| // Copyright 2012 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package bn256 implements a particular bilinear group. |
| // |
| // Bilinear groups are the basis of many of the new cryptographic protocols |
| // that have been proposed over the past decade. They consist of a triplet of |
| // groups (G₁, G₂ and GT) such that there exists a function e(g₁ˣ,g₂ʸ)=gTˣʸ |
| // (where gₓ is a generator of the respective group). That function is called |
| // a pairing function. |
| // |
| // This package specifically implements the Optimal Ate pairing over a 256-bit |
| // Barreto-Naehrig curve as described in |
| // http://cryptojedi.org/papers/dclxvi-20100714.pdf. Its output is compatible |
| // with the implementation described in that paper. |
| // |
| // This package previously claimed to operate at a 128-bit security level. |
| // However, recent improvements in attacks mean that is no longer true. See |
| // https://moderncrypto.org/mail-archive/curves/2016/000740.html. |
| // |
| // Deprecated: due to its weakened security, new systems should not rely on this |
| // elliptic curve. This package is frozen, and not implemented in constant time. |
| // There is a more complete implementation at github.com/cloudflare/bn256, but |
| // note that it suffers from the same security issues of the underlying curve. |
| package bn256 // import "golang.org/x/crypto/bn256" |
| |
| import ( |
| "crypto/rand" |
| "io" |
| "math/big" |
| ) |
| |
| // G1 is an abstract cyclic group. The zero value is suitable for use as the |
| // output of an operation, but cannot be used as an input. |
| type G1 struct { |
| p *curvePoint |
| } |
| |
| // RandomG1 returns x and g₁ˣ where x is a random, non-zero number read from r. |
| func RandomG1(r io.Reader) (*big.Int, *G1, error) { |
| var k *big.Int |
| var err error |
| |
| for { |
| k, err = rand.Int(r, Order) |
| if err != nil { |
| return nil, nil, err |
| } |
| if k.Sign() > 0 { |
| break |
| } |
| } |
| |
| return k, new(G1).ScalarBaseMult(k), nil |
| } |
| |
| func (e *G1) String() string { |
| if e.p == nil { |
| return "bn256.G1" + newCurvePoint(nil).String() |
| } |
| return "bn256.G1" + e.p.String() |
| } |
| |
| // ScalarBaseMult sets e to g*k where g is the generator of the group and |
| // then returns e. |
| func (e *G1) ScalarBaseMult(k *big.Int) *G1 { |
| if e.p == nil { |
| e.p = newCurvePoint(nil) |
| } |
| e.p.Mul(curveGen, k, new(bnPool)) |
| return e |
| } |
| |
| // ScalarMult sets e to a*k and then returns e. |
| func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 { |
| if e.p == nil { |
| e.p = newCurvePoint(nil) |
| } |
| e.p.Mul(a.p, k, new(bnPool)) |
| return e |
| } |
| |
| // Add sets e to a+b and then returns e. |
| // |
| // Warning: this function is not complete, it fails for a equal to b. |
| func (e *G1) Add(a, b *G1) *G1 { |
| if e.p == nil { |
| e.p = newCurvePoint(nil) |
| } |
| e.p.Add(a.p, b.p, new(bnPool)) |
| return e |
| } |
| |
| // Neg sets e to -a and then returns e. |
| func (e *G1) Neg(a *G1) *G1 { |
| if e.p == nil { |
| e.p = newCurvePoint(nil) |
| } |
| e.p.Negative(a.p) |
| return e |
| } |
| |
| // Marshal converts n to a byte slice. |
| func (e *G1) Marshal() []byte { |
| // Each value is a 256-bit number. |
| const numBytes = 256 / 8 |
| |
| if e.p.IsInfinity() { |
| return make([]byte, numBytes*2) |
| } |
| |
| e.p.MakeAffine(nil) |
| |
| xBytes := new(big.Int).Mod(e.p.x, p).Bytes() |
| yBytes := new(big.Int).Mod(e.p.y, p).Bytes() |
| |
| ret := make([]byte, numBytes*2) |
| copy(ret[1*numBytes-len(xBytes):], xBytes) |
| copy(ret[2*numBytes-len(yBytes):], yBytes) |
| |
| return ret |
| } |
| |
| // Unmarshal sets e to the result of converting the output of Marshal back into |
| // a group element and then returns e. |
| func (e *G1) Unmarshal(m []byte) (*G1, bool) { |
| // Each value is a 256-bit number. |
| const numBytes = 256 / 8 |
| |
| if len(m) != 2*numBytes { |
| return nil, false |
| } |
| |
| if e.p == nil { |
| e.p = newCurvePoint(nil) |
| } |
| |
| e.p.x.SetBytes(m[0*numBytes : 1*numBytes]) |
| e.p.y.SetBytes(m[1*numBytes : 2*numBytes]) |
| |
| if e.p.x.Sign() == 0 && e.p.y.Sign() == 0 { |
| // This is the point at infinity. |
| e.p.y.SetInt64(1) |
| e.p.z.SetInt64(0) |
| e.p.t.SetInt64(0) |
| } else { |
| e.p.z.SetInt64(1) |
| e.p.t.SetInt64(1) |
| |
| if !e.p.IsOnCurve() { |
| return nil, false |
| } |
| } |
| |
| return e, true |
| } |
| |
| // G2 is an abstract cyclic group. The zero value is suitable for use as the |
| // output of an operation, but cannot be used as an input. |
| type G2 struct { |
| p *twistPoint |
| } |
| |
| // RandomG2 returns x and g₂ˣ where x is a random, non-zero number read from r. |
| func RandomG2(r io.Reader) (*big.Int, *G2, error) { |
| var k *big.Int |
| var err error |
| |
| for { |
| k, err = rand.Int(r, Order) |
| if err != nil { |
| return nil, nil, err |
| } |
| if k.Sign() > 0 { |
| break |
| } |
| } |
| |
| return k, new(G2).ScalarBaseMult(k), nil |
| } |
| |
| func (e *G2) String() string { |
| if e.p == nil { |
| return "bn256.G2" + newTwistPoint(nil).String() |
| } |
| return "bn256.G2" + e.p.String() |
| } |
| |
| // ScalarBaseMult sets e to g*k where g is the generator of the group and |
| // then returns out. |
| func (e *G2) ScalarBaseMult(k *big.Int) *G2 { |
| if e.p == nil { |
| e.p = newTwistPoint(nil) |
| } |
| e.p.Mul(twistGen, k, new(bnPool)) |
| return e |
| } |
| |
| // ScalarMult sets e to a*k and then returns e. |
| func (e *G2) ScalarMult(a *G2, k *big.Int) *G2 { |
| if e.p == nil { |
| e.p = newTwistPoint(nil) |
| } |
| e.p.Mul(a.p, k, new(bnPool)) |
| return e |
| } |
| |
| // Add sets e to a+b and then returns e. |
| // |
| // Warning: this function is not complete, it fails for a equal to b. |
| func (e *G2) Add(a, b *G2) *G2 { |
| if e.p == nil { |
| e.p = newTwistPoint(nil) |
| } |
| e.p.Add(a.p, b.p, new(bnPool)) |
| return e |
| } |
| |
| // Marshal converts n into a byte slice. |
| func (n *G2) Marshal() []byte { |
| // Each value is a 256-bit number. |
| const numBytes = 256 / 8 |
| |
| if n.p.IsInfinity() { |
| return make([]byte, numBytes*4) |
| } |
| |
| n.p.MakeAffine(nil) |
| |
| xxBytes := new(big.Int).Mod(n.p.x.x, p).Bytes() |
| xyBytes := new(big.Int).Mod(n.p.x.y, p).Bytes() |
| yxBytes := new(big.Int).Mod(n.p.y.x, p).Bytes() |
| yyBytes := new(big.Int).Mod(n.p.y.y, p).Bytes() |
| |
| ret := make([]byte, numBytes*4) |
| copy(ret[1*numBytes-len(xxBytes):], xxBytes) |
| copy(ret[2*numBytes-len(xyBytes):], xyBytes) |
| copy(ret[3*numBytes-len(yxBytes):], yxBytes) |
| copy(ret[4*numBytes-len(yyBytes):], yyBytes) |
| |
| return ret |
| } |
| |
| // Unmarshal sets e to the result of converting the output of Marshal back into |
| // a group element and then returns e. |
| func (e *G2) Unmarshal(m []byte) (*G2, bool) { |
| // Each value is a 256-bit number. |
| const numBytes = 256 / 8 |
| |
| if len(m) != 4*numBytes { |
| return nil, false |
| } |
| |
| if e.p == nil { |
| e.p = newTwistPoint(nil) |
| } |
| |
| e.p.x.x.SetBytes(m[0*numBytes : 1*numBytes]) |
| e.p.x.y.SetBytes(m[1*numBytes : 2*numBytes]) |
| e.p.y.x.SetBytes(m[2*numBytes : 3*numBytes]) |
| e.p.y.y.SetBytes(m[3*numBytes : 4*numBytes]) |
| |
| if e.p.x.x.Sign() == 0 && |
| e.p.x.y.Sign() == 0 && |
| e.p.y.x.Sign() == 0 && |
| e.p.y.y.Sign() == 0 { |
| // This is the point at infinity. |
| e.p.y.SetOne() |
| e.p.z.SetZero() |
| e.p.t.SetZero() |
| } else { |
| e.p.z.SetOne() |
| e.p.t.SetOne() |
| |
| if !e.p.IsOnCurve() { |
| return nil, false |
| } |
| } |
| |
| return e, true |
| } |
| |
| // GT is an abstract cyclic group. The zero value is suitable for use as the |
| // output of an operation, but cannot be used as an input. |
| type GT struct { |
| p *gfP12 |
| } |
| |
| func (e *GT) String() string { |
| if e.p == nil { |
| return "bn256.GT" + newGFp12(nil).String() |
| } |
| return "bn256.GT" + e.p.String() |
| } |
| |
| // ScalarMult sets e to a*k and then returns e. |
| func (e *GT) ScalarMult(a *GT, k *big.Int) *GT { |
| if e.p == nil { |
| e.p = newGFp12(nil) |
| } |
| e.p.Exp(a.p, k, new(bnPool)) |
| return e |
| } |
| |
| // Add sets e to a+b and then returns e. |
| func (e *GT) Add(a, b *GT) *GT { |
| if e.p == nil { |
| e.p = newGFp12(nil) |
| } |
| e.p.Mul(a.p, b.p, new(bnPool)) |
| return e |
| } |
| |
| // Neg sets e to -a and then returns e. |
| func (e *GT) Neg(a *GT) *GT { |
| if e.p == nil { |
| e.p = newGFp12(nil) |
| } |
| e.p.Invert(a.p, new(bnPool)) |
| return e |
| } |
| |
| // Marshal converts n into a byte slice. |
| func (n *GT) Marshal() []byte { |
| n.p.Minimal() |
| |
| xxxBytes := n.p.x.x.x.Bytes() |
| xxyBytes := n.p.x.x.y.Bytes() |
| xyxBytes := n.p.x.y.x.Bytes() |
| xyyBytes := n.p.x.y.y.Bytes() |
| xzxBytes := n.p.x.z.x.Bytes() |
| xzyBytes := n.p.x.z.y.Bytes() |
| yxxBytes := n.p.y.x.x.Bytes() |
| yxyBytes := n.p.y.x.y.Bytes() |
| yyxBytes := n.p.y.y.x.Bytes() |
| yyyBytes := n.p.y.y.y.Bytes() |
| yzxBytes := n.p.y.z.x.Bytes() |
| yzyBytes := n.p.y.z.y.Bytes() |
| |
| // Each value is a 256-bit number. |
| const numBytes = 256 / 8 |
| |
| ret := make([]byte, numBytes*12) |
| copy(ret[1*numBytes-len(xxxBytes):], xxxBytes) |
| copy(ret[2*numBytes-len(xxyBytes):], xxyBytes) |
| copy(ret[3*numBytes-len(xyxBytes):], xyxBytes) |
| copy(ret[4*numBytes-len(xyyBytes):], xyyBytes) |
| copy(ret[5*numBytes-len(xzxBytes):], xzxBytes) |
| copy(ret[6*numBytes-len(xzyBytes):], xzyBytes) |
| copy(ret[7*numBytes-len(yxxBytes):], yxxBytes) |
| copy(ret[8*numBytes-len(yxyBytes):], yxyBytes) |
| copy(ret[9*numBytes-len(yyxBytes):], yyxBytes) |
| copy(ret[10*numBytes-len(yyyBytes):], yyyBytes) |
| copy(ret[11*numBytes-len(yzxBytes):], yzxBytes) |
| copy(ret[12*numBytes-len(yzyBytes):], yzyBytes) |
| |
| return ret |
| } |
| |
| // Unmarshal sets e to the result of converting the output of Marshal back into |
| // a group element and then returns e. |
| func (e *GT) Unmarshal(m []byte) (*GT, bool) { |
| // Each value is a 256-bit number. |
| const numBytes = 256 / 8 |
| |
| if len(m) != 12*numBytes { |
| return nil, false |
| } |
| |
| if e.p == nil { |
| e.p = newGFp12(nil) |
| } |
| |
| e.p.x.x.x.SetBytes(m[0*numBytes : 1*numBytes]) |
| e.p.x.x.y.SetBytes(m[1*numBytes : 2*numBytes]) |
| e.p.x.y.x.SetBytes(m[2*numBytes : 3*numBytes]) |
| e.p.x.y.y.SetBytes(m[3*numBytes : 4*numBytes]) |
| e.p.x.z.x.SetBytes(m[4*numBytes : 5*numBytes]) |
| e.p.x.z.y.SetBytes(m[5*numBytes : 6*numBytes]) |
| e.p.y.x.x.SetBytes(m[6*numBytes : 7*numBytes]) |
| e.p.y.x.y.SetBytes(m[7*numBytes : 8*numBytes]) |
| e.p.y.y.x.SetBytes(m[8*numBytes : 9*numBytes]) |
| e.p.y.y.y.SetBytes(m[9*numBytes : 10*numBytes]) |
| e.p.y.z.x.SetBytes(m[10*numBytes : 11*numBytes]) |
| e.p.y.z.y.SetBytes(m[11*numBytes : 12*numBytes]) |
| |
| return e, true |
| } |
| |
| // Pair calculates an Optimal Ate pairing. |
| func Pair(g1 *G1, g2 *G2) *GT { |
| return >{optimalAte(g2.p, g1.p, new(bnPool))} |
| } |
| |
| // bnPool implements a tiny cache of *big.Int objects that's used to reduce the |
| // number of allocations made during processing. |
| type bnPool struct { |
| bns []*big.Int |
| count int |
| } |
| |
| func (pool *bnPool) Get() *big.Int { |
| if pool == nil { |
| return new(big.Int) |
| } |
| |
| pool.count++ |
| l := len(pool.bns) |
| if l == 0 { |
| return new(big.Int) |
| } |
| |
| bn := pool.bns[l-1] |
| pool.bns = pool.bns[:l-1] |
| return bn |
| } |
| |
| func (pool *bnPool) Put(bn *big.Int) { |
| if pool == nil { |
| return |
| } |
| pool.bns = append(pool.bns, bn) |
| pool.count-- |
| } |
| |
| func (pool *bnPool) Count() int { |
| return pool.count |
| } |