| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package ssh |
| |
| import ( |
| "crypto/aes" |
| "crypto/cipher" |
| "crypto/des" |
| "crypto/rc4" |
| "crypto/subtle" |
| "encoding/binary" |
| "errors" |
| "fmt" |
| "hash" |
| "io" |
| "io/ioutil" |
| |
| "golang.org/x/crypto/chacha20" |
| "golang.org/x/crypto/poly1305" |
| ) |
| |
| const ( |
| packetSizeMultiple = 16 // TODO(huin) this should be determined by the cipher. |
| |
| // RFC 4253 section 6.1 defines a minimum packet size of 32768 that implementations |
| // MUST be able to process (plus a few more kilobytes for padding and mac). The RFC |
| // indicates implementations SHOULD be able to handle larger packet sizes, but then |
| // waffles on about reasonable limits. |
| // |
| // OpenSSH caps their maxPacket at 256kB so we choose to do |
| // the same. maxPacket is also used to ensure that uint32 |
| // length fields do not overflow, so it should remain well |
| // below 4G. |
| maxPacket = 256 * 1024 |
| ) |
| |
| // noneCipher implements cipher.Stream and provides no encryption. It is used |
| // by the transport before the first key-exchange. |
| type noneCipher struct{} |
| |
| func (c noneCipher) XORKeyStream(dst, src []byte) { |
| copy(dst, src) |
| } |
| |
| func newAESCTR(key, iv []byte) (cipher.Stream, error) { |
| c, err := aes.NewCipher(key) |
| if err != nil { |
| return nil, err |
| } |
| return cipher.NewCTR(c, iv), nil |
| } |
| |
| func newRC4(key, iv []byte) (cipher.Stream, error) { |
| return rc4.NewCipher(key) |
| } |
| |
| type cipherMode struct { |
| keySize int |
| ivSize int |
| create func(key, iv []byte, macKey []byte, algs directionAlgorithms) (packetCipher, error) |
| } |
| |
| func streamCipherMode(skip int, createFunc func(key, iv []byte) (cipher.Stream, error)) func(key, iv []byte, macKey []byte, algs directionAlgorithms) (packetCipher, error) { |
| return func(key, iv, macKey []byte, algs directionAlgorithms) (packetCipher, error) { |
| stream, err := createFunc(key, iv) |
| if err != nil { |
| return nil, err |
| } |
| |
| var streamDump []byte |
| if skip > 0 { |
| streamDump = make([]byte, 512) |
| } |
| |
| for remainingToDump := skip; remainingToDump > 0; { |
| dumpThisTime := remainingToDump |
| if dumpThisTime > len(streamDump) { |
| dumpThisTime = len(streamDump) |
| } |
| stream.XORKeyStream(streamDump[:dumpThisTime], streamDump[:dumpThisTime]) |
| remainingToDump -= dumpThisTime |
| } |
| |
| mac := macModes[algs.MAC].new(macKey) |
| return &streamPacketCipher{ |
| mac: mac, |
| etm: macModes[algs.MAC].etm, |
| macResult: make([]byte, mac.Size()), |
| cipher: stream, |
| }, nil |
| } |
| } |
| |
| // cipherModes documents properties of supported ciphers. Ciphers not included |
| // are not supported and will not be negotiated, even if explicitly requested in |
| // ClientConfig.Crypto.Ciphers. |
| var cipherModes = map[string]*cipherMode{ |
| // Ciphers from RFC4344, which introduced many CTR-based ciphers. Algorithms |
| // are defined in the order specified in the RFC. |
| "aes128-ctr": {16, aes.BlockSize, streamCipherMode(0, newAESCTR)}, |
| "aes192-ctr": {24, aes.BlockSize, streamCipherMode(0, newAESCTR)}, |
| "aes256-ctr": {32, aes.BlockSize, streamCipherMode(0, newAESCTR)}, |
| |
| // Ciphers from RFC4345, which introduces security-improved arcfour ciphers. |
| // They are defined in the order specified in the RFC. |
| "arcfour128": {16, 0, streamCipherMode(1536, newRC4)}, |
| "arcfour256": {32, 0, streamCipherMode(1536, newRC4)}, |
| |
| // Cipher defined in RFC 4253, which describes SSH Transport Layer Protocol. |
| // Note that this cipher is not safe, as stated in RFC 4253: "Arcfour (and |
| // RC4) has problems with weak keys, and should be used with caution." |
| // RFC4345 introduces improved versions of Arcfour. |
| "arcfour": {16, 0, streamCipherMode(0, newRC4)}, |
| |
| // AEAD ciphers |
| gcmCipherID: {16, 12, newGCMCipher}, |
| chacha20Poly1305ID: {64, 0, newChaCha20Cipher}, |
| |
| // CBC mode is insecure and so is not included in the default config. |
| // (See http://www.isg.rhul.ac.uk/~kp/SandPfinal.pdf). If absolutely |
| // needed, it's possible to specify a custom Config to enable it. |
| // You should expect that an active attacker can recover plaintext if |
| // you do. |
| aes128cbcID: {16, aes.BlockSize, newAESCBCCipher}, |
| |
| // 3des-cbc is insecure and is not included in the default |
| // config. |
| tripledescbcID: {24, des.BlockSize, newTripleDESCBCCipher}, |
| } |
| |
| // prefixLen is the length of the packet prefix that contains the packet length |
| // and number of padding bytes. |
| const prefixLen = 5 |
| |
| // streamPacketCipher is a packetCipher using a stream cipher. |
| type streamPacketCipher struct { |
| mac hash.Hash |
| cipher cipher.Stream |
| etm bool |
| |
| // The following members are to avoid per-packet allocations. |
| prefix [prefixLen]byte |
| seqNumBytes [4]byte |
| padding [2 * packetSizeMultiple]byte |
| packetData []byte |
| macResult []byte |
| } |
| |
| // readCipherPacket reads and decrypt a single packet from the reader argument. |
| func (s *streamPacketCipher) readCipherPacket(seqNum uint32, r io.Reader) ([]byte, error) { |
| if _, err := io.ReadFull(r, s.prefix[:]); err != nil { |
| return nil, err |
| } |
| |
| var encryptedPaddingLength [1]byte |
| if s.mac != nil && s.etm { |
| copy(encryptedPaddingLength[:], s.prefix[4:5]) |
| s.cipher.XORKeyStream(s.prefix[4:5], s.prefix[4:5]) |
| } else { |
| s.cipher.XORKeyStream(s.prefix[:], s.prefix[:]) |
| } |
| |
| length := binary.BigEndian.Uint32(s.prefix[0:4]) |
| paddingLength := uint32(s.prefix[4]) |
| |
| var macSize uint32 |
| if s.mac != nil { |
| s.mac.Reset() |
| binary.BigEndian.PutUint32(s.seqNumBytes[:], seqNum) |
| s.mac.Write(s.seqNumBytes[:]) |
| if s.etm { |
| s.mac.Write(s.prefix[:4]) |
| s.mac.Write(encryptedPaddingLength[:]) |
| } else { |
| s.mac.Write(s.prefix[:]) |
| } |
| macSize = uint32(s.mac.Size()) |
| } |
| |
| if length <= paddingLength+1 { |
| return nil, errors.New("ssh: invalid packet length, packet too small") |
| } |
| |
| if length > maxPacket { |
| return nil, errors.New("ssh: invalid packet length, packet too large") |
| } |
| |
| // the maxPacket check above ensures that length-1+macSize |
| // does not overflow. |
| if uint32(cap(s.packetData)) < length-1+macSize { |
| s.packetData = make([]byte, length-1+macSize) |
| } else { |
| s.packetData = s.packetData[:length-1+macSize] |
| } |
| |
| if _, err := io.ReadFull(r, s.packetData); err != nil { |
| return nil, err |
| } |
| mac := s.packetData[length-1:] |
| data := s.packetData[:length-1] |
| |
| if s.mac != nil && s.etm { |
| s.mac.Write(data) |
| } |
| |
| s.cipher.XORKeyStream(data, data) |
| |
| if s.mac != nil { |
| if !s.etm { |
| s.mac.Write(data) |
| } |
| s.macResult = s.mac.Sum(s.macResult[:0]) |
| if subtle.ConstantTimeCompare(s.macResult, mac) != 1 { |
| return nil, errors.New("ssh: MAC failure") |
| } |
| } |
| |
| return s.packetData[:length-paddingLength-1], nil |
| } |
| |
| // writeCipherPacket encrypts and sends a packet of data to the writer argument |
| func (s *streamPacketCipher) writeCipherPacket(seqNum uint32, w io.Writer, rand io.Reader, packet []byte) error { |
| if len(packet) > maxPacket { |
| return errors.New("ssh: packet too large") |
| } |
| |
| aadlen := 0 |
| if s.mac != nil && s.etm { |
| // packet length is not encrypted for EtM modes |
| aadlen = 4 |
| } |
| |
| paddingLength := packetSizeMultiple - (prefixLen+len(packet)-aadlen)%packetSizeMultiple |
| if paddingLength < 4 { |
| paddingLength += packetSizeMultiple |
| } |
| |
| length := len(packet) + 1 + paddingLength |
| binary.BigEndian.PutUint32(s.prefix[:], uint32(length)) |
| s.prefix[4] = byte(paddingLength) |
| padding := s.padding[:paddingLength] |
| if _, err := io.ReadFull(rand, padding); err != nil { |
| return err |
| } |
| |
| if s.mac != nil { |
| s.mac.Reset() |
| binary.BigEndian.PutUint32(s.seqNumBytes[:], seqNum) |
| s.mac.Write(s.seqNumBytes[:]) |
| |
| if s.etm { |
| // For EtM algorithms, the packet length must stay unencrypted, |
| // but the following data (padding length) must be encrypted |
| s.cipher.XORKeyStream(s.prefix[4:5], s.prefix[4:5]) |
| } |
| |
| s.mac.Write(s.prefix[:]) |
| |
| if !s.etm { |
| // For non-EtM algorithms, the algorithm is applied on unencrypted data |
| s.mac.Write(packet) |
| s.mac.Write(padding) |
| } |
| } |
| |
| if !(s.mac != nil && s.etm) { |
| // For EtM algorithms, the padding length has already been encrypted |
| // and the packet length must remain unencrypted |
| s.cipher.XORKeyStream(s.prefix[:], s.prefix[:]) |
| } |
| |
| s.cipher.XORKeyStream(packet, packet) |
| s.cipher.XORKeyStream(padding, padding) |
| |
| if s.mac != nil && s.etm { |
| // For EtM algorithms, packet and padding must be encrypted |
| s.mac.Write(packet) |
| s.mac.Write(padding) |
| } |
| |
| if _, err := w.Write(s.prefix[:]); err != nil { |
| return err |
| } |
| if _, err := w.Write(packet); err != nil { |
| return err |
| } |
| if _, err := w.Write(padding); err != nil { |
| return err |
| } |
| |
| if s.mac != nil { |
| s.macResult = s.mac.Sum(s.macResult[:0]) |
| if _, err := w.Write(s.macResult); err != nil { |
| return err |
| } |
| } |
| |
| return nil |
| } |
| |
| type gcmCipher struct { |
| aead cipher.AEAD |
| prefix [4]byte |
| iv []byte |
| buf []byte |
| } |
| |
| func newGCMCipher(key, iv, unusedMacKey []byte, unusedAlgs directionAlgorithms) (packetCipher, error) { |
| c, err := aes.NewCipher(key) |
| if err != nil { |
| return nil, err |
| } |
| |
| aead, err := cipher.NewGCM(c) |
| if err != nil { |
| return nil, err |
| } |
| |
| return &gcmCipher{ |
| aead: aead, |
| iv: iv, |
| }, nil |
| } |
| |
| const gcmTagSize = 16 |
| |
| func (c *gcmCipher) writeCipherPacket(seqNum uint32, w io.Writer, rand io.Reader, packet []byte) error { |
| // Pad out to multiple of 16 bytes. This is different from the |
| // stream cipher because that encrypts the length too. |
| padding := byte(packetSizeMultiple - (1+len(packet))%packetSizeMultiple) |
| if padding < 4 { |
| padding += packetSizeMultiple |
| } |
| |
| length := uint32(len(packet) + int(padding) + 1) |
| binary.BigEndian.PutUint32(c.prefix[:], length) |
| if _, err := w.Write(c.prefix[:]); err != nil { |
| return err |
| } |
| |
| if cap(c.buf) < int(length) { |
| c.buf = make([]byte, length) |
| } else { |
| c.buf = c.buf[:length] |
| } |
| |
| c.buf[0] = padding |
| copy(c.buf[1:], packet) |
| if _, err := io.ReadFull(rand, c.buf[1+len(packet):]); err != nil { |
| return err |
| } |
| c.buf = c.aead.Seal(c.buf[:0], c.iv, c.buf, c.prefix[:]) |
| if _, err := w.Write(c.buf); err != nil { |
| return err |
| } |
| c.incIV() |
| |
| return nil |
| } |
| |
| func (c *gcmCipher) incIV() { |
| for i := 4 + 7; i >= 4; i-- { |
| c.iv[i]++ |
| if c.iv[i] != 0 { |
| break |
| } |
| } |
| } |
| |
| func (c *gcmCipher) readCipherPacket(seqNum uint32, r io.Reader) ([]byte, error) { |
| if _, err := io.ReadFull(r, c.prefix[:]); err != nil { |
| return nil, err |
| } |
| length := binary.BigEndian.Uint32(c.prefix[:]) |
| if length > maxPacket { |
| return nil, errors.New("ssh: max packet length exceeded") |
| } |
| |
| if cap(c.buf) < int(length+gcmTagSize) { |
| c.buf = make([]byte, length+gcmTagSize) |
| } else { |
| c.buf = c.buf[:length+gcmTagSize] |
| } |
| |
| if _, err := io.ReadFull(r, c.buf); err != nil { |
| return nil, err |
| } |
| |
| plain, err := c.aead.Open(c.buf[:0], c.iv, c.buf, c.prefix[:]) |
| if err != nil { |
| return nil, err |
| } |
| c.incIV() |
| |
| padding := plain[0] |
| if padding < 4 { |
| // padding is a byte, so it automatically satisfies |
| // the maximum size, which is 255. |
| return nil, fmt.Errorf("ssh: illegal padding %d", padding) |
| } |
| |
| if int(padding+1) >= len(plain) { |
| return nil, fmt.Errorf("ssh: padding %d too large", padding) |
| } |
| plain = plain[1 : length-uint32(padding)] |
| return plain, nil |
| } |
| |
| // cbcCipher implements aes128-cbc cipher defined in RFC 4253 section 6.1 |
| type cbcCipher struct { |
| mac hash.Hash |
| macSize uint32 |
| decrypter cipher.BlockMode |
| encrypter cipher.BlockMode |
| |
| // The following members are to avoid per-packet allocations. |
| seqNumBytes [4]byte |
| packetData []byte |
| macResult []byte |
| |
| // Amount of data we should still read to hide which |
| // verification error triggered. |
| oracleCamouflage uint32 |
| } |
| |
| func newCBCCipher(c cipher.Block, key, iv, macKey []byte, algs directionAlgorithms) (packetCipher, error) { |
| cbc := &cbcCipher{ |
| mac: macModes[algs.MAC].new(macKey), |
| decrypter: cipher.NewCBCDecrypter(c, iv), |
| encrypter: cipher.NewCBCEncrypter(c, iv), |
| packetData: make([]byte, 1024), |
| } |
| if cbc.mac != nil { |
| cbc.macSize = uint32(cbc.mac.Size()) |
| } |
| |
| return cbc, nil |
| } |
| |
| func newAESCBCCipher(key, iv, macKey []byte, algs directionAlgorithms) (packetCipher, error) { |
| c, err := aes.NewCipher(key) |
| if err != nil { |
| return nil, err |
| } |
| |
| cbc, err := newCBCCipher(c, key, iv, macKey, algs) |
| if err != nil { |
| return nil, err |
| } |
| |
| return cbc, nil |
| } |
| |
| func newTripleDESCBCCipher(key, iv, macKey []byte, algs directionAlgorithms) (packetCipher, error) { |
| c, err := des.NewTripleDESCipher(key) |
| if err != nil { |
| return nil, err |
| } |
| |
| cbc, err := newCBCCipher(c, key, iv, macKey, algs) |
| if err != nil { |
| return nil, err |
| } |
| |
| return cbc, nil |
| } |
| |
| func maxUInt32(a, b int) uint32 { |
| if a > b { |
| return uint32(a) |
| } |
| return uint32(b) |
| } |
| |
| const ( |
| cbcMinPacketSizeMultiple = 8 |
| cbcMinPacketSize = 16 |
| cbcMinPaddingSize = 4 |
| ) |
| |
| // cbcError represents a verification error that may leak information. |
| type cbcError string |
| |
| func (e cbcError) Error() string { return string(e) } |
| |
| func (c *cbcCipher) readCipherPacket(seqNum uint32, r io.Reader) ([]byte, error) { |
| p, err := c.readCipherPacketLeaky(seqNum, r) |
| if err != nil { |
| if _, ok := err.(cbcError); ok { |
| // Verification error: read a fixed amount of |
| // data, to make distinguishing between |
| // failing MAC and failing length check more |
| // difficult. |
| io.CopyN(ioutil.Discard, r, int64(c.oracleCamouflage)) |
| } |
| } |
| return p, err |
| } |
| |
| func (c *cbcCipher) readCipherPacketLeaky(seqNum uint32, r io.Reader) ([]byte, error) { |
| blockSize := c.decrypter.BlockSize() |
| |
| // Read the header, which will include some of the subsequent data in the |
| // case of block ciphers - this is copied back to the payload later. |
| // How many bytes of payload/padding will be read with this first read. |
| firstBlockLength := uint32((prefixLen + blockSize - 1) / blockSize * blockSize) |
| firstBlock := c.packetData[:firstBlockLength] |
| if _, err := io.ReadFull(r, firstBlock); err != nil { |
| return nil, err |
| } |
| |
| c.oracleCamouflage = maxPacket + 4 + c.macSize - firstBlockLength |
| |
| c.decrypter.CryptBlocks(firstBlock, firstBlock) |
| length := binary.BigEndian.Uint32(firstBlock[:4]) |
| if length > maxPacket { |
| return nil, cbcError("ssh: packet too large") |
| } |
| if length+4 < maxUInt32(cbcMinPacketSize, blockSize) { |
| // The minimum size of a packet is 16 (or the cipher block size, whichever |
| // is larger) bytes. |
| return nil, cbcError("ssh: packet too small") |
| } |
| // The length of the packet (including the length field but not the MAC) must |
| // be a multiple of the block size or 8, whichever is larger. |
| if (length+4)%maxUInt32(cbcMinPacketSizeMultiple, blockSize) != 0 { |
| return nil, cbcError("ssh: invalid packet length multiple") |
| } |
| |
| paddingLength := uint32(firstBlock[4]) |
| if paddingLength < cbcMinPaddingSize || length <= paddingLength+1 { |
| return nil, cbcError("ssh: invalid packet length") |
| } |
| |
| // Positions within the c.packetData buffer: |
| macStart := 4 + length |
| paddingStart := macStart - paddingLength |
| |
| // Entire packet size, starting before length, ending at end of mac. |
| entirePacketSize := macStart + c.macSize |
| |
| // Ensure c.packetData is large enough for the entire packet data. |
| if uint32(cap(c.packetData)) < entirePacketSize { |
| // Still need to upsize and copy, but this should be rare at runtime, only |
| // on upsizing the packetData buffer. |
| c.packetData = make([]byte, entirePacketSize) |
| copy(c.packetData, firstBlock) |
| } else { |
| c.packetData = c.packetData[:entirePacketSize] |
| } |
| |
| n, err := io.ReadFull(r, c.packetData[firstBlockLength:]) |
| if err != nil { |
| return nil, err |
| } |
| c.oracleCamouflage -= uint32(n) |
| |
| remainingCrypted := c.packetData[firstBlockLength:macStart] |
| c.decrypter.CryptBlocks(remainingCrypted, remainingCrypted) |
| |
| mac := c.packetData[macStart:] |
| if c.mac != nil { |
| c.mac.Reset() |
| binary.BigEndian.PutUint32(c.seqNumBytes[:], seqNum) |
| c.mac.Write(c.seqNumBytes[:]) |
| c.mac.Write(c.packetData[:macStart]) |
| c.macResult = c.mac.Sum(c.macResult[:0]) |
| if subtle.ConstantTimeCompare(c.macResult, mac) != 1 { |
| return nil, cbcError("ssh: MAC failure") |
| } |
| } |
| |
| return c.packetData[prefixLen:paddingStart], nil |
| } |
| |
| func (c *cbcCipher) writeCipherPacket(seqNum uint32, w io.Writer, rand io.Reader, packet []byte) error { |
| effectiveBlockSize := maxUInt32(cbcMinPacketSizeMultiple, c.encrypter.BlockSize()) |
| |
| // Length of encrypted portion of the packet (header, payload, padding). |
| // Enforce minimum padding and packet size. |
| encLength := maxUInt32(prefixLen+len(packet)+cbcMinPaddingSize, cbcMinPaddingSize) |
| // Enforce block size. |
| encLength = (encLength + effectiveBlockSize - 1) / effectiveBlockSize * effectiveBlockSize |
| |
| length := encLength - 4 |
| paddingLength := int(length) - (1 + len(packet)) |
| |
| // Overall buffer contains: header, payload, padding, mac. |
| // Space for the MAC is reserved in the capacity but not the slice length. |
| bufferSize := encLength + c.macSize |
| if uint32(cap(c.packetData)) < bufferSize { |
| c.packetData = make([]byte, encLength, bufferSize) |
| } else { |
| c.packetData = c.packetData[:encLength] |
| } |
| |
| p := c.packetData |
| |
| // Packet header. |
| binary.BigEndian.PutUint32(p, length) |
| p = p[4:] |
| p[0] = byte(paddingLength) |
| |
| // Payload. |
| p = p[1:] |
| copy(p, packet) |
| |
| // Padding. |
| p = p[len(packet):] |
| if _, err := io.ReadFull(rand, p); err != nil { |
| return err |
| } |
| |
| if c.mac != nil { |
| c.mac.Reset() |
| binary.BigEndian.PutUint32(c.seqNumBytes[:], seqNum) |
| c.mac.Write(c.seqNumBytes[:]) |
| c.mac.Write(c.packetData) |
| // The MAC is now appended into the capacity reserved for it earlier. |
| c.packetData = c.mac.Sum(c.packetData) |
| } |
| |
| c.encrypter.CryptBlocks(c.packetData[:encLength], c.packetData[:encLength]) |
| |
| if _, err := w.Write(c.packetData); err != nil { |
| return err |
| } |
| |
| return nil |
| } |
| |
| const chacha20Poly1305ID = "chacha20-poly1305@openssh.com" |
| |
| // chacha20Poly1305Cipher implements the chacha20-poly1305@openssh.com |
| // AEAD, which is described here: |
| // |
| // https://tools.ietf.org/html/draft-josefsson-ssh-chacha20-poly1305-openssh-00 |
| // |
| // the methods here also implement padding, which RFC4253 Section 6 |
| // also requires of stream ciphers. |
| type chacha20Poly1305Cipher struct { |
| lengthKey [32]byte |
| contentKey [32]byte |
| buf []byte |
| } |
| |
| func newChaCha20Cipher(key, unusedIV, unusedMACKey []byte, unusedAlgs directionAlgorithms) (packetCipher, error) { |
| if len(key) != 64 { |
| panic(len(key)) |
| } |
| |
| c := &chacha20Poly1305Cipher{ |
| buf: make([]byte, 256), |
| } |
| |
| copy(c.contentKey[:], key[:32]) |
| copy(c.lengthKey[:], key[32:]) |
| return c, nil |
| } |
| |
| func (c *chacha20Poly1305Cipher) readCipherPacket(seqNum uint32, r io.Reader) ([]byte, error) { |
| nonce := make([]byte, 12) |
| binary.BigEndian.PutUint32(nonce[8:], seqNum) |
| s, err := chacha20.NewUnauthenticatedCipher(c.contentKey[:], nonce) |
| if err != nil { |
| return nil, err |
| } |
| var polyKey, discardBuf [32]byte |
| s.XORKeyStream(polyKey[:], polyKey[:]) |
| s.XORKeyStream(discardBuf[:], discardBuf[:]) // skip the next 32 bytes |
| |
| encryptedLength := c.buf[:4] |
| if _, err := io.ReadFull(r, encryptedLength); err != nil { |
| return nil, err |
| } |
| |
| var lenBytes [4]byte |
| ls, err := chacha20.NewUnauthenticatedCipher(c.lengthKey[:], nonce) |
| if err != nil { |
| return nil, err |
| } |
| ls.XORKeyStream(lenBytes[:], encryptedLength) |
| |
| length := binary.BigEndian.Uint32(lenBytes[:]) |
| if length > maxPacket { |
| return nil, errors.New("ssh: invalid packet length, packet too large") |
| } |
| |
| contentEnd := 4 + length |
| packetEnd := contentEnd + poly1305.TagSize |
| if uint32(cap(c.buf)) < packetEnd { |
| c.buf = make([]byte, packetEnd) |
| copy(c.buf[:], encryptedLength) |
| } else { |
| c.buf = c.buf[:packetEnd] |
| } |
| |
| if _, err := io.ReadFull(r, c.buf[4:packetEnd]); err != nil { |
| return nil, err |
| } |
| |
| var mac [poly1305.TagSize]byte |
| copy(mac[:], c.buf[contentEnd:packetEnd]) |
| if !poly1305.Verify(&mac, c.buf[:contentEnd], &polyKey) { |
| return nil, errors.New("ssh: MAC failure") |
| } |
| |
| plain := c.buf[4:contentEnd] |
| s.XORKeyStream(plain, plain) |
| |
| padding := plain[0] |
| if padding < 4 { |
| // padding is a byte, so it automatically satisfies |
| // the maximum size, which is 255. |
| return nil, fmt.Errorf("ssh: illegal padding %d", padding) |
| } |
| |
| if int(padding)+1 >= len(plain) { |
| return nil, fmt.Errorf("ssh: padding %d too large", padding) |
| } |
| |
| plain = plain[1 : len(plain)-int(padding)] |
| |
| return plain, nil |
| } |
| |
| func (c *chacha20Poly1305Cipher) writeCipherPacket(seqNum uint32, w io.Writer, rand io.Reader, payload []byte) error { |
| nonce := make([]byte, 12) |
| binary.BigEndian.PutUint32(nonce[8:], seqNum) |
| s, err := chacha20.NewUnauthenticatedCipher(c.contentKey[:], nonce) |
| if err != nil { |
| return err |
| } |
| var polyKey, discardBuf [32]byte |
| s.XORKeyStream(polyKey[:], polyKey[:]) |
| s.XORKeyStream(discardBuf[:], discardBuf[:]) // skip the next 32 bytes |
| |
| // There is no blocksize, so fall back to multiple of 8 byte |
| // padding, as described in RFC 4253, Sec 6. |
| const packetSizeMultiple = 8 |
| |
| padding := packetSizeMultiple - (1+len(payload))%packetSizeMultiple |
| if padding < 4 { |
| padding += packetSizeMultiple |
| } |
| |
| // size (4 bytes), padding (1), payload, padding, tag. |
| totalLength := 4 + 1 + len(payload) + padding + poly1305.TagSize |
| if cap(c.buf) < totalLength { |
| c.buf = make([]byte, totalLength) |
| } else { |
| c.buf = c.buf[:totalLength] |
| } |
| |
| binary.BigEndian.PutUint32(c.buf, uint32(1+len(payload)+padding)) |
| ls, err := chacha20.NewUnauthenticatedCipher(c.lengthKey[:], nonce) |
| if err != nil { |
| return err |
| } |
| ls.XORKeyStream(c.buf, c.buf[:4]) |
| c.buf[4] = byte(padding) |
| copy(c.buf[5:], payload) |
| packetEnd := 5 + len(payload) + padding |
| if _, err := io.ReadFull(rand, c.buf[5+len(payload):packetEnd]); err != nil { |
| return err |
| } |
| |
| s.XORKeyStream(c.buf[4:], c.buf[4:packetEnd]) |
| |
| var mac [poly1305.TagSize]byte |
| poly1305.Sum(&mac, c.buf[:packetEnd], &polyKey) |
| |
| copy(c.buf[packetEnd:], mac[:]) |
| |
| if _, err := w.Write(c.buf); err != nil { |
| return err |
| } |
| return nil |
| } |