KeyAlgoRSA: |
| return parseRSA(in) |
| case KeyAlgoDSA: |
| return parseDSA(in) |
| case KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521: |
| return parseECDSA(in) |
| case KeyAlgoSKECDSA256: |
| return parseSKECDSA(in) |
| case KeyAlgoED25519: |
| return parseED25519(in) |
| case KeyAlgoSKED25519: |
| return parseSKEd25519(in) |
| case CertAlgoRSAv01, CertAlgoDSAv01, CertAlgoECDSA256v01, CertAlgoECDSA384v01, CertAlgoECDSA521v01, CertAlgoSKECDSA256v01, CertAlgoED25519v01, CertAlgoSKED25519v01: |
| cert, err := parseCert(in, certKeyAlgoNames[algo]) |
| if err != nil { |
| return nil, nil, err |
| } |
| return cert, nil, nil |
| } |
| return nil, nil, fmt.Errorf("ssh: unknown key algorithm: %v", algo) |
| } |
| |
| // parseAuthorizedKey parses a public key in OpenSSH authorized_keys format |
| // (see sshd(8) manual page) once the options and key type fields have been |
| // removed. |
| func parseAuthorizedKey(in []byte) (out PublicKey, comment string, err error) { |
| in = bytes.TrimSpace(in) |
| |
| i := bytes.IndexAny(in, " \t") |
| if i == -1 { |
| i = len(in) |
| } |
| base64Key := in[:i] |
| |
| key := make([]byte, base64.StdEncoding.DecodedLen(len(base64Key))) |
| n, err := base64.StdEncoding.Decode(key, base64Key) |
| if err != nil { |
| return nil, "", err |
| } |
| key = key[:n] |
| out, err = ParsePublicKey(key) |
| if err != nil { |
| return nil, "", err |
| } |
| comment = string(bytes.TrimSpace(in[i:])) |
| return out, comment, nil |
| } |
| |
| // ParseKnownHosts parses an entry in the format of the known_hosts file. |
| // |
| // The known_hosts format is documented in the sshd(8) manual page. This |
| // function will parse a single entry from in. On successful return, marker |
| // will contain the optional marker value (i.e. "cert-authority" or "revoked") |
| // or else be empty, hosts will contain the hosts that this entry matches, |
| // pubKey will contain the public key and comment will contain any trailing |
| // comment at the end of the line. See the sshd(8) manual page for the various |
| // forms that a host string can take. |
| // |
| // The unparsed remainder of the input will be returned in rest. This function |
| // can be called repeatedly to parse multiple entries. |
| // |
| // If no entries were found in the input then err will be io.EOF. Otherwise a |
| // non-nil err value indicates a parse error. |
| func ParseKnownHosts(in []byte) (marker string, hosts []string, pubKey PublicKey, comment string, rest []byte, err error) { |
| for len(in) > 0 { |
| end := bytes.IndexByte(in, '\n') |
| if end != -1 { |
| rest = in[end+1:] |
| in = in[:end] |
| } else { |
| rest = nil |
| } |
| |
| end = bytes.IndexByte(in, '\r') |
| if end != -1 { |
| in = in[:end] |
| } |
| |
| in = bytes.TrimSpace(in) |
| if len(in) == 0 || in[0] == '#' { |
| in = rest |
| continue |
| } |
| |
| i := bytes.IndexAny(in, " \t") |
| if i == -1 { |
| in = rest |
| continue |
| } |
| |
| // Strip out the beginning of the known_host key. |
| // This is either an optional marker or a (set of) hostname(s). |
| keyFields := bytes.Fields(in) |
| if len(keyFields) < 3 || len(keyFields) > 5 { |
| return "", nil, nil, "", nil, errors.New("ssh: invalid entry in known_hosts data") |
| } |
| |
| // keyFields[0] is either "@cert-authority", "@revoked" or a comma separated |
| // list of hosts |
| marker := "" |
| if keyFields[0][0] == '@' { |
| marker = string(keyFields[0][1:]) |
| keyFields = keyFields[1:] |
| } |
| |
| hosts := string(keyFields[0]) |
| // keyFields[1] contains the key type (e.g. “ssh-rsa”). |
| // However, that information is duplicated inside the |
| // base64-encoded key and so is ignored here. |
| |
| key := bytes.Join(keyFields[2:], []byte(" ")) |
| if pubKey, comment, err = parseAuthorizedKey(key); err != nil { |
| return "", nil, nil, "", nil, err |
| } |
| |
| return marker, strings.Split(hosts, ","), pubKey, comment, rest, nil |
| } |
| |
| return "", nil, nil, "", nil, io.EOF |
| } |
| |
| // ParseAuthorizedKey parses a public key from an authorized_keys |
| // file used in OpenSSH according to the sshd(8) manual page. |
| func ParseAuthorizedKey(in []byte) (out PublicKey, comment string, options []string, rest []byte, err error) { |
| for len(in) > 0 { |
| end := bytes.IndexByte(in, '\n') |
| if end != -1 { |
| rest = in[end+1:] |
| in = in[:end] |
| } else { |
| rest = nil |
| } |
| |
| end = bytes.IndexByte(in, '\r') |
| if end != -1 { |
| in = in[:end] |
| } |
| |
| in = bytes.TrimSpace(in) |
| if len(in) == 0 || in[0] == '#' { |
| in = rest |
| continue |
| } |
| |
| i := bytes.IndexAny(in, " \t") |
| if i == -1 { |
| in = rest |
| continue |
| } |
| |
| if out, comment, err = parseAuthorizedKey(in[i:]); err == nil { |
| return out, comment, options, rest, nil |
| } |
| |
| // No key type recognised. Maybe there's an options field at |
| // the beginning. |
| var b byte |
| inQuote := false |
| var candidateOptions []string |
| optionStart := 0 |
| for i, b = range in { |
| isEnd := !inQuote && (b == ' ' || b == '\t') |
| if (b == ',' && !inQuote) || isEnd { |
| if i-optionStart > 0 { |
| candidateOptions = append(candidateOptions, string(in[optionStart:i])) |
| } |
| optionStart = i + 1 |
| } |
| if isEnd { |
| break |
| } |
| if b == '"' && (i == 0 || (i > 0 && in[i-1] != '\\')) { |
| inQuote = !inQuote |
| } |
| } |
| for i < len(in) && (in[i] == ' ' || in[i] == '\t') { |
| i++ |
| } |
| if i == len(in) { |
| // Invalid line: unmatched quote |
| in = rest |
| continue |
| } |
| |
| in = in[i:] |
| i = bytes.IndexAny(in, " \t") |
| if i == -1 { |
| in = rest |
| continue |
| } |
| |
| if out, comment, err = parseAuthorizedKey(in[i:]); err == nil { |
| options = candidateOptions |
| return out, comment, options, rest, nil |
| } |
| |
| in = rest |
| continue |
| } |
| |
| return nil, "", nil, nil, errors.New("ssh: no key found") |
| } |
| |
| // ParsePublicKey parses an SSH public key formatted for use in |
| // the SSH wire protocol according to RFC 4253, section 6.6. |
| func ParsePublicKey(in []byte) (out PublicKey, err error) { |
| algo, in, ok := parseString(in) |
| if !ok { |
| return nil, errShortRead |
| } |
| var rest []byte |
| out, rest, err = parsePubKey(in, string(algo)) |
| if len(rest) > 0 { |
| return nil, errors.New("ssh: trailing junk in public key") |
| } |
| |
| return out, err |
| } |
| |
| // MarshalAuthorizedKey serializes key for inclusion in an OpenSSH |
| // authorized_keys file. The return value ends with newline. |
| func MarshalAuthorizedKey(key PublicKey) []byte { |
| b := &bytes.Buffer{} |
| b.WriteString(key.Type()) |
| b.WriteByte(' ') |
| e := base64.NewEncoder(base64.StdEncoding, b) |
| e.Write(key.Marshal()) |
| e.Close() |
| b.WriteByte('\n') |
| return b.Bytes() |
| } |
| |
| // MarshalPrivateKey returns a PEM block with the private key serialized in the |
| // OpenSSH format. |
| func MarshalPrivateKey(key crypto.PrivateKey, comment string) (*pem.Block, error) { |
| return marshalOpenSSHPrivateKey(key, comment, unencryptedOpenSSHMarshaler) |
| } |
| |
| // MarshalPrivateKeyWithPassphrase returns a PEM block holding the encrypted |
| // private key serialized in the OpenSSH format. |
| func MarshalPrivateKeyWithPassphrase(key crypto.PrivateKey, comment string, passphrase []byte) (*pem.Block, error) { |
| return marshalOpenSSHPrivateKey(key, comment, passphraseProtectedOpenSSHMarshaler(passphrase)) |
| } |
| |
| // PublicKey represents a public key using an unspecified algorithm. |
| // |
| // Some PublicKeys provided by this package also implement CryptoPublicKey. |
| type PublicKey interface { |
| // Type returns the key format name, e.g. "ssh-rsa". |
| Type() string |
| |
| // Marshal returns the serialized key data in SSH wire format, with the name |
| // prefix. To unmarshal the returned data, use the ParsePublicKey function. |
| Marshal() []byte |
| |
| // Verify that sig is a signature on the given data using this key. This |
| // method will hash the data appropriately first. sig.Format is allowed to |
| // be any signature algorithm compatible with the key type, the caller |
| // should check if it has more stringent requirements. |
| Verify(data []byte, sig *Signature) error |
| } |
| |
| // CryptoPublicKey, if implemented by a PublicKey, |
| // returns the underlying crypto.PublicKey form of the key. |
| type CryptoPublicKey interface { |
| CryptoPublicKey() crypto.PublicKey |
| } |
| |
| // A Signer can create signatures that verify against a public key. |
| // |
| // Some Signers provided by this package also implement MultiAlgorithmSigner. |
| type Signer interface { |
| // PublicKey returns the associated PublicKey. |
| PublicKey() PublicKey |
| |
| // Sign returns a signature for the given data. This method will hash the |
| // data appropriately first. The signature algorithm is expected to match |
| // the key format returned by the PublicKey.Type method (and not to be any |
| // alternative algorithm supported by the key format). |
| Sign(rand io.Reader, data []byte) (*Signature, error) |
| } |
| |
| // An AlgorithmSigner is a Signer that also supports specifying an algorithm to |
| // use for signing. |
| // |
| // An AlgorithmSigner can't advertise the algorithms it supports, unless it also |
| // implements MultiAlgorithmSigner, so it should be prepared to be invoked with |
| // every algorithm supported by the public key format. |
| type AlgorithmSigner interface { |
| Signer |
| |
| // SignWithAlgorithm is like Signer.Sign, but allows specifying a desired |
| // signing algorithm. Callers may pass an empty string for the algorithm in |
| // which case the AlgorithmSigner will use a default algorithm. This default |
| // doesn't currently control any behavior in this package. |
| SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) |
| } |
| |
| // MultiAlgorithmSigner is an AlgorithmSigner that also reports the algorithms |
| // supported by that signer. |
| type MultiAlgorithmSigner interface { |
| AlgorithmSigner |
| |
| // Algorithms returns the available algorithms in preference order. The list |
| // must not be empty, and it must not include certificate types. |
| Algorithms() []string |
| } |
| |
| // NewSignerWithAlgorithms returns a signer restricted to the specified |
| // algorithms. The algorithms must be set in preference order. The list must not |
| // be empty, and it must not include certificate types. An error is returned if |
| // the specified algorithms are incompatible with the public key type. |
| func NewSignerWithAlgorithms(signer AlgorithmSigner, algorithms []string) (MultiAlgorithmSigner, error) { |
| if len(algorithms) == 0 { |
| return nil, errors.New("ssh: please specify at least one valid signing algorithm") |
| } |
| var signerAlgos []string |
| supportedAlgos := algorithmsForKeyFormat(underlyingAlgo(signer.PublicKey().Type())) |
| if s, ok := signer.(*multiAlgorithmSigner); ok { |
| signerAlgos = s.Algorithms() |
| } else { |
| signerAlgos = supportedAlgos |
| } |
| |
| for _, algo := range algorithms { |
| if !contains(supportedAlgos, algo) { |
| return nil, fmt.Errorf("ssh: algorithm %q is not supported for key type %q", |
| algo, signer.PublicKey().Type()) |
| } |
| if !contains(signerAlgos, algo) { |
| return nil, fmt.Errorf("ssh: algorithm %q is restricted for the provided signer", algo) |
| } |
| } |
| return &multiAlgorithmSigner{ |
| AlgorithmSigner: signer, |
| supportedAlgorithms: algorithms, |
| }, nil |
| } |
| |
| type multiAlgorithmSigner struct { |
| AlgorithmSigner |
| supportedAlgorithms []string |
| } |
| |
| func (s *multiAlgorithmSigner) Algorithms() []string { |
| return s.supportedAlgorithms |
| } |
| |
| func (s *multiAlgorithmSigner) isAlgorithmSupported(algorithm string) bool { |
| if algorithm == "" { |
| algorithm = underlyingAlgo(s.PublicKey().Type()) |
| } |
| for _, algo := range s.supportedAlgorithms { |
| if algorithm == algo { |
| return true |
| } |
| } |
| return false |
| } |
| |
| func (s *multiAlgorithmSigner) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) { |
| if !s.isAlgorithmSupported(algorithm) { |
| return nil, fmt.Errorf("ssh: algorithm %q is not supported: %v", algorithm, s.supportedAlgorithms) |
| } |
| return s.AlgorithmSigner.SignWithAlgorithm(rand, data, algorithm) |
| } |
| |
| type rsaPublicKey rsa.PublicKey |
| |
| func (r *rsaPublicKey) Type() string { |
| return "ssh-rsa" |
| } |
| |
| // parseRSA parses an RSA key according to RFC 4253, section 6.6. |
| func parseRSA(in []byte) (out PublicKey, rest []byte, err error) { |
| var w struct { |
| E *big.Int |
| N *big.Int |
| Rest []byte `ssh:"rest"` |
| } |
| if err := Unmarshal(in, &w); err != nil { |
| return nil, nil, err |
| } |
| |
| if w.E.BitLen() > 24 { |
| return nil, nil, errors.New("ssh: exponent too large") |
| } |
| e := w.E.Int64() |
| if e < 3 || e&1 == 0 { |
| return nil, nil, errors.New("ssh: incorrect exponent") |
| } |
| |
| var key rsa.PublicKey |
| key.E = int(e) |
| key.N = w.N |
| return (*rsaPublicKey)(&key), w.Rest, nil |
| } |
| |
| func (r *rsaPublicKey) Marshal() []byte { |
| e := new(big.Int).SetInt64(int64(r.E)) |
| // RSA publickey struct layout should match the struct used by |
| // parseRSACert in the x/crypto/ssh/agent package. |
| wirekey := struct { |
| Name string |
| E *big.Int |
| N *big.Int |
| }{ |
| KeyAlgoRSA, |
| e, |
| r.N, |
| } |
| return Marshal(&wirekey) |
| } |
| |
| func (r *rsaPublicKey) Verify(data []byte, sig *Signature) error { |
| supportedAlgos := algorithmsForKeyFormat(r.Type()) |
| if !contains(supportedAlgos, sig.Format) { |
| return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, r.Type()) |
| } |
| hash := hashFuncs[sig.Format] |
| h := hash.New() |
| h.Write(data) |
| digest := h.Sum(nil) |
| |
| // Signatures in PKCS1v15 must match the key's modulus in |
| // length. However with SSH, some signers provide RSA |
| // signatures which are missing the MSB 0's of the bignum |
| // represented. With ssh-rsa signatures, this is encouraged by |
| // the spec (even though e.g. OpenSSH will give the full |
| // length unconditionally). With rsa-sha2-* signatures, the |
| // verifier is allowed to support these, even though they are |
| // out of spec. See RFC 4253 Section 6.6 for ssh-rsa and RFC |
| // 8332 Section 3 for rsa-sha2-* details. |
| // |
| // In practice: |
| // * OpenSSH always allows "short" signatures: |
| // https://github.com/openssh/openssh-portable/blob/V_9_8_P1/ssh-rsa.c#L526 |
| // but always generates padded signatures: |
| // https://github.com/openssh/openssh-portable/blob/V_9_8_P1/ssh-rsa.c#L439 |
| // |
| // * PuTTY versions 0.81 and earlier will generate short |
| // signatures for all RSA signature variants. Note that |
| // PuTTY is embedded in other software, such as WinSCP and |
| // FileZilla. At the time of writing, a patch has been |
| // applied to PuTTY to generate padded signatures for |
| // rsa-sha2-*, but not yet released: |
| // https://git.tartarus.org/?p=simon/putty.git;a=commitdiff;h=a5bcf3d384e1bf15a51a6923c3724cbbee022d8e |
| // |
| // * SSH.NET versions 2024.0.0 and earlier will generate short |
| // signatures for all RSA signature variants, fixed in 2024.1.0: |
| // https://github.com/sshnet/SSH.NET/releases/tag/2024.1.0 |
| // |
| // As a result, we pad these up to the key size by inserting |
| // leading 0's. |
| // |
| // Note that support for short signatures with rsa-sha2-* may |
| // be removed in the future due to such signatures not being |
| // allowed by the spec. |
| blob := sig.Blob |
| keySize := (*rsa.PublicKey)(r).Size() |
| if len(blob) < keySize { |
| padded := make([]byte, keySize) |
| copy(padded[keySize-len(blob):], blob) |
| blob = padded |
| } |
| return rsa.VerifyPKCS1v15((*rsa.PublicKey)(r), hash, digest, blob) |
| } |
| |
| func (r *rsaPublicKey) CryptoPublicKey() crypto.PublicKey { |
| return (*rsa.PublicKey)(r) |
| } |
| |
| type dsaPublicKey dsa.PublicKey |
| |
| func (k *dsaPublicKey) Type() string { |
| return "ssh-dss" |
| } |
| |
| func checkDSAParams(param *dsa.Parameters) error { |
| // SSH specifies FIPS 186-2, which only provided a single size |
| // (1024 bits) DSA key. FIPS 186-3 allows for larger key |
| // sizes, which would confuse SSH. |
| if l := param.P.BitLen(); l != 1024 { |
| return fmt.Errorf("ssh: unsupported DSA key size %d", l) |
| } |
| |
| return nil |
| } |
| |
| // parseDSA parses an DSA key according to RFC 4253, section 6.6. |
| func parseDSA(in []byte) (out PublicKey, rest []byte, err error) { |
| var w struct { |
| P, Q, G, Y *big.Int |
| Rest []byte `ssh:"rest"` |
| } |
| if err := Unmarshal(in, &w); err != nil { |
| return nil, nil, err |
| } |
| |
| param := dsa.Parameters{ |
| P: w.P, |
| Q: w.Q, |
| G: w.G, |
| } |
| if err := checkDSAParams(¶m); err != nil { |
| return nil, nil, err |
| } |
| |
| key := &dsaPublicKey{ |
| Parameters: param, |
| Y: w.Y, |
| } |
| return key, w.Rest, nil |
| } |
| |
| func (k *dsaPublicKey) Marshal() []byte { |
| // DSA publickey struct layout should match the struct used by |
| // parseDSACert in the x/crypto/ssh/agent package. |
| w := struct { |
| Name string |
| P, Q, G, Y *big.Int |
| }{ |
| k.Type(), |
| k.P, |
| k.Q, |
| k.G, |
| k.Y, |
| } |
| |
| return Marshal(&w) |
| } |
| |
| func (k *dsaPublicKey) Verify(data []byte, sig *Signature) error { |
| if sig.Format != k.Type() { |
| return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type()) |
| } |
| h := hashFuncs[sig.Format].New() |
| h.Write(data) |
| digest := h.Sum(nil) |
| |
| // Per RFC 4253, section 6.6, |
| // The value for 'dss_signature_blob' is encoded as a string containing |
| // r, followed by s (which are 160-bit integers, without lengths or |
| // padding, unsigned, and in network byte order). |
| // For DSS purposes, sig.Blob should be exactly 40 bytes in length. |
| if len(sig.Blob) != 40 { |
| return errors.New("ssh: DSA signature parse error") |
| } |
| r := new(big.Int).SetBytes(sig.Blob[:20]) |
| s := new(big.Int).SetBytes(sig.Blob[20:]) |
| if dsa.Verify((*dsa.PublicKey)(k), digest, r, s) { |
| return nil |
| } |
| return errors.New("ssh: signature did not verify") |
| } |
| |
| func (k *dsaPublicKey) CryptoPublicKey() crypto.PublicKey { |
| return (*dsa.PublicKey)(k) |
| } |
| |
| type dsaPrivateKey struct { |
| *dsa.PrivateKey |
| } |
| |
| func (k *dsaPrivateKey) PublicKey() PublicKey { |
| return (*dsaPublicKey)(&k.PrivateKey.PublicKey) |
| } |
| |
| func (k *dsaPrivateKey) Sign(rand io.Reader, data []byte) (*Signature, error) { |
| return k.SignWithAlgorithm(rand, data, k.PublicKey().Type()) |
| } |
| |
| func (k *dsaPrivateKey) Algorithms() []string { |
| return []string{k.PublicKey().Type()} |
| } |
| |
| func (k *dsaPrivateKey) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) { |
| if algorithm != "" && algorithm != k.PublicKey().Type() { |
| return nil, fmt.Errorf("ssh: unsupported signature algorithm %s", algorithm) |
| } |
| |
| h := hashFuncs[k.PublicKey().Type()].New() |
| h.Write(data) |
| digest := h.Sum(nil) |
| r, s, err := dsa.Sign(rand, k.PrivateKey, digest) |
| if err != nil { |
| return nil, err |
| } |
| |
| sig := make([]byte, 40) |
| rb := r.Bytes() |
| sb := s.Bytes() |
| |
| copy(sig[20-len(rb):20], rb) |
| copy(sig[40-len(sb):], sb) |
| |
| return &Signature{ |
| Format: k.PublicKey().Type(), |
| Blob: sig, |
| }, nil |
| } |
| |
| type ecdsaPublicKey ecdsa.PublicKey |
| |
| func (k *ecdsaPublicKey) Type() string { |
| return "ecdsa-sha2-" + k.nistID() |
| } |
| |
| func (k *ecdsaPublicKey) nistID() string { |
| switch k.Params().BitSize { |
| case 256: |
| return "nistp256" |
| case 384: |
| return "nistp384" |
| case 521: |
| return "nistp521" |
| } |
| panic("ssh: unsupported ecdsa key size") |
| } |
| |
| type ed25519PublicKey ed25519.PublicKey |
| |
| func (k ed25519PublicKey) Type() string { |
| return KeyAlgoED25519 |
| } |
| |
| func parseED25519(in []byte) (out PublicKey, rest []byte, err error) { |
| var w struct { |
| KeyBytes []byte |
| Rest []byte `ssh:"rest"` |
| } |
| |
| if err := Unmarshal(in, &w); err != nil { |
| return nil, nil, err |
| } |
| |
| if l := len(w.KeyBytes); l != ed25519.PublicKeySize { |
| return nil, nil, fmt.Errorf("invalid size %d for Ed25519 public key", l) |
| } |
| |
| return ed25519PublicKey(w.KeyBytes), w.Rest, nil |
| } |
| |
| func (k ed25519PublicKey) Marshal() []byte { |
| w := struct { |
| Name string |
| KeyBytes []byte |
| }{ |
| KeyAlgoED25519, |
| []byte(k), |
| } |
| return Marshal(&w) |
| } |
| |
| func (k ed25519PublicKey) Verify(b []byte, sig *Signature) error { |
| if sig.Format != k.Type() { |
| return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type()) |
| } |
| if l := len(k); l != ed25519.PublicKeySize { |
| return fmt.Errorf("ssh: invalid size %d for Ed25519 public key", l) |
| } |
| |
| if ok := ed25519.Verify(ed25519.PublicKey(k), b, sig.Blob); !ok { |
| return errors.New("ssh: signature did not verify") |
| } |
| |
| return nil |
| } |
| |
| func (k ed25519PublicKey) CryptoPublicKey() crypto.PublicKey { |
| return ed25519.PublicKey(k) |
| } |
| |
| func supportedEllipticCurve(curve elliptic.Curve) bool { |
| return curve == elliptic.P256() || curve == elliptic.P384() || curve == elliptic.P521() |
| } |
| |
| // parseECDSA parses an ECDSA key according to RFC 5656, section 3.1. |
| func parseECDSA(in []byte) (out PublicKey, rest []byte, err error) { |
| var w struct { |
| Curve string |
| KeyBytes []byte |
| Rest []byte `ssh:"rest"` |
| } |
| |
| if err := Unmarshal(in, &w); err != nil { |
| return nil, nil, err |
| } |
| |
| key := new(ecdsa.PublicKey) |
| |
| switch w.Curve { |
| case "nistp256": |
| key.Curve = elliptic.P256() |
| case "nistp384": |
| key.Curve = elliptic.P384() |
| case "nistp521": |
| key.Curve = elliptic.P521() |
| default: |
| return nil, nil, errors.New("ssh: unsupported curve") |
| } |
| |
| key.X, key.Y = elliptic.Unmarshal(key.Curve, w.KeyBytes) |
| if key.X == nil || key.Y == nil { |
| return nil, nil, errors.New("ssh: invalid curve point") |
| } |
| return (*ecdsaPublicKey)(key), w.Rest, nil |
| } |
| |
| func (k *ecdsaPublicKey) Marshal() []byte { |
| // See RFC 5656, section 3.1. |
| keyBytes := elliptic.Marshal(k.Curve, k.X, k.Y) |
| // ECDSA publickey struct layout should match the struct used by |
| // parseECDSACert in the x/crypto/ssh/agent package. |
| w := struct { |
| Name string |
| ID string |
| Key []byte |
| }{ |
| k.Type(), |
| k.nistID(), |
| keyBytes, |
| } |
| |
| return Marshal(&w) |
| } |
| |
| func (k *ecdsaPublicKey) Verify(data []byte, sig *Signature) error { |
| if sig.Format != k.Type() { |
| return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type()) |
| } |
| |
| h := hashFuncs[sig.Format].New() |
| h.Write(data) |
| digest := h.Sum(nil) |
| |
| // Per RFC 5656, section 3.1.2, |
| // The ecdsa_signature_blob value has the following specific encoding: |
| // mpint r |
| // mpint s |
| var ecSig struct { |
| R *big.Int |
| S *big.Int |
| } |
| |
| if err := Unmarshal(sig.Blob, &ecSig); err != nil { |
| return err |
| } |
| |
| if ecdsa.Verify((*ecdsa.PublicKey)(k), digest, ecSig.R, ecSig.S) { |
| return nil |
| } |
| return errors.New("ssh: signature did not verify") |
| } |
| |
| func (k *ecdsaPublicKey) CryptoPublicKey() crypto.PublicKey { |
| return (*ecdsa.PublicKey)(k) |
| } |
| |
| // skFields holds the additional fields present in U2F/FIDO2 signatures. |
| // See openssh/PROTOCOL.u2f 'SSH U2F Signatures' for details. |
| type skFields struct { |
| // Flags contains U2F/FIDO2 flags such as 'user present' |
| Flags byte |
| // Counter is a monotonic signature counter which can be |
| // used to detect concurrent use of a private key, should |
| // it be extracted from hardware. |
| Counter uint32 |
| } |
| |
| type skECDSAPublicKey struct { |
| // application is a URL-like string, typically "ssh:" for SSH. |
| // see openssh/PROTOCOL.u2f for details. |
| application string |
| ecdsa.PublicKey |
| } |
| |
| func (k *skECDSAPublicKey) Type() string { |
| return KeyAlgoSKECDSA256 |
| } |
| |
| func (k *skECDSAPublicKey) nistID() string { |
| return "nistp256" |
| } |
| |
| func parseSKECDSA(in []byte) (out PublicKey, rest []byte, err error) { |
| var w struct { |
| Curve string |
| KeyBytes []byte |
| Application string |
| Rest []byte `ssh:"rest"` |
| } |
| |
| if err := Unmarshal(in, &w); err != nil { |
| return nil, nil, err |
| } |
| |
| key := new(skECDSAPublicKey) |
| key.application = w.Application |
| |
| if w.Curve != "nistp256" { |
| return nil, nil, errors.New("ssh: unsupported curve") |
| } |
| key.Curve = elliptic.P256() |
| |
| key.X, key.Y = elliptic.Unmarshal(key.Curve, w.KeyBytes) |
| if key.X == nil || key.Y == nil { |
| return nil, nil, errors.New("ssh: invalid curve point") |
| } |
| |
| return key, w.Rest, nil |
| } |
| |
| func (k *skECDSAPublicKey) Marshal() []byte { |
| // See RFC 5656, section 3.1. |
| keyBytes := elliptic.Marshal(k.Curve, k.X, k.Y) |
| w := struct { |
| Name string |
| ID string |
| Key []byte |
| Application string |
| }{ |
| k.Type(), |
| k.nistID(), |
| keyBytes, |
| k.application, |
| } |
| |
| return Marshal(&w) |
| } |
| |
| func (k *skECDSAPublicKey) Verify(data []byte, sig *Signature) error { |
| if sig.Format != k.Type() { |
| return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type()) |
| } |
| |
| h := hashFuncs[sig.Format].New() |
| h.Write([]byte(k.application)) |
| appDigest := h.Sum(nil) |
| |
| h.Reset() |
| h.Write(data) |
| dataDigest := h.Sum(nil) |
| |
| var ecSig struct { |
| R *big.Int |
| S *big.Int |
| } |
| if err := Unmarshal(sig.Blob, &ecSig); err != nil { |
| return err |
| } |
| |
| var skf skFields |
| if err := Unmarshal(sig.Rest, &skf); err != nil { |
| return err |
| } |
| |
| blob := struct { |
| ApplicationDigest []byte `ssh:"rest"` |
| Flags byte |
| Counter uint32 |
| MessageDigest []byte `ssh:"rest"` |
| }{ |
| appDigest, |
| skf.Flags, |
| skf.Counter, |
| dataDigest, |
| } |
| |
| original := Marshal(blob) |
| |
| h.Reset() |
| h.Write(original) |
| digest := h.Sum(nil) |
| |
| if ecdsa.Verify((*ecdsa.PublicKey)(&k.PublicKey), digest, ecSig.R, ecSig.S) { |
| return nil |
| } |
| return errors.New("ssh: signature did not verify") |
| } |
| |
| func (k *skECDSAPublicKey) CryptoPublicKey() crypto.PublicKey { |
| return &k.PublicKey |
| } |
| |
| type skEd25519PublicKey struct { |
| // application is a URL-like string, typically "ssh:" for SSH. |
| // see openssh/PROTOCOL.u2f for details. |
| application string |
| ed25519.PublicKey |
| } |
| |
| func (k *skEd25519PublicKey) Type() string { |
| return KeyAlgoSKED25519 |
| } |
| |
| func parseSKEd25519(in []byte) (out PublicKey, rest []byte, err error) { |
| var w struct { |
| KeyBytes []byte |
| Application string |
| Rest []byte `ssh:"rest"` |
| } |
| |
| if err := Unmarshal(in, &w); err != nil { |
| return nil, nil, err |
| } |
| |
| if l := len(w.KeyBytes); l != ed25519.PublicKeySize { |
| return nil, nil, fmt.Errorf("invalid size %d for Ed25519 public key", l) |
| } |
| |
| key := new(skEd25519PublicKey) |
| key.application = w.Application |
| key.PublicKey = ed25519.PublicKey(w.KeyBytes) |
| |
| return key, w.Rest, nil |
| } |
| |
| func (k *skEd25519PublicKey) Marshal() []byte { |
| w := struct { |
| Name string |
| KeyBytes []byte |
| Application string |
| }{ |
| KeyAlgoSKED25519, |
| []byte(k.PublicKey), |
| k.application, |
| } |
| return Marshal(&w) |
| } |
| |
| func (k *skEd25519PublicKey) Verify(data []byte, sig *Signature) error { |
| if sig.Format != k.Type() { |
| return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type()) |
| } |
| if l := len(k.PublicKey); l != ed25519.PublicKeySize { |
| return fmt.Errorf("invalid size %d for Ed25519 public key", l) |
| } |
| |
| h := hashFuncs[sig.Format].New() |
| h.Write([]byte(k.application)) |
| appDigest := h.Sum(nil) |
| |
| h.Reset() |
| h.Write(data) |
| dataDigest := h.Sum(nil) |
| |
| var edSig struct { |
| Signature []byte `ssh:"rest"` |
| } |
| |
| if err := Unmarshal(sig.Blob, &edSig); err != nil { |
| return err |
| } |
| |
| var skf skFields |
| if err := Unmarshal(sig.Rest, &skf); err != nil { |
| return err |
| } |
| |
| blob := struct { |
| ApplicationDigest []byte `ssh:"rest"` |
| Flags byte |
| Counter uint32 |
| MessageDigest []byte `ssh:"rest"` |
| }{ |
| appDigest, |
| skf.Flags, |
| skf.Counter, |
| dataDigest, |
| } |
| |
| original := Marshal(blob) |
| |
| if ok := ed25519.Verify(k.PublicKey, original, edSig.Signature); !ok { |
| return errors.New("ssh: signature did not verify") |
| } |
| |
| return nil |
| } |
| |
| func (k *skEd25519PublicKey) CryptoPublicKey() crypto.PublicKey { |
| return k.PublicKey |
| } |
| |
| // NewSignerFromKey takes an *rsa.PrivateKey, *dsa.PrivateKey, |
| // *ecdsa.PrivateKey or any other crypto.Signer and returns a |
| // corresponding Signer instance. ECDSA keys must use P-256, P-384 or |
| // P-521. DSA keys must use parameter size L1024N160. |
| func NewSignerFromKey(key interface{}) (Signer, error) { |
| switch key := key.(type) { |
| case crypto.Signer: |
| return NewSignerFromSigner(key) |
| case *dsa.PrivateKey: |
| return newDSAPrivateKey(key) |
| default: |
| return nil, fmt.Errorf("ssh: unsupported key type %T", key) |
| } |
| } |
| |
| func newDSAPrivateKey(key *dsa.PrivateKey) (Signer, error) { |
| if err := checkDSAParams(&key.PublicKey.Parameters); err != nil { |
| return nil, err |
| } |
| |
| return &dsaPrivateKey{key}, nil |
| } |
| |
| type wrappedSigner struct { |
| signer crypto.Signer |
| pubKey PublicKey |
| } |
| |
| // NewSignerFromSigner takes any crypto.Signer implementation and |
| // returns a corresponding Signer interface. This can be used, for |
| // example, with keys kept in hardware modules. |
| func NewSignerFromSigner(signer crypto.Signer) (Signer, error) { |
| pubKey, err := NewPublicKey(signer.Public()) |
| if err != nil { |
| return nil, err |
| } |
| |
| return &wrappedSigner{signer, pubKey}, nil |
| } |
| |
| func (s *wrappedSigner) PublicKey() PublicKey { |
| return s.pubKey |
| } |
| |
| func (s *wrappedSigner) Sign(rand io.Reader, data []byte) (*Signature, error) { |
| return s.SignWithAlgorithm(rand, data, s.pubKey.Type()) |
| } |
| |
| func (s *wrappedSigner) Algorithms() []string { |
| return algorithmsForKeyFormat(s.pubKey.Type()) |
| } |
| |
| func (s *wrappedSigner) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) { |
| if algorithm == "" { |
| algorithm = s.pubKey.Type() |
| } |
| |
| if !contains(s.Algorithms(), algorithm) { |
| return nil, fmt.Errorf("ssh: unsupported signature algorithm %q for key format %q", algorithm, s.pubKey.Type()) |
| } |
| |
| hashFunc := hashFuncs[algorithm] |
| var digest []byte |
| if hashFunc != 0 { |
| h := hashFunc.New() |
| h.Write(data) |
| digest = h.Sum(nil) |
| } else { |
| digest = data |
| } |
| |
| signature, err := s.signer.Sign(rand, digest, hashFunc) |
| if err != nil { |
| return nil, err |
| } |
| |
| // crypto.Signer.Sign is expected to return an ASN.1-encoded signature |
| // for ECDSA and DSA, but that's not the encoding expected by SSH, so |
| // re-encode. |
| switch s.pubKey.(type) { |
| case *ecdsaPublicKey, *dsaPublicKey: |
| type asn1Signature struct { |
| R, S *big.Int |
| } |
| asn1Sig := new(asn1Signature) |
| _, err := asn1.Unmarshal(signature, asn1Sig) |
| if err != nil { |
| return nil, err |
| } |
| |
| switch s.pubKey.(type) { |
| case *ecdsaPublicKey: |
| signature = Marshal(asn1Sig) |
| |
| case *dsaPublicKey: |
| signature = make([]byte, 40) |
| r := asn1Sig.R.Bytes() |
| s := asn1Sig.S.Bytes() |
| copy(signature[20-len(r):20], r) |
| copy(signature[40-len(s):40], s) |
| } |
| } |
| |
| return &Signature{ |
| Format: algorithm, |
| Blob: signature, |
| }, nil |
| } |
| |
| // NewPublicKey takes an *rsa.PublicKey, *dsa.PublicKey, *ecdsa.PublicKey, |
| // or ed25519.PublicKey returns a corresponding PublicKey instance. |
| // ECDSA keys must use P-256, P-384 or P-521. |
| func NewPublicKey(key interface{}) (PublicKey, error) { |
| switch key := key.(type) { |
| case *rsa.PublicKey: |
| return (*rsaPublicKey)(key), nil |
| case *ecdsa.PublicKey: |
| if !supportedEllipticCurve(key.Curve) { |
| return nil, errors.New("ssh: only P-256, P-384 and P-521 EC keys are supported") |
| } |
| return (*ecdsaPublicKey)(key), nil |
| case *dsa.PublicKey: |
| return (*dsaPublicKey)(key), nil |
| case ed25519.PublicKey: |
| if l := len(key); l != ed25519.PublicKeySize { |
| return nil, fmt.Errorf("ssh: invalid size %d for Ed25519 public key", l) |
| } |
| return ed25519PublicKey(key), nil |
| default: |
| return nil, fmt.Errorf("ssh: unsupported key type %T", key) |
| } |
| } |
| |
| // ParsePrivateKey returns a Signer from a PEM encoded private key. It supports |
| // the same keys as ParseRawPrivateKey. If the private key is encrypted, it |
| // will return a PassphraseMissingError. |
| func ParsePrivateKey(pemBytes []byte) (Signer, error) { |
| key, err := ParseRawPrivateKey(pemBytes) |
| if err != nil { |
| return nil, err |
| } |
| |
| return NewSignerFromKey(key) |
| } |
| |
| // ParsePrivateKeyWithPassphrase returns a Signer from a PEM encoded private |
| // key and passphrase. It supports the same keys as |
| // ParseRawPrivateKeyWithPassphrase. |
| func ParsePrivateKeyWithPassphrase(pemBytes, passphrase []byte) (Signer, error) { |
| key, err := ParseRawPrivateKeyWithPassphrase(pemBytes, passphrase) |
| if err != nil { |
| return nil, err |
| } |
| |
| return NewSignerFromKey(key) |
| } |
| |
| // encryptedBlock tells whether a private key is |
| // encrypted by examining its Proc-Type header |
| // for a mention of ENCRYPTED |
| // according to RFC 1421 Section 4.6.1.1. |
| func encryptedBlock(block *pem.Block) bool { |
| return strings.Contains(block.Headers["Proc-Type"], "ENCRYPTED") |
| } |
| |
| // A PassphraseMissingError indicates that parsing this private key requires a |
| // passphrase. Use ParsePrivateKeyWithPassphrase. |
| type PassphraseMissingError struct { |
| // PublicKey will be set if the private key format includes an unencrypted |
| // public key along with the encrypted private key. |
| PublicKey PublicKey |
| } |
| |
| func (*PassphraseMissingError) Error() string { |
| return "ssh: this private key is passphrase protected" |
| } |
| |
| // ParseRawPrivateKey returns a private key from a PEM encoded private key. It supports |
| // RSA, DSA, ECDSA, and Ed25519 private keys in PKCS#1, PKCS#8, OpenSSL, and OpenSSH |
| // formats. If the private key is encrypted, it will return a PassphraseMissingError. |
| func ParseRawPrivateKey(pemBytes []byte) (interface{}, error) { |
| block, _ := pem.Decode(pemBytes) |
| if block == nil { |
| return nil, errors.New("ssh: no key found") |
| } |
| |
| if encryptedBlock(block) { |
| return nil, &PassphraseMissingError{} |
| } |
| |
| switch block.Type { |
| case "RSA PRIVATE KEY": |
| return x509.ParsePKCS1PrivateKey(block.Bytes) |
| // RFC5208 - https://tools.ietf.org/html/rfc5208 |
| case "PRIVATE KEY": |
| return x509.ParsePKCS8PrivateKey(block.Bytes) |
| case "EC PRIVATE KEY": |
| return x509.ParseECPrivateKey(block.Bytes) |
| case "DSA PRIVATE KEY": |
| return ParseDSAPrivateKey(block.Bytes) |
| case "OPENSSH PRIVATE KEY": |
| return parseOpenSSHPrivateKey(block.Bytes, unencryptedOpenSSHKey) |
| default: |
| return nil, fmt.Errorf("ssh: unsupported key type %q", block.Type) |
| } |
| } |
| |
| // ParseRawPrivateKeyWithPassphrase returns a private key decrypted with |
| // passphrase from a PEM encoded private key. If the passphrase is wrong, it |
| // will return x509.IncorrectPasswordError. |
| func ParseRawPrivateKeyWithPassphrase(pemBytes, passphrase []byte) (interface{}, error) { |
| block, _ := pem.Decode(pemBytes) |
| if block == nil { |
| return nil, errors.New("ssh: no key found") |
| } |
| |
| if block.Type == "OPENSSH PRIVATE KEY" { |
| return parseOpenSSHPrivateKey(block.Bytes, passphraseProtectedOpenSSHKey(passphrase)) |
| } |
| |
| if !encryptedBlock(block) || !x509.IsEncryptedPEMBlock(block) { |
| return nil, errors.New("ssh: not an encrypted key") |
| } |
| |
| buf, err := x509.DecryptPEMBlock(block, passphrase) |
| if err != nil { |
| if err == x509.IncorrectPasswordError { |
| return nil, err |
| } |
| return nil, fmt.Errorf("ssh: cannot decode encrypted private keys: %v", err) |
| } |
| |
| var result interface{} |
| |
| switch block.Type { |
| case "RSA PRIVATE KEY": |
| result, err = x509.ParsePKCS1PrivateKey(buf) |
| case "EC PRIVATE KEY": |
| result, err = x509.ParseECPrivateKey(buf) |
| case "DSA PRIVATE KEY": |
| result, err = ParseDSAPrivateKey(buf) |
| default: |
| err = fmt.Errorf("ssh: unsupported key type %q", block.Type) |
| } |
| // Because of deficiencies in the format, DecryptPEMBlock does not always |
| // detect an incorrect password. In these cases decrypted DER bytes is |
| // random noise. If the parsing of the key returns an asn1.StructuralError |
| // we return x509.IncorrectPasswordError. |
| if _, ok := err.(asn1.StructuralError); ok { |
| return nil, x509.IncorrectPasswordError |
| } |
| |
| return result, err |
| } |
| |
| // ParseDSAPrivateKey returns a DSA private key from its ASN.1 DER encoding, as |
| // specified by the OpenSSL DSA man page. |
| func ParseDSAPrivateKey(der []byte) (*dsa.PrivateKey, error) { |
| var k struct { |
| Version int |
| P *big.Int |
| Q *big.Int |
| G *big.Int |
| Pub *big.Int |
| Priv *big.Int |
| } |
| rest, err := asn1.Unmarshal(der, &k) |
| if err != nil { |
| return nil, errors.New("ssh: failed to parse DSA key: " + err.Error()) |
| } |
| if len(rest) > 0 { |
| return nil, errors.New("ssh: garbage after DSA key") |
| } |
| |
| return &dsa.PrivateKey{ |
| PublicKey: dsa.PublicKey{ |
| Parameters: dsa.Parameters{ |
| P: k.P, |
| Q: k.Q, |
| G: k.G, |
| }, |
| Y: k.Pub, |
| }, |
| X: k.Priv, |
| }, nil |
| } |
| |
| func unencryptedOpenSSHKey(cipherName, kdfName, kdfOpts string, privKeyBlock []byte) ([]byte, error) { |
| if kdfName != "none" || cipherName != "none" { |
| return nil, &PassphraseMissingError{} |
| } |
| if kdfOpts != "" { |
| return nil, errors.New("ssh: invalid openssh private key") |
| } |
| return privKeyBlock, nil |
| } |
| |
| func passphraseProtectedOpenSSHKey(passphrase []byte) openSSHDecryptFunc { |
| return func(cipherName, kdfName, kdfOpts string, privKeyBlock []byte) ([]byte, error) { |
| if kdfName == "none" || cipherName == "none" { |
| return nil, errors.New("ssh: key is not password protected") |
| } |
| if kdfName != "bcrypt" { |
| return nil, fmt.Errorf("ssh: unknown KDF %q, only supports %q", kdfName, "bcrypt") |
| } |
| |
| var opts struct { |
| Salt string |
| Rounds uint32 |
| } |
| if err := Unmarshal([]byte(kdfOpts), &opts); err != nil { |
| return nil, err |
| } |
| |
| k, err := bcrypt_pbkdf.Key(passphrase, []byte(opts.Salt), int(opts.Rounds), 32+16) |
| if err != nil { |
| return nil, err |
| } |
| key, iv := k[:32], k[32:] |
| |
| c, err := aes.NewCipher(key) |
| if err != nil { |
| return nil, err |
| } |
| switch cipherName { |
| case "aes256-ctr": |
| ctr := cipher.NewCTR(c, iv) |
| ctr.XORKeyStream(privKeyBlock, privKeyBlock) |
| case "aes256-cbc": |
| if len(privKeyBlock)%c.BlockSize() != 0 { |
| return nil, fmt.Errorf("ssh: invalid encrypted private key length, not a multiple of the block size") |
| } |
| cbc := cipher.NewCBCDecrypter(c, iv) |
| cbc.CryptBlocks(privKeyBlock, privKeyBlock) |
| default: |
| return nil, fmt.Errorf("ssh: unknown cipher %q, only supports %q or %q", cipherName, "aes256-ctr", "aes256-cbc") |
| } |
| |
| return privKeyBlock, nil |
| } |
| } |
| |
| func unencryptedOpenSSHMarshaler(privKeyBlock []byte) ([]byte, string, string, string, error) { |
| key := generateOpenSSHPadding(privKeyBlock, 8) |
| return key, "none", "none", "", nil |
| } |
| |
| func passphraseProtectedOpenSSHMarshaler(passphrase []byte) openSSHEncryptFunc { |
| return func(privKeyBlock []byte) ([]byte, string, string, string, error) { |
| salt := make([]byte, 16) |
| if _, err := rand.Read(salt); err != nil { |
| return nil, "", "", "", err |
| } |
| |
| opts := struct { |
| Salt []byte |
| Rounds uint32 |
| }{salt, 16} |
| |
| // Derive key to encrypt the private key block. |
| k, err := bcrypt_pbkdf.Key(passphrase, salt, int(opts.Rounds), 32+aes.BlockSize) |
| if err != nil { |
| return nil, "", "", "", err |
| } |
| |
| // Add padding matching the block size of AES. |
| keyBlock := generateOpenSSHPadding(privKeyBlock, aes.BlockSize) |
| |
| // Encrypt the private key using the derived secret. |
| |
| dst := make([]byte, len(keyBlock)) |
| key, iv := k[:32], k[32:] |
| block, err := aes.NewCipher(key) |
| if err != nil { |
| return nil, "", "", "", err |
| } |
| |
| stream := cipher.NewCTR(block, iv) |
| stream.XORKeyStream(dst, keyBlock) |
| |
| return dst, "aes256-ctr", "bcrypt", string(Marshal(opts)), nil |
| } |
| } |
| |
| const privateKeyAuthMagic = "openssh-key-v1\x00" |
| |
| type openSSHDecryptFunc func(CipherName, KdfName, KdfOpts string, PrivKeyBlock []byte) ([]byte, error) |
| type openSSHEncryptFunc func(PrivKeyBlock []byte) (ProtectedKeyBlock []byte, cipherName, kdfName, kdfOptions string, err error) |
| |
| type openSSHEncryptedPrivateKey struct { |
| CipherName string |
| KdfName string |
| KdfOpts string |
| NumKeys uint32 |
| PubKey []byte |
| PrivKeyBlock []byte |
| } |
| |
| type openSSHPrivateKey struct { |
| Check1 uint32 |
| Check2 uint32 |
| Keytype string |
| Rest []byte `ssh:"rest"` |
| } |
| |
| type openSSHRSAPrivateKey struct { |
| N *big.Int |
| E *big.Int |
| D *big.Int |
| Iqmp *big.Int |
| P *big.Int |
| Q *big.Int |
| Comment string |
| Pad []byte `ssh:"rest"` |
| } |
| |
| type openSSHEd25519PrivateKey struct { |
| Pub []byte |
| Priv []byte |
| Comment string |
| Pad []byte `ssh:"rest"` |
| } |
| |
| type openSSHECDSAPrivateKey struct { |
| Curve string |
| Pub []byte |
| D *big.Int |
| Comment string |
| Pad []byte `ssh:"rest"` |
| } |
| |
| // parseOpenSSHPrivateKey parses an OpenSSH private key, using the decrypt |
| // function to unwrap the encrypted portion. unencryptedOpenSSHKey can be used |
| // as the decrypt function to parse an unencrypted private key. See |
| // https://github.com/openssh/openssh-portable/blob/master/PROTOCOL.key. |
| func parseOpenSSHPrivateKey(key []byte, decrypt openSSHDecryptFunc) (crypto.PrivateKey, error) { |
| if len(key) < len(privateKeyAuthMagic) || string(key[:len(privateKeyAuthMagic)]) != privateKeyAuthMagic { |
| return nil, errors.New("ssh: invalid openssh private key format") |
| } |
| remaining := key[len(privateKeyAuthMagic):] |
| |
| var w openSSHEncryptedPrivateKey |
| if err := Unmarshal(remaining, &w); err != nil { |
| return nil, err |
| } |
| if w.NumKeys != 1 { |
| // We only support single key files, and so does OpenSSH. |
| // https://github.com/openssh/openssh-portable/blob/4103a3ec7/sshkey.c#L4171 |
| return nil, errors.New("ssh: multi-key files are not supported") |
| } |
| |
| privKeyBlock, err := decrypt(w.CipherName, w.KdfName, w.KdfOpts, w.PrivKeyBlock) |
| if err != nil { |
| if err, ok := err.(*PassphraseMissingError); ok { |
| pub, errPub := ParsePublicKey(w.PubKey) |
| if errPub != nil { |
| return nil, fmt.Errorf("ssh: failed to parse embedded public key: %v", errPub) |
| } |
| err.PublicKey = pub |
| } |
| return nil, err |
| } |
| |
| var pk1 openSSHPrivateKey |
| if err := Unmarshal(privKeyBlock, &pk1); err != nil || pk1.Check1 != pk1.Check2 { |
| if w.CipherName != "none" { |
| return nil, x509.IncorrectPasswordError |
| } |
| return nil, errors.New("ssh: malformed OpenSSH key") |
| } |
| |
| switch pk1.Keytype { |
| case KeyAlgoRSA: |
| var key openSSHRSAPrivateKey |
| if err := Unmarshal(pk1.Rest, &key); err != nil { |
| return nil, err |
| } |
| |
| if err := checkOpenSSHKeyPadding(key.Pad); err != nil { |
| return nil, err |
| } |
| |
| pk := &rsa.PrivateKey{ |
| PublicKey: rsa.PublicKey{ |
| N: key.N, |
| E: int(key.E.Int64()), |
| }, |
| D: key.D, |
| Primes: []*big.Int{key.P, key.Q}, |
| } |
| |
| if err := pk.Validate(); err != nil { |
| return nil, err |
| } |
| |
| pk.Precompute() |
| |
| return pk, nil |
| case KeyAlgoED25519: |
| var key openSSHEd25519PrivateKey |
| if err := Unmarshal(pk1.Rest, &key); err != nil { |
| return nil, err |
| } |
| |
| if len(key.Priv) != ed25519.PrivateKeySize { |
| return nil, errors.New("ssh: private key unexpected length") |
| } |
| |
| if err := checkOpenSSHKeyPadding(key.Pad); err != nil { |
| return nil, err |
| } |
| |
| pk := ed25519.PrivateKey(make([]byte, ed25519.PrivateKeySize)) |
| copy(pk, key.Priv) |
| return &pk, nil |
| case KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521: |
| var key openSSHECDSAPrivateKey |
| if err := Unmarshal(pk1.Rest, &key); err != nil { |
| return nil, err |
| } |
| |
| if err := checkOpenSSHKeyPadding(key.Pad); err != nil { |
| return nil, err |
| } |
| |
| var curve elliptic.Curve |
| switch key.Curve { |
| case "nistp256": |
| curve = elliptic.P256() |
| case "nistp384": |
| curve = elliptic.P384() |
| case "nistp521": |
| curve = elliptic.P521() |
| default: |
| return nil, errors.New("ssh: unhandled elliptic curve: " + key.Curve) |
| } |
| |
| X, Y := elliptic.Unmarshal(curve, key.Pub) |
| if X == nil || Y == nil { |
| return nil, errors.New("ssh: failed to unmarshal public key") |
| } |
| |
| if key.D.Cmp(curve.Params().N) >= 0 { |
| return nil, errors.New("ssh: scalar is out of range") |
| } |
| |
| x, y := curve.ScalarBaseMult(key.D.Bytes()) |
| if x.Cmp(X) != 0 || y.Cmp(Y) != 0 { |
| return nil, errors.New("ssh: public key does not match private key") |
| } |
| |
| return &ecdsa.PrivateKey{ |
| PublicKey: ecdsa.PublicKey{ |
| Curve: curve, |
| X: X, |
| Y: Y, |
| }, |
| D: key.D, |
| }, nil |
| default: |
| return nil, errors.New("ssh: unhandled key type") |
| } |
| } |
| |
| func marshalOpenSSHPrivateKey(key crypto.PrivateKey, comment string, encrypt openSSHEncryptFunc) (*pem.Block, error) { |
| var w openSSHEncryptedPrivateKey |
| var pk1 openSSHPrivateKey |
| |
| // Random check bytes. |
| var check uint32 |
| if err := binary.Read(rand.Reader, binary.BigEndian, &check); err != nil { |
| return nil, err |
| } |
| |
| pk1.Check1 = check |
| pk1.Check2 = check |
| w.NumKeys = 1 |
| |
| // Use a []byte directly on ed25519 keys. |
| if k, ok := key.(*ed25519.PrivateKey); ok { |
| key = *k |
| } |
| |
| switch k := key.(type) { |
| case *rsa.PrivateKey: |
| E := new(big.Int).SetInt64(int64(k.PublicKey.E)) |
| // Marshal public key: |
| // E and N are in reversed order in the public and private key. |
| pubKey := struct { |
| KeyType string |
| E *big.Int |
| N *big.Int |
| }{ |
| KeyAlgoRSA, |
| E, k.PublicKey.N, |
| } |
| w.PubKey = Marshal(pubKey) |
| |
| // Marshal private key. |
| key := openSSHRSAPrivateKey{ |
| N: k.PublicKey.N, |
| E: E, |
| D: k.D, |
| Iqmp: k.Precomputed.Qinv, |
| P: k.Primes[0], |
| Q: k.Primes[1], |
| Comment: comment, |
| } |
| pk1.Keytype = KeyAlgoRSA |
| pk1.Rest = Marshal(key) |
| case ed25519.PrivateKey: |
| pub := make([]byte, ed25519.PublicKeySize) |
| priv := make([]byte, ed25519.PrivateKeySize) |
| copy(pub, k[32:]) |
| copy(priv, k) |
| |
| // Marshal public key. |
| pubKey := struct { |
| KeyType string |
| Pub []byte |
| }{ |
| KeyAlgoED25519, pub, |
| } |
| w.PubKey = Marshal(pubKey) |
| |
| // Marshal private key. |
| key := openSSHEd25519PrivateKey{ |
| Pub: pub, |
| Priv: priv, |
| Comment: comment, |
| } |
| pk1.Keytype = KeyAlgoED25519 |
| pk1.Rest = Marshal(key) |
| case *ecdsa.PrivateKey: |
| var curve, keyType string |
| switch name := k.Curve.Params().Name; name { |
| case "P-256": |
| curve = "nistp256" |
| keyType = KeyAlgoECDSA256 |
| case "P-384": |
| curve = "nistp384" |
| keyType = KeyAlgoECDSA384 |
| case "P-521": |
| curve = "nistp521" |
| keyType = KeyAlgoECDSA521 |
| default: |
| return nil, errors.New("ssh: unhandled elliptic curve " + name) |
| } |
| |
| pub := elliptic.Marshal(k.Curve, k.PublicKey.X, k.PublicKey.Y) |
| |
| // Marshal public key. |
| pubKey := struct { |
| KeyType string |
| Curve string |
| Pub []byte |
| }{ |
| keyType, curve, pub, |
| } |
| w.PubKey = Marshal(pubKey) |
| |
| // Marshal private key. |
| key := openSSHECDSAPrivateKey{ |
| Curve: curve, |
| Pub: pub, |
| D: k.D, |
| Comment: comment, |
| } |
| pk1.Keytype = keyType |
| pk1.Rest = Marshal(key) |
| default: |
| return nil, fmt.Errorf("ssh: unsupported key type %T", k) |
| } |
| |
| var err error |
| // Add padding and encrypt the key if necessary. |
| w.PrivKeyBlock, w.CipherName, w.KdfName, w.KdfOpts, err = encrypt(Marshal(pk1)) |
| if err != nil { |
| return nil, err |
| } |
| |
| b := Marshal(w) |
| block := &pem.Block{ |
| Type: "OPENSSH PRIVATE KEY", |
| Bytes: append([]byte(privateKeyAuthMagic), b...), |
| } |
| return block, nil |
| } |
| |
| func checkOpenSSHKeyPadding(pad []byte) error { |
| for i, b := range pad { |
| if int(b) != i+1 { |
| return errors.New("ssh: padding not as expected") |
| } |
| } |
| return nil |
| } |
| |
| func generateOpenSSHPadding(block []byte, blockSize int) []byte { |
| for i, l := 0, len(block); (l+i)%blockSize != 0; i++ { |
| block = append(block, byte(i+1)) |
| } |
| return block |
| } |
| |
| // FingerprintLegacyMD5 returns the user presentation of the key's |
| // fingerprint as described by RFC 4716 section 4. |
| func FingerprintLegacyMD5(pubKey PublicKey) string { |
| md5sum := md5.Sum(pubKey.Marshal()) |
| hexarray := make([]string, len(md5sum)) |
| for i, c := range md5sum { |
| hexarray[i] = hex.EncodeToString([]byte{c}) |
| } |
| return strings.Join(hexarray, ":") |
| } |
| |
| // FingerprintSHA256 returns the user presentation of the key's |
| // fingerprint as unpadded base64 encoded sha256 hash. |
| // This format was introduced from OpenSSH 6.8. |
| // https://www.openssh.com/txt/release-6.8 |
| // https://tools.ietf.org/html/rfc4648#section-3.2 (unpadded base64 encoding) |
| func FingerprintSHA256(pubKey PublicKey) string { |
| sha256sum := sha256.Sum256(pubKey.Marshal()) |
| hash := base64.RawStdEncoding.EncodeToString(sha256sum[:]) |
| return "SHA256:" + hash |
| } |