blob: a143d2efbb374067590c957d72b3542c6806348b [file] [log] [blame]
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package armasm
import (
"bytes"
"encoding/binary"
"fmt"
"io"
"math"
"strings"
)
// GoSyntax returns the Go assembler syntax for the instruction.
// The syntax was originally defined by Plan 9.
// The pc is the program counter of the instruction, used for expanding
// PC-relative addresses into absolute ones.
// The symname function queries the symbol table for the program
// being disassembled. Given a target address it returns the name and base
// address of the symbol containing the target, if any; otherwise it returns "", 0.
// The reader r should read from the text segment using text addresses
// as offsets; it is used to display pc-relative loads as constant loads.
func GoSyntax(inst Inst, pc uint64, symname func(uint64) (string, uint64), text io.ReaderAt) string {
if symname == nil {
symname = func(uint64) (string, uint64) { return "", 0 }
}
var args []string
for _, a := range inst.Args {
if a == nil {
break
}
args = append(args, plan9Arg(&inst, pc, symname, a))
}
op := inst.Op.String()
switch inst.Op &^ 15 {
case LDR_EQ, LDRB_EQ, LDRH_EQ, LDRSB_EQ, LDRSH_EQ, VLDR_EQ:
// Check for RET
reg, _ := inst.Args[0].(Reg)
mem, _ := inst.Args[1].(Mem)
if inst.Op&^15 == LDR_EQ && reg == R15 && mem.Base == SP && mem.Sign == 0 && mem.Mode == AddrPostIndex {
return fmt.Sprintf("RET%s #%d", op[3:], mem.Offset)
}
// Check for PC-relative load.
if mem.Base == PC && mem.Sign == 0 && mem.Mode == AddrOffset && text != nil {
addr := uint32(pc) + 8 + uint32(mem.Offset)
buf := make([]byte, 8)
switch inst.Op &^ 15 {
case LDRB_EQ, LDRSB_EQ:
if _, err := text.ReadAt(buf[:1], int64(addr)); err != nil {
break
}
args[1] = fmt.Sprintf("$%#x", buf[0])
case LDRH_EQ, LDRSH_EQ:
if _, err := text.ReadAt(buf[:2], int64(addr)); err != nil {
break
}
args[1] = fmt.Sprintf("$%#x", binary.LittleEndian.Uint16(buf))
case LDR_EQ:
if _, err := text.ReadAt(buf[:4], int64(addr)); err != nil {
break
}
x := binary.LittleEndian.Uint32(buf)
if s, base := symname(uint64(x)); s != "" && uint64(x) == base {
args[1] = fmt.Sprintf("$%s(SB)", s)
} else {
args[1] = fmt.Sprintf("$%#x", x)
}
case VLDR_EQ:
switch {
case strings.HasPrefix(args[0], "D"): // VLDR.F64
if _, err := text.ReadAt(buf, int64(addr)); err != nil {
break
}
args[1] = fmt.Sprintf("$%f", math.Float64frombits(binary.LittleEndian.Uint64(buf)))
case strings.HasPrefix(args[0], "S"): // VLDR.F32
if _, err := text.ReadAt(buf[:4], int64(addr)); err != nil {
break
}
args[1] = fmt.Sprintf("$%f", math.Float32frombits(binary.LittleEndian.Uint32(buf)))
default:
panic(fmt.Sprintf("wrong FP register: %v", inst))
}
}
}
}
// Move addressing mode into opcode suffix.
suffix := ""
switch inst.Op &^ 15 {
case PLD, PLI, PLD_W:
if mem, ok := inst.Args[0].(Mem); ok {
args[0], suffix = memOpTrans(mem)
} else {
panic(fmt.Sprintf("illegal instruction: %v", inst))
}
case LDR_EQ, LDRB_EQ, LDRSB_EQ, LDRH_EQ, LDRSH_EQ, STR_EQ, STRB_EQ, STRH_EQ, VLDR_EQ, VSTR_EQ, LDREX_EQ, LDREXH_EQ, LDREXB_EQ:
if mem, ok := inst.Args[1].(Mem); ok {
args[1], suffix = memOpTrans(mem)
} else {
panic(fmt.Sprintf("illegal instruction: %v", inst))
}
case SWP_EQ, SWP_B_EQ, STREX_EQ, STREXB_EQ, STREXH_EQ:
if mem, ok := inst.Args[2].(Mem); ok {
args[2], suffix = memOpTrans(mem)
} else {
panic(fmt.Sprintf("illegal instruction: %v", inst))
}
}
// Reverse args, placing dest last.
for i, j := 0, len(args)-1; i < j; i, j = i+1, j-1 {
args[i], args[j] = args[j], args[i]
}
// For MLA-like instructions, the addend is the third operand.
switch inst.Op &^ 15 {
case SMLAWT_EQ, SMLAWB_EQ, MLA_EQ, MLA_S_EQ, MLS_EQ, SMMLA_EQ, SMMLS_EQ, SMLABB_EQ, SMLATB_EQ, SMLABT_EQ, SMLATT_EQ, SMLAD_EQ, SMLAD_X_EQ, SMLSD_EQ, SMLSD_X_EQ:
args = []string{args[1], args[2], args[0], args[3]}
}
// For STREX like instructions, the memory operands comes first.
switch inst.Op &^ 15 {
case STREX_EQ, STREXB_EQ, STREXH_EQ, SWP_EQ, SWP_B_EQ:
args = []string{args[1], args[0], args[2]}
}
// special process for FP instructions
op, args = fpTrans(&inst, op, args)
// LDR/STR like instructions -> MOV like
switch inst.Op &^ 15 {
case MOV_EQ:
op = "MOVW" + op[3:]
case LDR_EQ, MSR_EQ, MRS_EQ:
op = "MOVW" + op[3:] + suffix
case VMRS_EQ, VMSR_EQ:
op = "MOVW" + op[4:] + suffix
case LDRB_EQ, UXTB_EQ:
op = "MOVBU" + op[4:] + suffix
case LDRSB_EQ:
op = "MOVBS" + op[5:] + suffix
case SXTB_EQ:
op = "MOVBS" + op[4:] + suffix
case LDRH_EQ, UXTH_EQ:
op = "MOVHU" + op[4:] + suffix
case LDRSH_EQ:
op = "MOVHS" + op[5:] + suffix
case SXTH_EQ:
op = "MOVHS" + op[4:] + suffix
case STR_EQ:
op = "MOVW" + op[3:] + suffix
args[0], args[1] = args[1], args[0]
case STRB_EQ:
op = "MOVB" + op[4:] + suffix
args[0], args[1] = args[1], args[0]
case STRH_EQ:
op = "MOVH" + op[4:] + suffix
args[0], args[1] = args[1], args[0]
case VSTR_EQ:
args[0], args[1] = args[1], args[0]
default:
op = op + suffix
}
if args != nil {
op += " " + strings.Join(args, ", ")
}
return op
}
// assembler syntax for the various shifts.
// @x> is a lie; the assembler uses @> 0
// instead of @x> 1, but i wanted to be clear that it
// was a different operation (rotate right extended, not rotate right).
var plan9Shift = []string{"<<", ">>", "->", "@>", "@x>"}
func plan9Arg(inst *Inst, pc uint64, symname func(uint64) (string, uint64), arg Arg) string {
switch a := arg.(type) {
case Endian:
case Imm:
return fmt.Sprintf("$%d", uint32(a))
case Mem:
case PCRel:
addr := uint32(pc) + 8 + uint32(a)
if s, base := symname(uint64(addr)); s != "" && uint64(addr) == base {
return fmt.Sprintf("%s(SB)", s)
}
return fmt.Sprintf("%#x", addr)
case Reg:
if a < 16 {
return fmt.Sprintf("R%d", int(a))
}
case RegList:
var buf bytes.Buffer
start := -2
end := -2
fmt.Fprintf(&buf, "[")
flush := func() {
if start >= 0 {
if buf.Len() > 1 {
fmt.Fprintf(&buf, ",")
}
if start == end {
fmt.Fprintf(&buf, "R%d", start)
} else {
fmt.Fprintf(&buf, "R%d-R%d", start, end)
}
start = -2
end = -2
}
}
for i := 0; i < 16; i++ {
if a&(1<<uint(i)) != 0 {
if i == end+1 {
end++
continue
}
start = i
end = i
} else {
flush()
}
}
flush()
fmt.Fprintf(&buf, "]")
return buf.String()
case RegShift:
return fmt.Sprintf("R%d%s$%d", int(a.Reg), plan9Shift[a.Shift], int(a.Count))
case RegShiftReg:
return fmt.Sprintf("R%d%sR%d", int(a.Reg), plan9Shift[a.Shift], int(a.RegCount))
}
return strings.ToUpper(arg.String())
}
// convert memory operand from GNU syntax to Plan 9 syntax, for example,
// [r5] -> (R5)
// [r6, #4080] -> 0xff0(R6)
// [r2, r0, ror #1] -> (R2)(R0@>1)
// inst [r2, -r0, ror #1] -> INST.U (R2)(R0@>1)
// input:
// a memory operand
// return values:
// corresponding memory operand in Plan 9 syntax
// .W/.P/.U suffix
func memOpTrans(mem Mem) (string, string) {
suffix := ""
switch mem.Mode {
case AddrOffset, AddrLDM:
// no suffix
case AddrPreIndex, AddrLDM_WB:
suffix = ".W"
case AddrPostIndex:
suffix = ".P"
}
off := ""
if mem.Offset != 0 {
off = fmt.Sprintf("%#x", mem.Offset)
}
base := fmt.Sprintf("(R%d)", int(mem.Base))
index := ""
if mem.Sign != 0 {
sign := ""
if mem.Sign < 0 {
suffix += ".U"
}
shift := ""
if mem.Count != 0 {
shift = fmt.Sprintf("%s%d", plan9Shift[mem.Shift], mem.Count)
}
index = fmt.Sprintf("(%sR%d%s)", sign, int(mem.Index), shift)
}
return off + base + index, suffix
}
type goFPInfo struct {
op Op
transArgs []int // indexes of arguments which need transformation
gnuName string // instruction name in GNU syntax
goName string // instruction name in Plan 9 syntax
}
var fpInst []goFPInfo = []goFPInfo{
{VADD_EQ_F32, []int{2, 1, 0}, "VADD", "ADDF"},
{VADD_EQ_F64, []int{2, 1, 0}, "VADD", "ADDD"},
{VSUB_EQ_F32, []int{2, 1, 0}, "VSUB", "SUBF"},
{VSUB_EQ_F64, []int{2, 1, 0}, "VSUB", "SUBD"},
{VMUL_EQ_F32, []int{2, 1, 0}, "VMUL", "MULF"},
{VMUL_EQ_F64, []int{2, 1, 0}, "VMUL", "MULD"},
{VNMUL_EQ_F32, []int{2, 1, 0}, "VNMUL", "NMULF"},
{VNMUL_EQ_F64, []int{2, 1, 0}, "VNMUL", "NMULD"},
{VMLA_EQ_F32, []int{2, 1, 0}, "VMLA", "MULAF"},
{VMLA_EQ_F64, []int{2, 1, 0}, "VMLA", "MULAD"},
{VMLS_EQ_F32, []int{2, 1, 0}, "VMLS", "MULSF"},
{VMLS_EQ_F64, []int{2, 1, 0}, "VMLS", "MULSD"},
{VNMLA_EQ_F32, []int{2, 1, 0}, "VNMLA", "NMULAF"},
{VNMLA_EQ_F64, []int{2, 1, 0}, "VNMLA", "NMULAD"},
{VNMLS_EQ_F32, []int{2, 1, 0}, "VNMLS", "NMULSF"},
{VNMLS_EQ_F64, []int{2, 1, 0}, "VNMLS", "NMULSD"},
{VDIV_EQ_F32, []int{2, 1, 0}, "VDIV", "DIVF"},
{VDIV_EQ_F64, []int{2, 1, 0}, "VDIV", "DIVD"},
{VNEG_EQ_F32, []int{1, 0}, "VNEG", "NEGF"},
{VNEG_EQ_F64, []int{1, 0}, "VNEG", "NEGD"},
{VABS_EQ_F32, []int{1, 0}, "VABS", "ABSF"},
{VABS_EQ_F64, []int{1, 0}, "VABS", "ABSD"},
{VSQRT_EQ_F32, []int{1, 0}, "VSQRT", "SQRTF"},
{VSQRT_EQ_F64, []int{1, 0}, "VSQRT", "SQRTD"},
{VCMP_EQ_F32, []int{1, 0}, "VCMP", "CMPF"},
{VCMP_EQ_F64, []int{1, 0}, "VCMP", "CMPD"},
{VCMP_E_EQ_F32, []int{1, 0}, "VCMP.E", "CMPF"},
{VCMP_E_EQ_F64, []int{1, 0}, "VCMP.E", "CMPD"},
{VLDR_EQ, []int{1}, "VLDR", "MOV"},
{VSTR_EQ, []int{1}, "VSTR", "MOV"},
{VMOV_EQ_F32, []int{1, 0}, "VMOV", "MOVF"},
{VMOV_EQ_F64, []int{1, 0}, "VMOV", "MOVD"},
{VMOV_EQ_32, []int{1, 0}, "VMOV", "MOVW"},
{VMOV_EQ, []int{1, 0}, "VMOV", "MOVW"},
{VCVT_EQ_F64_F32, []int{1, 0}, "VCVT", "MOVFD"},
{VCVT_EQ_F32_F64, []int{1, 0}, "VCVT", "MOVDF"},
{VCVT_EQ_F32_U32, []int{1, 0}, "VCVT", "MOVWF.U"},
{VCVT_EQ_F32_S32, []int{1, 0}, "VCVT", "MOVWF"},
{VCVT_EQ_S32_F32, []int{1, 0}, "VCVT", "MOVFW"},
{VCVT_EQ_U32_F32, []int{1, 0}, "VCVT", "MOVFW.U"},
{VCVT_EQ_F64_U32, []int{1, 0}, "VCVT", "MOVWD.U"},
{VCVT_EQ_F64_S32, []int{1, 0}, "VCVT", "MOVWD"},
{VCVT_EQ_S32_F64, []int{1, 0}, "VCVT", "MOVDW"},
{VCVT_EQ_U32_F64, []int{1, 0}, "VCVT", "MOVDW.U"},
}
// convert FP instructions from GNU syntax to Plan 9 syntax, for example,
// vadd.f32 s0, s3, s4 -> ADDF F0, S3, F2
// vsub.f64 d0, d2, d4 -> SUBD F0, F2, F4
// vldr s2, [r11] -> MOVF (R11), F1
// inputs: instruction name and arguments in GNU syntax
// return values: corresponding instruction name and arguments in Plan 9 syntax
func fpTrans(inst *Inst, op string, args []string) (string, []string) {
for _, fp := range fpInst {
if inst.Op&^15 == fp.op {
// remove gnu syntax suffixes
op = strings.Replace(op, ".F32", "", -1)
op = strings.Replace(op, ".F64", "", -1)
op = strings.Replace(op, ".S32", "", -1)
op = strings.Replace(op, ".U32", "", -1)
op = strings.Replace(op, ".32", "", -1)
// compose op name
if fp.op == VLDR_EQ || fp.op == VSTR_EQ {
switch {
case strings.HasPrefix(args[fp.transArgs[0]], "D"):
op = "MOVD" + op[len(fp.gnuName):]
case strings.HasPrefix(args[fp.transArgs[0]], "S"):
op = "MOVF" + op[len(fp.gnuName):]
default:
panic(fmt.Sprintf("wrong FP register: %v", inst))
}
} else {
op = fp.goName + op[len(fp.gnuName):]
}
// transform registers
for ix, ri := range fp.transArgs {
switch {
case strings.HasSuffix(args[ri], "[1]"): // MOVW Rx, Dy[1]
break
case strings.HasSuffix(args[ri], "[0]"): // Dx[0] -> Fx
args[ri] = strings.Replace(args[ri], "[0]", "", -1)
fallthrough
case strings.HasPrefix(args[ri], "D"): // Dx -> Fx
args[ri] = "F" + args[ri][1:]
case strings.HasPrefix(args[ri], "S"):
if inst.Args[ix].(Reg)&1 == 0 { // Sx -> Fy, y = x/2, if x is even
args[ri] = fmt.Sprintf("F%d", (inst.Args[ix].(Reg)-S0)/2)
}
case strings.HasPrefix(args[ri], "$"): // CMPF/CMPD $0, Fx
break
case strings.HasPrefix(args[ri], "R"): // MOVW Rx, Dy[1]
break
default:
panic(fmt.Sprintf("wrong FP register: %v", inst))
}
}
break
}
}
return op, args
}