blob: ea5139cb826988b7aa477ef1dd1d703c071fbc0f [file] [log] [blame]
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package arm64asm
import (
"fmt"
"io"
"sort"
"strings"
)
// GoSyntax returns the Go assembler syntax for the instruction.
// The syntax was originally defined by Plan 9.
// The pc is the program counter of the instruction, used for
// expanding PC-relative addresses into absolute ones.
// The symname function queries the symbol table for the program
// being disassembled. Given a target address it returns the name
// and base address of the symbol containing the target, if any;
// otherwise it returns "", 0.
// The reader text should read from the text segment using text addresses
// as offsets; it is used to display pc-relative loads as constant loads.
func GoSyntax(inst Inst, pc uint64, symname func(uint64) (string, uint64), text io.ReaderAt) string {
if symname == nil {
symname = func(uint64) (string, uint64) { return "", 0 }
}
var args []string
for _, a := range inst.Args {
if a == nil {
break
}
args = append(args, plan9Arg(&inst, pc, symname, a))
}
op := inst.Op.String()
switch inst.Op {
case LDR, LDRB, LDRH, LDRSB, LDRSH, LDRSW:
// Check for PC-relative load.
if offset, ok := inst.Args[1].(PCRel); ok {
addr := pc + uint64(offset)
if _, ok := inst.Args[0].(Reg); !ok {
break
}
if s, base := symname(addr); s != "" && addr == base {
args[1] = fmt.Sprintf("$%s(SB)", s)
}
}
}
// Move addressing mode into opcode suffix.
suffix := ""
switch inst.Op {
case LDR, LDRB, LDRH, LDRSB, LDRSH, LDRSW, STR, STRB, STRH, STUR, STURB, STURH, LD1, ST1:
switch mem := inst.Args[1].(type) {
case MemImmediate:
switch mem.Mode {
case AddrOffset:
// no suffix
case AddrPreIndex:
suffix = ".W"
case AddrPostIndex, AddrPostReg:
suffix = ".P"
}
}
case STP, LDP:
switch mem := inst.Args[2].(type) {
case MemImmediate:
switch mem.Mode {
case AddrOffset:
// no suffix
case AddrPreIndex:
suffix = ".W"
case AddrPostIndex:
suffix = ".P"
}
}
}
switch inst.Op {
case BL:
return "CALL " + args[0]
case BLR:
r := inst.Args[0].(Reg)
regno := uint16(r) & 31
return fmt.Sprintf("CALL (R%d)", regno)
case RET:
if r, ok := inst.Args[0].(Reg); ok && r == X30 {
return "RET"
}
case B:
if cond, ok := inst.Args[0].(Cond); ok {
return "B" + cond.String() + " " + args[1]
}
return "JMP" + " " + args[0]
case BR:
r := inst.Args[0].(Reg)
regno := uint16(r) & 31
return fmt.Sprintf("JMP (R%d)", regno)
case MOV:
rno := -1
switch a := inst.Args[0].(type) {
case Reg:
rno = int(a)
case RegSP:
rno = int(a)
case RegisterWithArrangementAndIndex:
op = "VMOV"
case RegisterWithArrangement:
op = "VMOV"
}
if rno >= 0 && rno <= int(WZR) {
op = "MOVW"
} else if rno >= int(X0) && rno <= int(XZR) {
op = "MOVD"
}
if _, ok := inst.Args[1].(RegisterWithArrangementAndIndex); ok {
op = "VMOV"
}
case LDR, LDUR:
var rno uint16
if r, ok := inst.Args[0].(Reg); ok {
rno = uint16(r)
} else {
rno = uint16(inst.Args[0].(RegSP))
}
if rno <= uint16(WZR) {
op = "MOVWU" + suffix
} else if rno >= uint16(B0) && rno <= uint16(B31) {
op = "FMOVB" + suffix
args[0] = fmt.Sprintf("F%d", rno&31)
} else if rno >= uint16(H0) && rno <= uint16(H31) {
op = "FMOVH" + suffix
args[0] = fmt.Sprintf("F%d", rno&31)
} else if rno >= uint16(S0) && rno <= uint16(S31) {
op = "FMOVS" + suffix
args[0] = fmt.Sprintf("F%d", rno&31)
} else if rno >= uint16(D0) && rno <= uint16(D31) {
op = "FMOVD" + suffix
args[0] = fmt.Sprintf("F%d", rno&31)
} else if rno >= uint16(Q0) && rno <= uint16(Q31) {
op = "FMOVQ" + suffix
args[0] = fmt.Sprintf("F%d", rno&31)
} else {
op = "MOVD" + suffix
}
case LDRB:
op = "MOVBU" + suffix
case LDRH:
op = "MOVHU" + suffix
case LDRSW:
op = "MOVW" + suffix
case LDRSB:
if r, ok := inst.Args[0].(Reg); ok {
rno := uint16(r)
if rno <= uint16(WZR) {
op = "MOVBW" + suffix
} else {
op = "MOVB" + suffix
}
}
case LDRSH:
if r, ok := inst.Args[0].(Reg); ok {
rno := uint16(r)
if rno <= uint16(WZR) {
op = "MOVHW" + suffix
} else {
op = "MOVH" + suffix
}
}
case STR, STUR:
var rno uint16
if r, ok := inst.Args[0].(Reg); ok {
rno = uint16(r)
} else {
rno = uint16(inst.Args[0].(RegSP))
}
if rno <= uint16(WZR) {
op = "MOVW" + suffix
} else if rno >= uint16(B0) && rno <= uint16(B31) {
op = "FMOVB" + suffix
args[0] = fmt.Sprintf("F%d", rno&31)
} else if rno >= uint16(H0) && rno <= uint16(H31) {
op = "FMOVH" + suffix
args[0] = fmt.Sprintf("F%d", rno&31)
} else if rno >= uint16(S0) && rno <= uint16(S31) {
op = "FMOVS" + suffix
args[0] = fmt.Sprintf("F%d", rno&31)
} else if rno >= uint16(D0) && rno <= uint16(D31) {
op = "FMOVD" + suffix
args[0] = fmt.Sprintf("F%d", rno&31)
} else if rno >= uint16(Q0) && rno <= uint16(Q31) {
op = "FMOVQ" + suffix
args[0] = fmt.Sprintf("F%d", rno&31)
} else {
op = "MOVD" + suffix
}
args[0], args[1] = args[1], args[0]
case STRB, STURB:
op = "MOVB" + suffix
args[0], args[1] = args[1], args[0]
case STRH, STURH:
op = "MOVH" + suffix
args[0], args[1] = args[1], args[0]
case TBNZ, TBZ:
args[0], args[1], args[2] = args[2], args[0], args[1]
case MADD, MSUB, SMADDL, SMSUBL, UMADDL, UMSUBL:
if r, ok := inst.Args[0].(Reg); ok {
rno := uint16(r)
if rno <= uint16(WZR) {
op += "W"
}
}
args[2], args[3] = args[3], args[2]
case STLR:
if r, ok := inst.Args[0].(Reg); ok {
rno := uint16(r)
if rno <= uint16(WZR) {
op += "W"
}
}
args[0], args[1] = args[1], args[0]
case STLRB, STLRH:
args[0], args[1] = args[1], args[0]
case STLXR, STXR:
if r, ok := inst.Args[1].(Reg); ok {
rno := uint16(r)
if rno <= uint16(WZR) {
op += "W"
}
}
args[1], args[2] = args[2], args[1]
case STLXRB, STLXRH, STXRB, STXRH:
args[1], args[2] = args[2], args[1]
case BFI, BFXIL, SBFIZ, SBFX, UBFIZ, UBFX:
if r, ok := inst.Args[0].(Reg); ok {
rno := uint16(r)
if rno <= uint16(WZR) {
op += "W"
}
}
args[1], args[2], args[3] = args[3], args[1], args[2]
case LDAXP, LDXP:
if r, ok := inst.Args[0].(Reg); ok {
rno := uint16(r)
if rno <= uint16(WZR) {
op += "W"
}
}
args[0] = fmt.Sprintf("(%s, %s)", args[0], args[1])
args[1] = args[2]
return op + " " + args[1] + ", " + args[0]
case STP, LDP:
args[0] = fmt.Sprintf("(%s, %s)", args[0], args[1])
args[1] = args[2]
rno, ok := inst.Args[0].(Reg)
if !ok {
rno = Reg(inst.Args[0].(RegSP))
}
if rno <= WZR {
op = op + "W"
} else if rno >= S0 && rno <= S31 {
op = "F" + op + "S"
} else if rno >= D0 && rno <= D31 {
op = "F" + op + "D"
} else if rno >= Q0 && rno <= Q31 {
op = "F" + op + "Q"
}
op = op + suffix
if inst.Op.String() == "STP" {
return op + " " + args[0] + ", " + args[1]
} else {
return op + " " + args[1] + ", " + args[0]
}
case STLXP, STXP:
if r, ok := inst.Args[1].(Reg); ok {
rno := uint16(r)
if rno <= uint16(WZR) {
op += "W"
}
}
args[1] = fmt.Sprintf("(%s, %s)", args[1], args[2])
args[2] = args[3]
return op + " " + args[1] + ", " + args[2] + ", " + args[0]
case FCCMP, FCCMPE:
args[0], args[1] = args[1], args[0]
fallthrough
case FCMP, FCMPE:
if _, ok := inst.Args[1].(Imm); ok {
args[1] = "$(0.0)"
}
fallthrough
case FADD, FSUB, FMUL, FNMUL, FDIV, FMAX, FMIN, FMAXNM, FMINNM, FCSEL, FMADD, FMSUB, FNMADD, FNMSUB:
if strings.HasSuffix(op, "MADD") || strings.HasSuffix(op, "MSUB") {
args[2], args[3] = args[3], args[2]
}
if r, ok := inst.Args[0].(Reg); ok {
rno := uint16(r)
if rno >= uint16(S0) && rno <= uint16(S31) {
op = fmt.Sprintf("%sS", op)
} else if rno >= uint16(D0) && rno <= uint16(D31) {
op = fmt.Sprintf("%sD", op)
}
}
case FCVT:
for i := 1; i >= 0; i-- {
if r, ok := inst.Args[i].(Reg); ok {
rno := uint16(r)
if rno >= uint16(H0) && rno <= uint16(H31) {
op = fmt.Sprintf("%sH", op)
} else if rno >= uint16(S0) && rno <= uint16(S31) {
op = fmt.Sprintf("%sS", op)
} else if rno >= uint16(D0) && rno <= uint16(D31) {
op = fmt.Sprintf("%sD", op)
}
}
}
case FABS, FNEG, FSQRT, FRINTN, FRINTP, FRINTM, FRINTZ, FRINTA, FRINTX, FRINTI:
if r, ok := inst.Args[1].(Reg); ok {
rno := uint16(r)
if rno >= uint16(S0) && rno <= uint16(S31) {
op = fmt.Sprintf("%sS", op)
} else if rno >= uint16(D0) && rno <= uint16(D31) {
op = fmt.Sprintf("%sD", op)
}
}
case FCVTZS, FCVTZU, SCVTF, UCVTF:
if _, ok := inst.Args[2].(Imm); !ok {
for i := 1; i >= 0; i-- {
if r, ok := inst.Args[i].(Reg); ok {
rno := uint16(r)
if rno >= uint16(S0) && rno <= uint16(S31) {
op = fmt.Sprintf("%sS", op)
} else if rno >= uint16(D0) && rno <= uint16(D31) {
op = fmt.Sprintf("%sD", op)
} else if rno <= uint16(WZR) {
op += "W"
}
}
}
}
case FMOV:
for i := 0; i <= 1; i++ {
if r, ok := inst.Args[i].(Reg); ok {
rno := uint16(r)
if rno >= uint16(S0) && rno <= uint16(S31) {
op = fmt.Sprintf("%sS", op)
break
} else if rno >= uint16(D0) && rno <= uint16(D31) {
op = fmt.Sprintf("%sD", op)
break
}
}
}
case SYSL:
op1 := int(inst.Args[1].(Imm).Imm)
cn := int(inst.Args[2].(Imm_c))
cm := int(inst.Args[3].(Imm_c))
op2 := int(inst.Args[4].(Imm).Imm)
sysregno := int32(op1<<16 | cn<<12 | cm<<8 | op2<<5)
args[1] = fmt.Sprintf("$%d", sysregno)
return op + " " + args[1] + ", " + args[0]
case CBNZ, CBZ:
if r, ok := inst.Args[0].(Reg); ok {
rno := uint16(r)
if rno <= uint16(WZR) {
op += "W"
}
}
args[0], args[1] = args[1], args[0]
case ADR, ADRP:
addr := int64(inst.Args[1].(PCRel))
args[1] = fmt.Sprintf("%d(PC)", addr)
case MSR:
args[0] = inst.Args[0].String()
case ST1:
op = fmt.Sprintf("V%s", op) + suffix
args[0], args[1] = args[1], args[0]
case LD1:
op = fmt.Sprintf("V%s", op) + suffix
case UMOV:
op = "VMOV"
case NOP:
op = "NOOP"
default:
index := sort.SearchStrings(noSuffixOpSet, op)
if !(index < len(noSuffixOpSet) && noSuffixOpSet[index] == op) {
rno := -1
switch a := inst.Args[0].(type) {
case Reg:
rno = int(a)
case RegSP:
rno = int(a)
case RegisterWithArrangement:
op = fmt.Sprintf("V%s", op)
}
if rno >= int(B0) && rno <= int(Q31) && !strings.HasPrefix(op, "F") {
op = fmt.Sprintf("V%s", op)
}
if rno >= 0 && rno <= int(WZR) {
// Add "w" to opcode suffix.
op += "W"
}
}
op = op + suffix
}
// conditional instructions, replace args.
if _, ok := inst.Args[3].(Cond); ok {
if _, ok := inst.Args[2].(Reg); ok {
args[1], args[2] = args[2], args[1]
} else {
args[0], args[2] = args[2], args[0]
}
}
// Reverse args, placing dest last.
for i, j := 0, len(args)-1; i < j; i, j = i+1, j-1 {
args[i], args[j] = args[j], args[i]
}
if args != nil {
op += " " + strings.Join(args, ", ")
}
return op
}
// No need add "W" to opcode suffix.
// Opcode must be inserted in ascending order.
var noSuffixOpSet = strings.Fields(`
AESD
AESE
AESIMC
AESMC
CRC32B
CRC32CB
CRC32CH
CRC32CW
CRC32CX
CRC32H
CRC32W
CRC32X
LDARB
LDARH
LDAXRB
LDAXRH
LDTRH
LDXRB
LDXRH
SHA1C
SHA1H
SHA1M
SHA1P
SHA1SU0
SHA1SU1
SHA256H
SHA256H2
SHA256SU0
SHA256SU1
`)
// floating point instructions without "F" prefix.
var fOpsWithoutFPrefix = map[Op]bool{
LDP: true,
STP: true,
}
func plan9Arg(inst *Inst, pc uint64, symname func(uint64) (string, uint64), arg Arg) string {
switch a := arg.(type) {
case Imm:
return fmt.Sprintf("$%d", uint32(a.Imm))
case Imm64:
return fmt.Sprintf("$%d", int64(a.Imm))
case ImmShift:
if a.shift == 0 {
return fmt.Sprintf("$%d", a.imm)
}
return fmt.Sprintf("$(%d<<%d)", a.imm, a.shift)
case PCRel:
addr := int64(pc) + int64(a)
if s, base := symname(uint64(addr)); s != "" && uint64(addr) == base {
return fmt.Sprintf("%s(SB)", s)
}
return fmt.Sprintf("%d(PC)", a/4)
case Reg:
regenum := uint16(a)
regno := uint16(a) & 31
if regenum >= uint16(B0) && regenum <= uint16(Q31) {
if strings.HasPrefix(inst.Op.String(), "F") || strings.HasSuffix(inst.Op.String(), "CVTF") || fOpsWithoutFPrefix[inst.Op] {
// FP registers are the same ones as SIMD registers
// Print Fn for scalar variant to align with assembler (e.g., FCVT, SCVTF, UCVTF, etc.)
return fmt.Sprintf("F%d", regno)
} else {
// Print Vn to align with assembler (e.g., SHA256H)
return fmt.Sprintf("V%d", regno)
}
}
return plan9gpr(a)
case RegSP:
regno := uint16(a) & 31
if regno == 31 {
return "RSP"
}
return fmt.Sprintf("R%d", regno)
case RegExtshiftAmount:
reg := plan9gpr(a.reg)
extshift := ""
amount := ""
if a.extShift != ExtShift(0) {
switch a.extShift {
default:
extshift = "." + a.extShift.String()
case lsl:
extshift = "<<"
amount = fmt.Sprintf("%d", a.amount)
return reg + extshift + amount
case lsr:
extshift = ">>"
amount = fmt.Sprintf("%d", a.amount)
return reg + extshift + amount
case asr:
extshift = "->"
amount = fmt.Sprintf("%d", a.amount)
return reg + extshift + amount
case ror:
extshift = "@>"
amount = fmt.Sprintf("%d", a.amount)
return reg + extshift + amount
}
if a.amount != 0 {
amount = fmt.Sprintf("<<%d", a.amount)
}
}
return reg + extshift + amount
case MemImmediate:
off := ""
base := ""
regno := uint16(a.Base) & 31
if regno == 31 {
base = "(RSP)"
} else {
base = fmt.Sprintf("(R%d)", regno)
}
if a.imm != 0 && a.Mode != AddrPostReg {
off = fmt.Sprintf("%d", a.imm)
} else if a.Mode == AddrPostReg {
postR := fmt.Sprintf("(R%d)", a.imm)
return base + postR
}
return off + base
case MemExtend:
base := ""
index := ""
regno := uint16(a.Base) & 31
if regno == 31 {
base = "(RSP)"
} else {
base = fmt.Sprintf("(R%d)", regno)
}
indexreg := plan9gpr(a.Index)
if a.Extend == lsl {
// Refer to ARM reference manual, for byte load/store(register), the index
// shift amount must be 0, encoded in "S" as 0 if omitted, or as 1 if present.
// a.Amount indicates the index shift amount, encoded in "S" field.
// a.ShiftMustBeZero is set true indicates the index shift amount must be 0.
// When a.ShiftMustBeZero is true, GNU syntax prints "[Xn, Xm lsl #0]" if "S"
// equals to 1, or prints "[Xn, Xm]" if "S" equals to 0.
if a.Amount != 0 && !a.ShiftMustBeZero {
index = fmt.Sprintf("(%s<<%d)", indexreg, a.Amount)
} else if a.ShiftMustBeZero && a.Amount == 1 {
// When a.ShiftMustBeZero is ture, Go syntax prints "(Rm<<0)" if "a.Amount"
// equals to 1.
index = fmt.Sprintf("(%s<<0)", indexreg)
} else {
index = fmt.Sprintf("(%s)", indexreg)
}
} else {
if a.Amount != 0 && !a.ShiftMustBeZero {
index = fmt.Sprintf("(%s.%s<<%d)", indexreg, a.Extend.String(), a.Amount)
} else {
index = fmt.Sprintf("(%s.%s)", indexreg, a.Extend.String())
}
}
return base + index
case Cond:
switch arg.String() {
case "CS":
return "HS"
case "CC":
return "LO"
}
case Imm_clrex:
return fmt.Sprintf("$%d", uint32(a))
case Imm_dcps:
return fmt.Sprintf("$%d", uint32(a))
case Imm_option:
return fmt.Sprintf("$%d", uint8(a))
case Imm_hint:
return fmt.Sprintf("$%d", uint8(a))
case Imm_fp:
var s, pre, numerator, denominator int16
var result float64
if a.s == 0 {
s = 1
} else {
s = -1
}
pre = s * int16(16+a.pre)
if a.exp > 0 {
numerator = (pre << uint8(a.exp))
denominator = 16
} else {
numerator = pre
denominator = (16 << uint8(-1*a.exp))
}
result = float64(numerator) / float64(denominator)
return strings.TrimRight(fmt.Sprintf("$%f", result), "0")
case RegisterWithArrangement:
result := a.r.String()
arrange := a.a.String()
c := []rune(arrange)
switch len(c) {
case 3:
c[1], c[2] = c[2], c[1] // .8B -> .B8
case 4:
c[1], c[2], c[3] = c[3], c[1], c[2] // 16B -> B16
}
arrange = string(c)
result += arrange
if a.cnt > 0 {
result = "[" + result
for i := 1; i < int(a.cnt); i++ {
cur := V0 + Reg((uint16(a.r)-uint16(V0)+uint16(i))&31)
result += ", " + cur.String() + arrange
}
result += "]"
}
return result
case RegisterWithArrangementAndIndex:
result := a.r.String()
arrange := a.a.String()
result += arrange
if a.cnt > 1 {
result = "[" + result
for i := 1; i < int(a.cnt); i++ {
cur := V0 + Reg((uint16(a.r)-uint16(V0)+uint16(i))&31)
result += ", " + cur.String() + arrange
}
result += "]"
}
return fmt.Sprintf("%s[%d]", result, a.index)
case Systemreg:
return fmt.Sprintf("$%d", uint32(a.op0&1)<<14|uint32(a.op1&7)<<11|uint32(a.cn&15)<<7|uint32(a.cm&15)<<3|uint32(a.op2)&7)
case Imm_prfop:
if strings.Contains(a.String(), "#") {
return fmt.Sprintf("$%d", a)
}
case sysOp:
result := a.op.String()
if a.r != 0 {
result += ", " + plan9gpr(a.r)
}
return result
}
return strings.ToUpper(arg.String())
}
// Convert a general-purpose register to plan9 assembly format.
func plan9gpr(r Reg) string {
regno := uint16(r) & 31
if regno == 31 {
return "ZR"
}
return fmt.Sprintf("R%d", regno)
}