go.crypto/sha3: change keccakF to stateless function
Taken from my implementation: https://bitbucket.org/ede/sha3
Performance gain from using less memory and more registers.
benchmark old ns/op new ns/op delta
BenchmarkPermutationFunction 1484 1118 -24.66%
BenchmarkBulkKeccak512 374993 295178 -21.28%
BenchmarkBulkKeccak256 215496 172335 -20.03%
benchmark old MB/s new MB/s speedup
BenchmarkPermutationFunction 134.76 178.80 1.33x
BenchmarkBulkKeccak512 43.69 55.51 1.27x
BenchmarkBulkKeccak256 76.03 95.07 1.25x
R=jcb, agl
CC=golang-dev, nigeltao
https://golang.org/cl/8088044
diff --git a/sha3/keccakf.go b/sha3/keccakf.go
index 107156c..76c0312 100644
--- a/sha3/keccakf.go
+++ b/sha3/keccakf.go
@@ -37,135 +37,129 @@
0x8000000080008008,
}
-// ro_xx represent the rotation offsets for use in the χ step.
-// Defining them as const instead of in an array allows the compiler to insert constant shifts.
-const (
- ro_00 = 0
- ro_01 = 36
- ro_02 = 3
- ro_03 = 41
- ro_04 = 18
- ro_05 = 1
- ro_06 = 44
- ro_07 = 10
- ro_08 = 45
- ro_09 = 2
- ro_10 = 62
- ro_11 = 6
- ro_12 = 43
- ro_13 = 15
- ro_14 = 61
- ro_15 = 28
- ro_16 = 55
- ro_17 = 25
- ro_18 = 21
- ro_19 = 56
- ro_20 = 27
- ro_21 = 20
- ro_22 = 39
- ro_23 = 8
- ro_24 = 14
-)
-
// keccakF computes the complete Keccak-f function consisting of 24 rounds with a different
// constant (rc) in each round. This implementation fully unrolls the round function to avoid
// inner loops, as well as pre-calculating shift offsets.
-func (d *digest) keccakF() {
+func keccakF(a *[numLanes]uint64) {
+ var t, bc0, bc1, bc2, bc3, bc4 uint64
for _, roundConstant := range rc {
// θ step
- d.c[0] = d.a[0] ^ d.a[5] ^ d.a[10] ^ d.a[15] ^ d.a[20]
- d.c[1] = d.a[1] ^ d.a[6] ^ d.a[11] ^ d.a[16] ^ d.a[21]
- d.c[2] = d.a[2] ^ d.a[7] ^ d.a[12] ^ d.a[17] ^ d.a[22]
- d.c[3] = d.a[3] ^ d.a[8] ^ d.a[13] ^ d.a[18] ^ d.a[23]
- d.c[4] = d.a[4] ^ d.a[9] ^ d.a[14] ^ d.a[19] ^ d.a[24]
-
- d.d[0] = d.c[4] ^ (d.c[1]<<1 ^ d.c[1]>>63)
- d.d[1] = d.c[0] ^ (d.c[2]<<1 ^ d.c[2]>>63)
- d.d[2] = d.c[1] ^ (d.c[3]<<1 ^ d.c[3]>>63)
- d.d[3] = d.c[2] ^ (d.c[4]<<1 ^ d.c[4]>>63)
- d.d[4] = d.c[3] ^ (d.c[0]<<1 ^ d.c[0]>>63)
-
- d.a[0] ^= d.d[0]
- d.a[1] ^= d.d[1]
- d.a[2] ^= d.d[2]
- d.a[3] ^= d.d[3]
- d.a[4] ^= d.d[4]
- d.a[5] ^= d.d[0]
- d.a[6] ^= d.d[1]
- d.a[7] ^= d.d[2]
- d.a[8] ^= d.d[3]
- d.a[9] ^= d.d[4]
- d.a[10] ^= d.d[0]
- d.a[11] ^= d.d[1]
- d.a[12] ^= d.d[2]
- d.a[13] ^= d.d[3]
- d.a[14] ^= d.d[4]
- d.a[15] ^= d.d[0]
- d.a[16] ^= d.d[1]
- d.a[17] ^= d.d[2]
- d.a[18] ^= d.d[3]
- d.a[19] ^= d.d[4]
- d.a[20] ^= d.d[0]
- d.a[21] ^= d.d[1]
- d.a[22] ^= d.d[2]
- d.a[23] ^= d.d[3]
- d.a[24] ^= d.d[4]
+ bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]
+ bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]
+ bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]
+ bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]
+ bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]
+ t = bc4 ^ (bc1<<1 ^ bc1>>63)
+ a[0] ^= t
+ a[5] ^= t
+ a[10] ^= t
+ a[15] ^= t
+ a[20] ^= t
+ t = bc0 ^ (bc2<<1 ^ bc2>>63)
+ a[1] ^= t
+ a[6] ^= t
+ a[11] ^= t
+ a[16] ^= t
+ a[21] ^= t
+ t = bc1 ^ (bc3<<1 ^ bc3>>63)
+ a[2] ^= t
+ a[7] ^= t
+ a[12] ^= t
+ a[17] ^= t
+ a[22] ^= t
+ t = bc2 ^ (bc4<<1 ^ bc4>>63)
+ a[3] ^= t
+ a[8] ^= t
+ a[13] ^= t
+ a[18] ^= t
+ a[23] ^= t
+ t = bc3 ^ (bc0<<1 ^ bc0>>63)
+ a[4] ^= t
+ a[9] ^= t
+ a[14] ^= t
+ a[19] ^= t
+ a[24] ^= t
// ρ and π steps
- d.b[0] = d.a[0]
- d.b[1] = d.a[6]<<ro_06 ^ d.a[6]>>(64-ro_06)
- d.b[2] = d.a[12]<<ro_12 ^ d.a[12]>>(64-ro_12)
- d.b[3] = d.a[18]<<ro_18 ^ d.a[18]>>(64-ro_18)
- d.b[4] = d.a[24]<<ro_24 ^ d.a[24]>>(64-ro_24)
- d.b[5] = d.a[3]<<ro_15 ^ d.a[3]>>(64-ro_15)
- d.b[6] = d.a[9]<<ro_21 ^ d.a[9]>>(64-ro_21)
- d.b[7] = d.a[10]<<ro_02 ^ d.a[10]>>(64-ro_02)
- d.b[8] = d.a[16]<<ro_08 ^ d.a[16]>>(64-ro_08)
- d.b[9] = d.a[22]<<ro_14 ^ d.a[22]>>(64-ro_14)
- d.b[10] = d.a[1]<<ro_05 ^ d.a[1]>>(64-ro_05)
- d.b[11] = d.a[7]<<ro_11 ^ d.a[7]>>(64-ro_11)
- d.b[12] = d.a[13]<<ro_17 ^ d.a[13]>>(64-ro_17)
- d.b[13] = d.a[19]<<ro_23 ^ d.a[19]>>(64-ro_23)
- d.b[14] = d.a[20]<<ro_04 ^ d.a[20]>>(64-ro_04)
- d.b[15] = d.a[4]<<ro_20 ^ d.a[4]>>(64-ro_20)
- d.b[16] = d.a[5]<<ro_01 ^ d.a[5]>>(64-ro_01)
- d.b[17] = d.a[11]<<ro_07 ^ d.a[11]>>(64-ro_07)
- d.b[18] = d.a[17]<<ro_13 ^ d.a[17]>>(64-ro_13)
- d.b[19] = d.a[23]<<ro_19 ^ d.a[23]>>(64-ro_19)
- d.b[20] = d.a[2]<<ro_10 ^ d.a[2]>>(64-ro_10)
- d.b[21] = d.a[8]<<ro_16 ^ d.a[8]>>(64-ro_16)
- d.b[22] = d.a[14]<<ro_22 ^ d.a[14]>>(64-ro_22)
- d.b[23] = d.a[15]<<ro_03 ^ d.a[15]>>(64-ro_03)
- d.b[24] = d.a[21]<<ro_09 ^ d.a[21]>>(64-ro_09)
+ t = a[1]
+ t, a[10] = a[10], t<<1^t>>(64-1)
+ t, a[7] = a[7], t<<3^t>>(64-3)
+ t, a[11] = a[11], t<<6^t>>(64-6)
+ t, a[17] = a[17], t<<10^t>>(64-10)
+ t, a[18] = a[18], t<<15^t>>(64-15)
+ t, a[3] = a[3], t<<21^t>>(64-21)
+ t, a[5] = a[5], t<<28^t>>(64-28)
+ t, a[16] = a[16], t<<36^t>>(64-36)
+ t, a[8] = a[8], t<<45^t>>(64-45)
+ t, a[21] = a[21], t<<55^t>>(64-55)
+ t, a[24] = a[24], t<<2^t>>(64-2)
+ t, a[4] = a[4], t<<14^t>>(64-14)
+ t, a[15] = a[15], t<<27^t>>(64-27)
+ t, a[23] = a[23], t<<41^t>>(64-41)
+ t, a[19] = a[19], t<<56^t>>(64-56)
+ t, a[13] = a[13], t<<8^t>>(64-8)
+ t, a[12] = a[12], t<<25^t>>(64-25)
+ t, a[2] = a[2], t<<43^t>>(64-43)
+ t, a[20] = a[20], t<<62^t>>(64-62)
+ t, a[14] = a[14], t<<18^t>>(64-18)
+ t, a[22] = a[22], t<<39^t>>(64-39)
+ t, a[9] = a[9], t<<61^t>>(64-61)
+ t, a[6] = a[6], t<<20^t>>(64-20)
+ a[1] = t<<44 ^ t>>(64-44)
// χ step
- d.a[0] = d.b[0] ^ (^d.b[1] & d.b[2])
- d.a[1] = d.b[1] ^ (^d.b[2] & d.b[3])
- d.a[2] = d.b[2] ^ (^d.b[3] & d.b[4])
- d.a[3] = d.b[3] ^ (^d.b[4] & d.b[0])
- d.a[4] = d.b[4] ^ (^d.b[0] & d.b[1])
- d.a[5] = d.b[5] ^ (^d.b[6] & d.b[7])
- d.a[6] = d.b[6] ^ (^d.b[7] & d.b[8])
- d.a[7] = d.b[7] ^ (^d.b[8] & d.b[9])
- d.a[8] = d.b[8] ^ (^d.b[9] & d.b[5])
- d.a[9] = d.b[9] ^ (^d.b[5] & d.b[6])
- d.a[10] = d.b[10] ^ (^d.b[11] & d.b[12])
- d.a[11] = d.b[11] ^ (^d.b[12] & d.b[13])
- d.a[12] = d.b[12] ^ (^d.b[13] & d.b[14])
- d.a[13] = d.b[13] ^ (^d.b[14] & d.b[10])
- d.a[14] = d.b[14] ^ (^d.b[10] & d.b[11])
- d.a[15] = d.b[15] ^ (^d.b[16] & d.b[17])
- d.a[16] = d.b[16] ^ (^d.b[17] & d.b[18])
- d.a[17] = d.b[17] ^ (^d.b[18] & d.b[19])
- d.a[18] = d.b[18] ^ (^d.b[19] & d.b[15])
- d.a[19] = d.b[19] ^ (^d.b[15] & d.b[16])
- d.a[20] = d.b[20] ^ (^d.b[21] & d.b[22])
- d.a[21] = d.b[21] ^ (^d.b[22] & d.b[23])
- d.a[22] = d.b[22] ^ (^d.b[23] & d.b[24])
- d.a[23] = d.b[23] ^ (^d.b[24] & d.b[20])
- d.a[24] = d.b[24] ^ (^d.b[20] & d.b[21])
+ bc0 = a[0]
+ bc1 = a[1]
+ bc2 = a[2]
+ bc3 = a[3]
+ bc4 = a[4]
+ a[0] ^= bc2 &^ bc1
+ a[1] ^= bc3 &^ bc2
+ a[2] ^= bc4 &^ bc3
+ a[3] ^= bc0 &^ bc4
+ a[4] ^= bc1 &^ bc0
+ bc0 = a[5]
+ bc1 = a[6]
+ bc2 = a[7]
+ bc3 = a[8]
+ bc4 = a[9]
+ a[5] ^= bc2 &^ bc1
+ a[6] ^= bc3 &^ bc2
+ a[7] ^= bc4 &^ bc3
+ a[8] ^= bc0 &^ bc4
+ a[9] ^= bc1 &^ bc0
+ bc0 = a[10]
+ bc1 = a[11]
+ bc2 = a[12]
+ bc3 = a[13]
+ bc4 = a[14]
+ a[10] ^= bc2 &^ bc1
+ a[11] ^= bc3 &^ bc2
+ a[12] ^= bc4 &^ bc3
+ a[13] ^= bc0 &^ bc4
+ a[14] ^= bc1 &^ bc0
+ bc0 = a[15]
+ bc1 = a[16]
+ bc2 = a[17]
+ bc3 = a[18]
+ bc4 = a[19]
+ a[15] ^= bc2 &^ bc1
+ a[16] ^= bc3 &^ bc2
+ a[17] ^= bc4 &^ bc3
+ a[18] ^= bc0 &^ bc4
+ a[19] ^= bc1 &^ bc0
+ bc0 = a[20]
+ bc1 = a[21]
+ bc2 = a[22]
+ bc3 = a[23]
+ bc4 = a[24]
+ a[20] ^= bc2 &^ bc1
+ a[21] ^= bc3 &^ bc2
+ a[22] ^= bc4 &^ bc3
+ a[23] ^= bc0 &^ bc4
+ a[24] ^= bc1 &^ bc0
// ι step
- d.a[0] ^= roundConstant
+ a[0] ^= roundConstant
}
}